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ABSTRACT

We describe and compare two approaches to solid subpixel target detection in hyperspectral imagery. The first
approach requires explicit models for both the target and the background, and employs a generalized likelihood
ratio in order to obtain a detector that is optimized to those specific models. When this approach is most
successful, a closed-form solution is obtained that permits the detector to be efficiently applied. A specific
example of this approach is outlined in some detail, leading to the elliptically-contoured finite-target matched
filter (EC-FTMF), a variant of the classical FTMF algorithm that uses a multivariate t-distribution instead of
a Gaussian as the model for the background. The second approach also requires an explicit model of the target,
but does not need a model for the background. In this second approach, matched pairs of data samples are
created: for each pixel in the original hyperspectral image, a corresponding pixel is generated by implanting the
target into the original pixel. These matched pairs are used as training data for a machine learning algorithm to
classify pixels as either non-target or target. Here we use a support vector machine, but the matched pair machine
learning (MPML) framework does not restrict the choice of classifier type. Detectors using both approaches are
applied both to simulated data (with Gaussian and with multivariate t distributed backgrounds) and to real
hyperspectral data with known, referenced targets.
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1. INTRODUCTION

Many materials that are of civilian and military interest are difficult to distinguish using traditional cameras,
as those cameras are designed to recreate what we see visually (by measuring the “red”-ness, “green”-ness, and
“blue”-ness of the pixels in the scene). These materials, however, often possess rich information in narrow visible
and non-visible channels of the electromagnetic spectrum, which can be captured by hyperspectral cameras.
When deployed on airborne or spaceborne platforms, the high spectral resolution of hyperspectral imagery
enables remote discrimination of materials. In the target detection regime, we exploit this spectral resolution for
the detection of image pixels that are likely to contain the target material. In the work presented here, although
we limit our examples to detection of opaque targets, the focus is in fact this: the development of a broader
framework for target detection that enables us to use more sophisticated physics-based and data-driven models
to produce detection algorithms that are not confined to simplistic assumptions.

1.1 Traditional Target Detection Algorithms

Traditional target detection algorithms (not restricted to HSI data) begin with specific models of the target, of
the background, and of the interaction between the two. The target is usually the most well known ab initio,
sometimes characterized by a unique spectral signature, sometimes by a family of signatures (with the family
in turn sometimes characterized by a subspace or a simplex or a probability distribution), and often informed
by known physical or chemical properties. The background, by contrast, exhibits a complexity that is not
straightforwardly amenable to direct modeling. Instead, the background is generally characterized by some kind
of parametric or nonparametric data-driven model, which can be very effective because there is often a lot of data
available to drive that model, which is generally (though not exclusively) some kind of probability distribution.
Finally, there is the interaction of target and background. The most common interaction model is additive, with
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the observed pixel containing signal that is simply the background plus what the target adds to that signal. A
linear replacement model can be more appropriate for solid subpixel targets wherein the target signal is a fraction
of the total pixel signal, and even more complicated models might be appropriate for heavy chemical plumes or
thin layers of semi-transparent powder. In general, if b ∈ Rd is the observed spectrum of the background clutter,
we will write x = ξ(b) as the observed pixel spectrum when target is present.

1.2 Additive Target Model

In particular, when the target is additive, we write

x = ξ(b) = b + εt (1)

where t is the target signal (modeled here as a unique spectral signature), and ε is the measure of the strength of
that signal. Depending on the model for the background, the additive model can lead to the adaptive matched
filter (AMF),1–3 the adaptive coherence (or “cosine”) estimator (ACE),4,5 or the elliptically-contoured generalized
likelihood ratio test (EG-GLRT) detector.6

Although it makes sense for radar signal processing,7 and is plausible for modeling the effect of weak gas-phase
chemical plumes,8–11 the additive model is “phenomenologically inconsistent” with opaque target materials.12

1.3 Replacement Target Model

The replacement target model is given by

x = ξ(b) = (1− α)b + αt (2)

where 0 ≤ α ≤ 1 is the fraction of a pixel covered by the opaque target with spectral signature t. Algorithms
designed to respect the phenomenology of opaque targets include the mixture-tuned matched filter,13 the false-
alarm mitigating matched filter,14,15 and the adaptive residual16 (note that if we are in a regime where α is known
to be small, then the matched filters designed for the additive target model can still be effective). A rigorous
derivation of a detector that is based explicitly on the replacement model in Eq. (2) and on the assumptions of
a fixed target and a Gaussian backgound is the finite-target matched filter (FTMF) of Schaum and Stocker.17

This has been extended to a variable target, though with the restriction that target covariance is proportional
to the background covariance,15 a situation described by Schaum as ampliskedastic.18 Variants of this extension
have also been derived by using different flavors of clairvoyant fusion instead of the more traditional generalized
likelihood ratio test.18,19

1.4 EC-FTMF

In this section, we sketch out the derivation of an elliptically-contoured finite-target matched filter (EC-FTMF),20

which follows the derivation of the FTMF, but applied to a background with an elliptically-contoured distribution.
We also show that the EC-FTMF reduces to the FTMF in the limit as the background becomes more Gaussian.
We begin with an expression for the multivariate t distribution:

tν(b|µ, R) =
Γ ((ν + d)/2)

Γ(ν/2)νd/2πd/2|R|1/2

[
1 +

1

ν − 2
(b− µ)TR−1(b− µ)

]−(ν+d)/2

(3)

where ν represents the degrees of freedom, and µ and R are mean and covariance of the data respectively. The
utility of EC distributions for hyperspectral data has been previously noted.6,10,21–23 The detector is formulated
via the hypothesis testing framework, with the null and alternative hypotheses given by

H0 : α = 0, (4)

H1 : α > 0. (5)

If px(x|H0) and px(x|H1) are the conditional probability distributions for the observed spectrum x under the
null and alternative hypotheses respectively, then the likelihood ratio test provides a formula for the detector:

D(x) =
px(x|H1)

px(x|H0)
. (6)
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Since α is unknown to us beforehand, we use the Generalized Likelihood Ratio Testing framework24 and use the
maximum likelihood estimate of α; thus,

D(x) =
maxα px(x|α)

px(x|0)
=
px(x|α̂)

px(x|0)
, (7)

where α̂ is the maximum likelihood estimator for α, given by

α̂ = argmax
α

px(x|α). (8)

Expressing the background pixel b = (x − αt)/(1 − α) as a function of fraction α, pixel measurement x, and
target spectrum t, we get that

px(x|0) = pb (x) , and (9)

px(x|α) = (1− α)−dpb

(
x− αt

1− α

)
, (10)

where pb(x) = tν(x|µ, R) is the background distribution. In particular, the expression for px(x|α) is given by

px(x|α) = c× (1− α)−d
[
1 +

(1− α)−2

ν − 2
(z− αu)T(z− αu)

]−(ν+d)/2

(11)

where c is a constant that depends on ν, p, and |R|, and z = R−1/2(x−µ) and u = R−1/2(t−µ) are the whitened
versions of the measured pixel and the target. To find the α that maximizes px(x|α), we take the derivative and
set it to 0. When this is done (excruciating details are in the Appendix), we obtain a quadratic equation:

A(1− α)2 +B(1− α) + C = 0 (12)

with coefficients given by20

A = (t− µ)TR−1(t− µ) + (ν − 2) (13)

B(x) =
(

1− ν

d

)
(x− t)TR−1(t− µ) (14)

C(x) = −ν
d

(x− t)TR−1(x− t). (15)

Taking the limit ν →∞, we recover the coefficients corresponding to the FTMF model:17

A = 1 (16)

B(x) = −(x− t)TR−1(t− µ)/d (17)

C(x) = −(x− t)TR−1(x− t)/d. (18)

From Eq. (12), we have

α̂(x) = 1−
−B(x) +

√
B2(x)− 4AC(x)

2A
(19)

and finally, the EC-FTMF detector is given by

D(x) =
px(x|α̂(x))

px(x|0)
(20)

with px defined in Eq. (11).
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1.5 Limitations of Traditional Target Detection Algorithms

A strength of this traditional approach to the design of target detection algorithms is that one can adapt different
models of target and background and target/background interaction to the specific physical scenarios of interest.
A problem that arises in practice, however, is that expressions for these different models can lead to unwieldy
algebra, and their combination into a single likelihood (or generalized likelihood) ratio can be difficult. Closed-
form solutions are desirable, but in order to achieve them, simplifying assumptions are sometimes made, even
when the practitioner knows better (e.g., that the background isn’t really Gaussian, that the target isn’t really
fixed at a single spectral signature, or that the background-target interaction isn’t really linear).

2. MATCHED-PAIR FRAMEWORK FOR TARGET DETECTION

There is a growing abundance of hyperspectral image data available from a variety of sources in both government
and commercial sectors. Ground truth for this data is not, however, growing as rapidly. Machine learning has
the potential to add enormous value, but the usual scenario for machine learning exploitation – as illustrated in
Fig. 1(b) – requires an adequate number of labeled samples to estimate the statistics of the classes of interest.
For target detection, those classes are background and target, and while background pixels are plentiful, reliably-
labeled target pixels are rare to nonexistent – the situation illustrated in Fig. 1(c). An example of this more
challenging situation occurs when we consider the problem of target detection in the SHARE 2012 dataset,25

which we will describe in more detail in Section 3.2. Here, the number of samples for the target is much smaller
than for the background (e.g., the blue felt panels comprise a target class with only 72 pixels out of the total
∼48,000 pixels in the test image, or roughly 0.15% of the area of the image).

Using the Matched Pair Machine Learning (MPML) framework,26,27 we couple statistical sampling with
physical modeling (which is incorporated into the ξ function), and transform the target detection problem back
into the realm of classification – as illustrated in Fig. 1(d) – allowing us to use contemporary algorithms to
obtain powerful detectors. This amounts to implanting target into the background scene, but instead of being
used to evaluate the quality of the imagery28 or algorithm,29 it is used as a tool to optimize the performance of
the detection algorithm.

2.1 Matched-Pair Machine Learning

In the classification framework, we seek a function f(x) that assigns to each data sample x ∈ X a label y ∈
{−1,+1}. Formally, we assume we are given a set of data X = {xi}, with xi ∈ Rd. For MPML, we use the
physics-informed function ξ : Rd → Rd to describe the effect of the “treatment” that modifies a target-free
sample x ∈ X by implanting a target in that sample. In this formulation, the treatment ξ is known to us, but
we do not assume or have any knowledge of the underlying data distribution px from which x is presumed to be
drawn. With ξ(x) we create matched pairs of data, where a dataset

Xmatched = {(xi,−1)} ∪ {(ξ(xi),+1)}

is used to learn a function f : Rd → {−1,+1} that allows us to distinguish x and ξ(x). In the case of hyperspectral
detection, the treatment ξ will be modeled after the effects that the various types of targets have on the spectrum
of a pixel.

The problem is set up as follows: we are given a hyperspectral image I, where each pixel x ∈ Rd captures the
spectral reflectance at d different wavelengths. We treat the image as a dataset of n pixels X = {x1, . . . ,xn},
where each xi can be said to have a label yi ∈ {−1,+1}. In most practical instances, the vast majority of these
pixels have a label of yi = −1 (no target); but it is often the case that the labels yi are not available at all, and
in that case the pixels are all treated as background and the label y = −1 is assigned to all the pixels. For each
pixel x, a new pixel ξ(x) is created, and the label y = +1 is assigned to that pixel. In generating our matched
pair data, we take advantage of the physics knowledge, encapsulated in ξ(x), that we have with respect to how
the target affects the pixel, whether it is additive, replacement, Beer’s law, etc. Traditionally, the presence of a
target has been modeled by the additive model, where it is assumed that if the target is present in the picture
with some “strength” ε, the resultant spectrum will be given by x = b + εt. Such models are not appropriate for
opaque targets present in the pixels,12 and thus in order to model the function ξ(x), we will use the replacement
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(a) Theory (b) Classification

(c) Detection (d) Matched Pairs

Figure 1. Following an original figure from Manolakis et al.,24 which depicts an important distinction between classification
and detection (namely, that the number of detectable samples are at most few, which challenges traditional machine
learning), we show how using knowledge about the target/background interaction – as encapsulated in the function ξ(x) –
leads to matched pairs of background and target pixels, thereby enabling classification-style machine learning tools to be
employed. Here, red is background, and green is target. (a) Theoretical models for the distributions. (b) Ideally, what the
problem would look like from a classification standpoint. (c) What the problem actually looks like from a classification
standpoint. (d) An approach for using matched-pair machine learning to generate more in-scene labeled target data.

model (i.e., x = (1− α)b + αt), where α is the fraction of the background spectrum b that will be replaced by
the target spectrum t (here, α can also be thought of as the areal fraction of the pixel taken up by the target).
This allows us to generate two sets of data:

X−1 ={(x,−1) | x ∈ X}, and (21)

X+1 ={((1− α)x + αt,+1) | x ∈ X} (22)

where x corresponds to individual pixels of the image, which are treated as background. Note that the background
class X−1 includes any target-containing pixels, and the expectation is that by using robust classifiers we are
going to be able to learn the correct decision surface that will separate the background and target pixels. This
allows us to transform the detection problem (see Fig. 1(c)) to one of supervised classification (see Fig. 1(d)),
and thus can draw on the plethora of tools developed to learn the decision function in a data-driven fashion.

2.2 Support Vector Classification

For our investigation, we chose the Support Vector Machine (SVM) as our classifier.30 For completeness, in this
section we give the basic formulation of the SVM and explore the different kernels we investigated. In its most
basic formulation, the SVM tries to find the best linear classifier of the form

f(x) = wTx + b (23)
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where xi is assigned to class yi = 1 if f(x) ≥ 0, else yi = −1. Intuitively, SVM tries to maximize the margin,
i.e., the distance from the decision surface to the closest examples in either of the classes, and can be expressed:

minimize
w

wTw

subject to
(
wTxj + b

)
yj ≥ 1, ∀j ∈ {1, . . . ,m}.

The constraint
(
wTxj + b

)
yj ≥ 1 ensures that f(xj) correctly assigns the label yj for all j in the training set.

A variant of of this approach that uses “slack variables” softens this constraint, and enables solutions that only
assign most samples the correct label. The Representer Theorem states that the solution w can be expressed as:

w =

N∑
i=1

αiyixi =⇒ f(x) =

N∑
i=1

αiyi
(
xT
i x
)

+ b (24)

where we see that the decision function is a function of xT
i x, which can be thought of as a measure of similarity

of the new example compared to previously seen examples. Using the “kernel trick,” we can replace the dot
product with any kernel function K(xi,xj) to measure the similarity, which implicitly maps the instances to
higher dimensional spaces and performs the inner product in that space. In this case, the function f(x) in
Eq. (24) becomes

f(x) =

N∑
i=1

αiyiK(xi,xj) + b. (25)

In our experiments, we explored the following kernel functions K:

• Linear Kernel - given by a simple dot product between two vectors in Rd:

Klin(xi,xj) =

n∑
k=1

xki x
k
j = xT

i xj (26)

• Cosine Similarity Kernel - given by the cosine of an angle between two vectors in Rd:

Kcos(xi,xj) =
xT
i xj

‖xi‖‖xj‖
(27)

• Radial Basis Function (RBF) Kernel - measures similarity of two vectors in Rd:

Krbf(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
(28)

3. EXPERIMENTS

In our exploration of the EC-FTMF and the MPML detectors, we compared them on simulated data where we
varied the data statistics, and on real data with available ground truth targets.25 For each dataset, we also
tested the detectors that are theoretically optimal for the various background models (i.e., AMF, ACE, FTMF).

3.1 Synthetic Data with Implanted Targets

We chose to explore two variations of synthetic data, where the background data were drawn from the following
distributions:

• Gaussian distribution N (µ, R), and

• Elliptically-contoured multivariate t-distribution tν(µ, R).

And for the target/background interaction, we used the replacement model:

x = (1− α)b + αt.

The mean µ and covariance R were computed from the SHARE 2012 data and used to generate the synthetic
samples (that are 229-dimensional) in order to better approximate the detector performance on the real data.
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3.2 Real Data with Deployed Targets

In addition to the experiments with synthetic data, we used imagery from the RIT SHARE 2012 campaign25 over
Avon, NY. In particular, we used a hyperspectral image in which a collection of red and blue felt panels (2×2 m
and 3× 3 m in size) were placed in various states of illumination and occlusion.∗ The aerial image was captured
by the SpecTIR VS sensor spanning 360 spectral bands in the VNIR-SWIR, covering the range 400-2400 nm.
After removing the “bad bands,” the final image contained a total of 229 spectral bands. The ground sample
distance (GSD) of the sensor was approximately 1 m, and the georectified image used in this study was 170×280
pixels. The image was atmospherically compensated to approximate ground surface reflectance, and the target
spectra were field-measured with an ASD spectrometer during the campaign, and are also in reflectance.

Figure 2. RGB of the SHARE 2012 hyperspectral image (left) and target mask showing the red and blue felt panel
locations as well as the sizes of the deployed panels (right).

4. RESULTS

4.1 Synthetic Data

In Fig. 3(a), we show the Receiver Operating Characteristic (ROC) curves for the case when the background
was Gaussian. The best performing detector is the FTMF, as was expected as it was derived to be the ideal
detector under such conditions (i.e., Gaussian background and replacement target model). We can see however
that both the EC-FTMF detector and the RBF kernel SVM matched-pair approach (rbfMPML) closely trail
the FTMF and do comparatively well. That is not the case for the other detectors, which achieve much poorer
performance. In particular, the AMF detector – which also assumes a Gaussian background – performs very
poorly; AMF also assumes an additive instead of a replacement model, and that incorrect assumption is very
costly in this case. The linear kernel SVM matched-pair approach (linMPML) does slightly better than AMF,
but still performs poorly, suggesting that a linear model will not work well in this scenario.

On the other hand, for the elliptically-contoured background, we see in Fig. 3(b) a substantial performance
drop for the FTMF. Meanwhile, EC-FTMF is the best performing detector (which is not surprising, as it is
optimized for this background). ACE and the nonlinear MPML detectors (cosMPML, rbfMPML) follow closely
behind in performance.

While FTMF is the best detector when the background is Gaussian, it is evidently sensitive to deviations
from this background model assumption. In contrast, EC-FTMF is relatively robust even as the background
deviates from the specific EC distribution for which it was derived. This robustness is shared by the rbfMPML
detector, which does not assume a particular background distribution, and instead adapts to the available data.

∗The full SHARE 2012 data set is available at: https://www.rit.edu/cos/share2012/
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(a) Gaussian

(b) Elliptically-contoured

Figure 3. ROC curves for the various detectors with synthetic data generated using the replacement model, where the
background was assumed to be (a) Gaussian and (b) elliptically-contoured (ν = 20).

4.2 SHARE 2012 Data

In Fig. 4 we see ROC curves and detection maps for SHARE 2012 and the red felt targets, and Fig. 5 shows the
ROC curves and detection maps for the blue felt targets. Because this is real hyperspectral data, the background
is complicated (and non-Gaussian), and the opaque felt targets more accurately fit the replacement target model
(as opposed to the additive model). For both panel types, the FTMF detector performs least well at the low
false positive rates. We also observe here that, for the matched-pair approaches, cosMPML performs very well
and rbfMPML performs poorly. ACE and EC-FTMF also perform well, and nearly identically. The performance
of ACE in this case is especially impressive, since it was originally derived with the assumptions of an additive
target model and a Gaussian background with unknown variance. (In fact, here the target is not additive, the
background is not Gaussian, and the variance is known.)
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i)

Figure 4. Results for the SHARE 2012 data with red felt targets: (a) ROC curves, (b) truth mask showing red felt panel
locations, (c) - (i) corresponding detection maps for the various detectors.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i)

Figure 5. Results for the SHARE 2012 data with blue felt targets: (a) ROC curves, (b) truth mask showing blue felt
panel locations, (c) - (i) corresponding detection maps for the various detectors.
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5. CONCLUSIONS AND FUTURE WORK

This paper explored the use of machine learning to create classifier-based target detectors, and presented a
derivation of the EC-FTMF detector. In the MPML framework, we remedy the problem of a low number of
target examples by creating matched pairs, where we apply a “treatment” to individual data samples in order to
create pairs of samples (each pair comprising one untreated and one treated sample). We then use these pairs
as labeled training data to enable the learning of a decision function f(x) that maps all samples to either the
background (untreated) or target (treated) class.

We also observed that relaxing the assumption of Gaussian background degraded the performance of the
FTMF significantly. We proposed and derived a closed-form solution for EC-FTMF, a new detector which
assumes an EC-tailed background. Results showed that EC-FTMF performs well in all of the tested cases, even
in spite of the ground-truth test data not having an EC-tailed distribution. The performance of the Cosine Kernel
SVM matched-pair detector suggests that the MPML target detection framework is promising, as it achieves the
best results in both target cases for the ground-truthed data.

Most noteworthy is that this framework allows us to treat variability of the target in a more uniform way, so
that a whole new algorithm (such as Simplex ACE31–33 or Ampliskedastic FTMF14,18) need not be developed for
every new model of target variability, with the concern that the new algorithm is also making specific assumptions
about the background distribution and target/background interaction. Instead, one replaces the deterministic
ξ(x) with a stochastic variant that samples from the target variability, and then just lets a classifier do the rest.
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7. APPENDIX: DERIVATION OF COEFFICIENTS FOR EC-FTMF

Our aim in this Appendix is to derive the expressions for the coefficients A, B, and C given in the text by
Eqs. (13-15). We begin with Eq. (11), which we recapitulate here:

p(x|α) = c× (1− α)−d
[
1 +

(1− α)−2

ν − 2
(z− αu)T(z− αu)

]−(ν+d)/2

where c is a constant, while z = R−1/2(x−µ) and u = R−1/2(t−µ) are the whitened versions of the measurement
pixel and the target. To reduce the algebraic clutter, let β = 1−α and w = z−u (Note: z−αu = z−u+u−αu =

w + βu). We want β̂ = argmaxβ p(x|β), but since the logarithm is monotonic, it is equivalant to write

β̂ = argmaxβ log p(x|β) (29)

where

log p(x|β) = log(c)− d log(β)−
(
ν + d

2

)
log

[
1 +

β−2

ν − 2
(w + βu)T(w + βu)

]
. (30)

To find β̂, we will take the derivative of log p(x|β), and set it to zero.

0 =
∂

∂β
log p(x|β)

= −dβ−1 −
(
ν + d

2

)
∂

∂β
log

[
1 +

β−2

ν − 2
(w + βu)T(w + βu)

]

= −dβ−1 −
(
ν + d

2

) ∂

∂β

[
1 +

β−2

ν − 2
(w + βu)T(w + βu)

]
1 +

β−2

ν − 2
(w + βu)T(w + βu)

= −dβ−1 −
(
ν + d

2

) 1

ν − 2

∂

∂β

[
β−2(w + βu)T(w + βu)

]
1 +

β−2

ν − 2
(w + βu)T(w + βu)

= −dβ−1 −
(
ν + d

2

) 1

ν − 2

[
−2β−3(w + βu)T(w + βu) + β−2 ∂

∂β

[
(w + βu)T(w + βu)

]]
1 +

β−2

ν − 2
(w + βu)T(w + βu)

= −dβ−1 −
(
ν + d

2

) 1

ν − 2

[
−2β−3(w + βu)T(w + βu) + 2β−2(w + βu)Tu

]
1 +

β−2

ν − 2
(w + βu)T(w + βu)

= −dβ−1 −
(
ν + d

2

) 1

ν − 2

[
−2β−3(wTw + 2βwTu + β2uTu) + 2β−2(wTu + βuTu)

]
1 +

β−2

ν − 2
(w + βu)T(w + βu)

= −dβ−1 −
(
ν + d

2

) 1

ν − 2

[
−2β−3wTw − 2β−2wTu

]
1 +

β−2

ν − 2
(w + βu)T(w + βu)

= −dβ−1 +

(
ν + d

ν − 2

)
β−3wTw + β−2wTu

1 +
β−2

ν − 2
(w + βu)T(w + βu)
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Multiplying the equations through with the denominator of the second part gives us the following equation:

0 = −dβ−1

[
1 +

β−2

ν − 2
(w + βu)T(w + βu)

]
+

(
ν + d

ν − 2

)[
β−3wTw + β−2wTu

]
(31)

Multiplying both sides with −β3(ν − 2)/d gives

0 = (ν − 2)β2 + (w + βu)T(w + βu)− (ν/d+ 1)
[
wTw + βwTu

]
=
[
(ν − 2) + uTu

]
β2 +

[
2wTu− (ν/d+ 1)wTu

]
β +

[
wTw − (ν/d+ 1)wTw

]
=
[
uTu + (ν − 2)

]
β2 +

[
(1− ν/d)wTu

]
β +

[
−(ν/d)wTw

]
.

Recall β = 1− α, so we now have the quadratic equation 0 = A(1− α)2 +B(1− α) +C given in Eq. (12), with

A = uTu + (ν − 2)

B = (1− ν/d)wTu

C = (−ν/d)wTw

Going back to our original unwhitened variables, we have

u = R−1/2(t− µ)

w = z− u

= R−1/2(x− µ)−R−1/2(t− µ)

= R−1/2(x− t)

which leads to

A = (t− µ)TR−1(t− µ) + (ν − 2)

B = (1− ν/2)(x− t)TR−1(t− µ)

C = (−ν/d)(x− t)TR−1(x− t)

as reported in Eqs. (13,14,15).
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