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ABSTRACT

We investigate the use of convex optimization to identify sparse linear filters in hyperspectral imagery. A linear
filter is sparse if a large fraction of its coefficients are zero. A sparse linear filter can be advantageous because
it only needs to access a subset of the available spectral channels, and it can be applied to high-dimensional
data more cheaply than a standard linear detector. Finding good sparse filters is nontrivial because there is
a combinatorially large number of discrete possibilities from which to choose the optimal subset of nonzero
coefficients. But, by converting the optimality criterion into a convex loss function, and by employing an
L1 penalty, one can obtain sparse solutions that are globally optimal. We investigate the performance of these
sparse filters as a function of their sparsity, and compare the convex optimization approach with more traditional
alternatives for feature selection. The methodology is applied both to the adaptive matched filter for weak signal
detection, and to the Fisher linear discriminant for terrain categorization.
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1. INTRODUCTION

Hyperspectral data provides imagery with hundreds of spectral channels, and this high resolution provides
great flexibility and, in some cases, exquisite discrimination ability. But when looking for a specific target,
discrimination performance can often remain high, even with a small but carefully chosen subset of the available
hyperspectral channels. When only a few spectral channels are used, this enables a reduction in the size of
the data set that is necessary and a reduction in the computation required to process that data; having fewer
channels in the data also means there are fewer free parameters in the model, and overfitting effects (such as the
notorious Hughes effect1) are reduced. We also remark that if fewer channels are actually needed, then adaptive
sensors may be able to exploit this and more effective acquisition of the data may be possible.

The usefulness of reducing the number of channels for a given application has led to a number of investigations
that specifically address the problem in the context of hyperspectral imagery.2–7 But the problem of finding
optimal subsets of variables in high-dimensional data is of broad interest in a variety of fields, and it is of
considerable interest to the machine learning community.8 Our approach here is to adapt this machine-learning
approach for hyperspectral remote sensing data; this will provide both specific tools, such as algorithms for convex
optimization,9 and a general point of view that considers the distinction between in-sample and out-of-sample
modeling.

2. MATCHED FILTER AND FISHER DISCRIMINANT

We consider two uses for linear discriminators: the detection of weak signals (such as thin gaseous plumes)
and the classification of pixels (e.g., for terrain categorization). In both cases, a linear function D(r) = qT r is
produced, where r ∈ Rd is a vector of spectral components of a pixel, and q ∈ Rd is a vector of coefficients. The
scalar-valued D(r) is typically compared against a threshold qo to decide if the signal is detected at the pixel, or
to predict which of two classes is represented by the pixel.
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2.1. Gaseous plume and adaptive matched filter

In the weak plume limit, the effect of the plume can be represented as a superposition of signal and background

r = εb+ z (1)

where r is the observed radiance, b is the known plume signature, and z is the unknown background clutter.
Eq. (1) corresponds to the radiance in a single pixel; here, r, b, and z are d-dimensional vectors corresponding
to the d channels of the hyperspectral image, and ε is a scalar corresponding to the plume strength.

The signal is proportional to qTb, and the rms of the clutter is
〈

|qT (z− 〈 z 〉)|2
〉1/2

, where the angle brackets
〈 · 〉 indicate average over the pixels in the scene. With the covariance matrix defined as

K =
〈

(z− 〈z〉)(z− 〈z〉)T
〉

, (2)

the signal-to-clutter ratio is given by

SCR(q) =
εqTb

√

qTKq
. (3)

The adaptive matched filter (sometimes called “clutter matched filter” or simply “matched filter”) is the vector
q that maximizes the SCR. It bears remarking that the signal-to-clutter ratio is entirely independent of the
magnitude of q. It is the direction of the matched filter q, and not its magnitude, that matters for SCR
optimization.

The optimization of Eq. (3) is equivalent to

qAMF = argmax
q

qTb subject to qTKq = 1. (4)

which leads to the Lagrangian formulation: qAMF minimizes

Lµ(q;b,K) = −qTb+ µqTKq (5)

for some Lagrange multiplier µ > 0. This is algebraically equivalent to

Lµ(q;b,K) =
1

4µ

[

(2µKq− b)TK−1(2µKq− b)− bTK−1b
]

, (6)

and it is clear that the optimal solution is given when 2µKq − b = 0. If we take the qTKq = 1 constraint
literally, then this leads to µ = 1

2

√
bTK−1b. But since µ only sets the magnitude of q, and since that magnitude

does not affect the SCR, we will henceforth take µ = 1
2
. This leads to

L(q;b,K) = −qTb+ 1
2
qTKq (7)

for which the optimal solution is qAMF = K−1b.

2.2. Binary classification and the Fisher linear discriminant

Given data (xi, yi) with xi ∈ Rd representing measurements that are available, and yi ∈ {−1, 1} denoting a
label associated with the data sample, the aim of a classification algorithm is to find a function f(x) such that
sign(f(xi)) predicts the label yi.

In the applying the Fisher discriminant to this problem, it is assumed that the data points xi associated
with yi = −1 are distributed as a gaussian with mean µ− and covariance K. The data points in the other class,
the measurements xi associated with yi = 1 are distributed as a gaussian with a different mean, µ+ but with
the same covariance K. In practice µ± are estimated from the sample means of the data in the two classes,
and K is estimated as a pooled covariance from all of the data points. The Fisher discriminant is given by10

f(x) = qTx+ qo where
q = K−1(µ+ − µ−). (8)

The threshold is traditionally given by qo =
1
2
qT (µ+ + µ−), but in practice one can adjust qo to trade off false

alarms and missed detections.
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(a) (b) (c)

Figure 1. (a) Broadband image (sum of the 224 channels) of AVIRIS scene used to compute covariance matrix K. (b)
Covariance matrix displayed as an image, where brightness corresponds to the value of the matrix elements. (c) Diagonal-
normalized covariance matrix Ko = D−1/2KD−1/2, where D is a diagonal matrix with the same diagonal elements as the
diagonal elements of the matrix K.

2.3. Sparse filter optimization

Let A be the set of indices of the vector q for which at component is nonzero. In general, for an optimal filter,
we do not expect any components of q to be strictly zero, and in that case A = {1, . . . , d}. But we can restrict
our attention to vectors q for which qi = 0 when i 6∈ A. In general, when we write qA, we are referring to a
truncated vector which includes only the elements qi where i ∈ A. We will write

LA(q;K,b) = −qTAbA +
1
2
qTAKAAqA (9)

and note that this is optimized when qA = K−1
AAbA, and that in that case

LA = − 1
2
bTAK

−1
AAbA. (10)

Once we are given A, then it is straightforward to find the optimal q subject to qi = 0 for i 6∈ A.
But the core of the sparse matched filter problem is to find an appropriate A. There are 2d candidates, and

this is, in general, an NP-hard problem. The problem is often expressed is in terms of |A|, the number of nonzero
components:

minimize
[

−qTb+ 1
2
qTKq

]

subject to qi = 0 for i 6∈ A and |A| ≤ n. (11)

Or, in terms of Eq. (10), we can write

maximize bTAK
−1
AAbA subject to |A| ≤ n. (12)

2.4. Out-of-sample performance

From a training set of data, we can compute a covariance Ktrain, and from that produce a matched filter q

(sparse or otherwise) that optimizes the SCR given by qTb/
√

qTKtrainq. However, although it may perform
well against this in-sample covariance, that does not guarantee that it will perform well out of sample, on a test
set of data. That is: given Ktrain, computed from pixels drawn from the same distribution (or in this case, the

same image) as the training set, how good is the out-of-sample SCR, given by qTb/
√

qTKtestq.
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Figure 2. (a) Artificial signature vector b, derived from a freon spectrum, but shifted from the infrared to the visible.
(b) Truly artificial signature vector is zero in all channels except for channel 100. (c) Positive random signature.

3. DATA

Experiments with sparse matched filters requires only a covariance matrix K, and a signature vector b. To get
a realistic covariance matrix, we will use 128x128 chip of 224-channel AVIRIS data.11 This chip is from the
f97062t01p02 r03 data set (Moffet Field), and is available from the AVIRIS website.12 The image is shown in
Fig. 1(a), and the elements of the covariance matrix are shown as in image in Fig. 1(b).

For our numerical experiments, we will consider the three different signature vectors shown in Fig. 2. The
first signature is based on a freon absorption spectrum;∗ the second signature is maximally sparse in its own
right, it is a single spike at channel 100; while the third signature is very dense, with every channel a positive
random number.

3.1. Diagonal normalization

For a given covariance matrix K and signal b, we will occasionally consider a diagonal-normalized version. If D
is any positive diagonal matrix, then the transformation

Ko = D−1/2KD−1/2 (13)

bo = D−1/2b (14)

leads to a Ko,bo which is equivalent to K,b when it comes to the sparse optimization problem. This is because if
q optimizes L(q;b,K) subject to qi = 0 for i 6∈ A; then q∗ = D1/2q optimizes L(q;bo,Ko) and q

∗
i = (D

1/2q)i =

D
1/2
ii qi, so q

∗
i = 0 for i 6∈ A. We will take D to have the same diagonal elements as K (that is: Dii = Kii, but

Dij = 0 for i 6= j). Then the diagonal elements of Ko will all be unity; this puts all the components i on equal
footing. Fig. 1(c) shows the effect of this normalization on the covariance matrix K obtained from the AVIRIS
data.

4. ALGORITHMS

4.1. Sequential selection algorithms

Fig. 3(a-e) shows the performance of several sequential feature selection algorithms, applied to the sparse linear
filter for detecting the freon signature in Fig. 2(a). The most straightforward of these is stepwise forward selection
(SFS). At each step, the feature that most (greedily) improves the SCR is added to the list of features. This is
not unduly expensive but it does require an SCR computation for each available feature.

Formally speaking, let use write At as the subset that has been selected at the nth step; since this algorithm
simply adds one new feature at each step, we have that |At| = t. To find the feature that is added at step t+ 1,
we choose

j∗ = argmin
j
LAt∪{j} (15)

∗Freon absorbs in the long-wave infrared, but AVIRIS takes imagery in the visible and near-infrared; the spectrum in
Fig. 2(a) has the same “shape” as the long-wave freon spectrum, but has been artificially transplanted to the visible.
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Figure 3. Fraction of SCR plotted against the number of nonzero channels, for the freon signature shown in Fig. 2(a),
using the covariance shown in Fig. 1(b). (a) Stepwise forward selection (SFS) does slightly better than stepwise backward
selection (SBS) for very sparse filters, but SBS does better for larger number of nonzero coefficients. (b) Stearn’s stepwise
selection (SSS) which takes r forward steps, followed by l steps back, does better than SFS and generally better than
SBS. (c) The stepwise floating forward selection (SFFS) algorithm involves a scheme in which each iteration takes a single
forward step and then follows that with conditional backward steps. The solid line indicates the “journey” that SFFS
takes as it optimizes the feature selection. The dashed line is the final result obtained by SFFS. For comparison SSS is
shown, which does not quite do as well. (d) This is just a close-up of (c); showing the circuitous journey that SFFS takes.
(e) SFS+SA includes a steepest ascent (SA) improvement of the SFS solution, and these are shown as vertical spines on
the SFS curve. SFFS is still better. (f) Comparison of four variants of LARS, described in the text, with SFFS, shows
that for these convex optimization methods, collectively, perform substantially worse than heuristic sequential selection
algorithms.

and then At+1 = At ∪ {j∗}.
A simple variant of SFS is sequential backward selection (SBS). Here, the starting point is to have all features

selected and to delete one feature at at time, based on which deletion gives the best performance. As Fig. 3(a)
shows, SFS performs a little better than SBS for very small numbers of features, whereas SBS is better for larger
numbers of features. Both of these have the “nesting property” which means that |As| < |At| implies As ⊂ At.
Stearns2, 13 suggested a feature selection scheme in which forward and backward selection are alternated. In

this (l, r) scheme, r forward selection steps are taken followed by l backward selection steps. This avoids the
nesting constraint, and combines the advantages of SFS and SBS. While it is not clear how to choose the optimal
values of the parameters l and r, even simple choices like r = 2 and l = 1 can lead to improvements. Pudil et
al.14 proposed a modification of this idea, called stepwise floating forward selection (SFFS), which takes one
forward step, and then takes an adaptive number of backward steps. This has proven to be an effective heuristic
– although it cannot guarantee the absolute optimal solution, numerical comparisons by Jain and Zongker15

favor the floating stepwise approach. Our own comparisons in Fig. 3(c) confirm this observation.

Serpico and Bruzzone3 described two local improvement approaches, when you start with a subset of k
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1. Initialize: jo = argmax |bj |; A = {jo}; q = 0

2. b̂ = b−Kq

3. sA = sign(b̂A)

4. wA = K−1
AAsA

5. We want q← q+ γw, but need the appropriate value of γ > 0.

• Let c(γ) = b − K(q + γw) = b̂ − γKw and note that for every component j ∈ A, we
have cj(γ) = b̂j −γ(Kw)j = b̂j −γsj ; that is, the |cj(γ)| are equal for all j ∈ A and all γ.
• Since they are all equal, let cA(γ) = |cj(γ)| for some j ∈ A.
• For γ = 0, we know that cA(γ) > |ck(γ)| for all k 6∈ A, so by continuity, we expect that
cA(γ) > |ck(γ)| for small enough γ.

• The idea is to find the smallest γ for which the above condition fails. That is find k 6∈ A
that has the smallest positive value of γ that solves cA(γ) = |ck(γ)|.
• q = q+ γw

6. A = A ∪ {k}

7. Go to 2

Figure 4. Pseudocode for applying LARS to the sparse matched filter problem. At each iteration, a new feature k is
added, and the sparse matched filter q is updated. The LARS-lasso algorithm includes an extra test, not shown, testing
whether there is a value of γ for which one of the features in A should be removed from A, according to the lasso criterion.

selected features, and you seek a better subset by swapping out selected features with unselected features. The
straightforward and expensive approach (SA = steepest ascent) considers all possibilities, but a shortcut (FCS
= fast constrained search) is not as expensive and does nearly as well. Further comparisons of these methods
are described by Serpico et. al.4 However, our own comparisons in Fig. 3(d) indicate that even the expensive
SA (whose performance will upper-bound that of FCS) method does not do as well as the SFFS algorithm.

4.2. Convex optimization algorithms

The problem with the various sequential selection algorithms is that they are trying to solve an NP-hard problem.
They are trying to optimize a loss function with many local minima. Although various branch-and-bound
approaches have been suggested16–18 to substantially reduce the computation, there are still exponentially many
band combination candidates that must be evaluated if the optimal solution is to be found. Heuristics such as
SFS and SFFS are found, in many cases (including in the cases we looked at), to produce reasonable solutions,
but it is difficult to provide theoretical assurance that adequate performance will always be achieved.

An entirely different approach involves finding the global optimum of a loss function which only approximates
the actual loss function of interest. In other words, instead of using a heuristic algorithm to find a suboptimal
solution, an exact algorithm will be used to fine the precise optimum, but it is the optimum of an approximate
loss function. Advantages of this second approach include the fact that the nature of the approximation is more
explicit, and that the performance of the algorithm is more predictable.

To the loss function in Eq. (7). we add an L1 penalty term to obtain

L(q;λ,b,K) = −qTb+ 1
2
qTKq+ λ

∑

j

|qj | (16)
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where qj corresponds to the jth component of the vector q. This use of an L1 term to promote sparse solutions
is often called a lasso;† the approach was introduced by Tibsharini,19 and has been further pursued by a number
of authors.20–23 Unlike the loss function in Eq. (11), which involves discrete constraints, the loss function in
Eq. (16) is unconstrained. Furthermore, Eq. (16) is a convex, meaning

L(pq1 + (1− p)q2) ≤ pL(q1) + (1− p)L(q2) (17)

for any 0 ≤ p ≤ 1. A convex loss function has a single global minimum, and algorithms for finding this unique
minimum can be very efficient.9

By choosing an appropriate value of λ, one can produce solutions with the desired level of sparseness. In
general, using a larger λ leads to solutions with fewer nonzero components, but the relationship is not strictly
monotonic. In fact, it is not always clear how best to choose an appropriate value of λ, and in practice one
generally ends up optimizing Eq. (16) over a range of values of λ. This practice led Efron et al.24 (following
earlier work25) to devise the Least Angle Regression (LARS) algorithm for optimizing an L1-regularized regression
problem over the whole range of different λ. The LARS approach was built for regression, but we adapt it here
to the sparse linear filter problem. In Fig. 4, we show the LARS algorithm modified for optimizing a sparse
matched filter. What the LARS algorithm does is very efficiently sweep over a full range of coefficient values λ,
producing at each step a new optimal solution.

We remark that there are actually four LARS algorithms that we investigated. The variant shown in Fig. 4
is “least angle regression” and is the simplest to implement. LARS-lasso is a variant of LARS that actually does
optimize the L1-penalized loss in Eq. (16). Where LARS is an algorithm that iteratively adds new features to
the existing feature set A, LARS-lasso enables features to be removed as well. This enables better in-sample
performance, as seen in Fig. 3(f), and we see better out-of-sample performance as well (not shown).

For the two variants, LARS and LARS-lasso, there are two different ways of getting the matched filter q.
The most direct way is to use the q provided by the algorithm. For LARS-lasso, this is the q that optimizes
Eq. (16). We will write LARS-q (or LARS-lasso-q) to denote this variant where q is provided by the LARS
(or LARS-lasso) algorithm. Since this “regularized” q will underperform on in-sample tests, we also consider a
simple alternative, which is to use the LARS algorithm to obtain A (this is the set of nonzero components in q),
but then to obtain q by directly optimizing Eq. (9): namely qA = K−1

AAbA. This variant, we write LARS-A (or
LARS-lasso-A).

4.3. Out of sample experimental description

While the in-sample performance of the LARS algorithms, shown in Fig. 3(f), is disappointing, compared to
the sequential selection algorithms, we also looked at out-of-sample performance. As described in Section 2.4,
this involves the situation in which Ktrain and Ktest are difference covariance matrices because the algorithm is
evaluated on test data that does not include the data used for training. As Fig. 5 shows, the LARS algorithms
are quite competitive in their out-of-sample performance, except for very sparse models.

5. FURTHER EXPERIMENTS WITH SPARSE MATCHED FILTERS

Fig. 6(a) indicates that the “sparser” the signature vector b, the more effective are sparse approximations to the
optimal q. What constitutes sparseness, geometrically speaking, is alignment with coordinate axes. To address
the extent to which the covariance matrix exhibits alignment with these axes, we re-do the experiment using
new covariance matrices, obtained by rotating the K shown in Fig. 1(b), using a transform

Krotated = QKQT (18)

where Q is a random orthogonal matrix (QQT = I). We obtain these random matrices Q from a QR decom-
position26 (keeping the “Q” part) of a matrix for which all entries are gaussian random numbers. We see, in

†The lasso is meant both as an acronym (Least Absolute Shrinkage and Selection Operator) and to elicit the image of
variables being squeezed, as if by a loop of rope.
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Figure 5. Comparison of in-sample and out-of-sample performance for four feature selection algorithms: (a) SFS, (b)
SFFS, (d) LARS-lasso-A, and (e) LARS-lasso-q. In each case, the heavy dash-dotted line is SCR obtained using the
covariance entire image in Fig. 1(a). (This full-image plot corresponds to the plots shown in Fig. 3.) SCRo is defined so
that these curves all saturates at 1.0. The five dashed lines above, and the five solid lines below, the full-image curves,
correspond to an experiment in which covariance Ktrain is estimated from a training set of 500 pixels randomly selected
from the image, and Ktest is estimated from the remaining 15884 pixels. Sparse matched filters q were estimated based
on these training sets, and the performance was computed both for Ktrain (upper dashed lines) and for Ktest (lower
solid lines). Also shown are averages for in-sample and out-of-sample performance: (c) SFFS vs SFS: although the more
expensive SFFS does much better in-sample, the out-of-sample performance is nearly equal. (f) SFFS vs LARS: While
SFFS does much better in the extremely sparse regime, LARS does better in the regime where generalization is the
limiting factor.
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Algorithm n=20 n=50 n=100 n=200

SFS 0.33 1.4 6.0 28
Stearns (l,r) 0.67 3.1 15 120
(l = 1, r = 2)

SBS 104 103 100 42
SFFS 1.7 9.5 46 160

SFS-SAx 0.68 3.7 18.8 59.4
LARS-lasso 0.19 0.27 0.49 1.5

LARS 0.14 0.20 0.38 1.4

Table 1. Runtime (in seconds) for the various sparse matched
filter algorithms, implemented in Matlab, and running on a
1.7GHz Pentium M laptop, to find a model with n features.
Note that sequential backward selection (SBS) takes longer to
find models with fewer features. xThe SFS-SA time includes
the time to use SFS to obtain n features, followed by time it
takes to optimize that set of n features.

Fig. 6(b) that the alignment of K to the coordinate axes is indeed a factor in how sparse a matched filter can
be generated.

The diagonal normalization, described in Section 3.1, and shown in Fig. 1(c), does not affect any of the
sequential selection methods, but it does affect the convex optimization algorithms, because the size of the L1
penalty will depend on the relative magnitudes of the qi’s. However, in experiments (not shown) comparing
the SCR performance of the LARS algorithm with and without the diagonal normalization, we did not find a
statistically significant difference.

Table 5 illustrates the relative computational efficiency of the different algorithms. SFFS is the most ex-
pensive algorithm, when it comes to computing a large number of features, but it also gives the best in-sample
performance. The LARS algorithms are much more efficient, and although their in-sample performance is not
as good as the heuristic sequential algorithms, it’s out-of-sample performance is just as good.

6. SPARSE LINEAR DISCRIMINANT FOR CLASSIFICATION

This study is based on twelve datasets analyzed by Harvey et al.,27 investigating the utility of a genetic
algorithm based classifier for multispectral imagery. In Ref. 27, however, the classifier was applied to a ten-
band multispectral image that had been artificially generated from AVIRIS hyperspectral imagery to mimic
Multispectral Thermal Imager (MTI) data. Here, by contrast, we will use a simple Fisher discriminant as a
classifier, but will apply it to the full 224-channel AVIRIS datacube.

As Fig. 7(a-d) indicates, sparse solutions can be as effective for classification as they are for weak signal
detection. In these cases, we see that ninety-percent of class separability, as measured by relative SCR, can be
obtained with only ten percent of the channels. Fig. 7(e) shows what bands were chosen for each of the detection
problems; there is a fair bit of variability between the different datasets (and even more variability between the
different classification tasks), but some patterns are evident.

7. EXTENDED SPARSE MATCHED FILTERS

With only a few hundred spectral channels, it is reasonable to find near=optimal sparse matched filters using
heuristic techniques such as stepwise forward floating selection. But there are variants of the matched filter
problem for which the number of potential features becomes untenably large, and more computationally efficient
selection methods become a necessity. We will mention one of these variants here.

7.1. Designing multispectral imagers

For specific applications, multispectral imagery can perform nearly as well as the more flexible (and expensive)
hyperspectral counterpart. In a multispectral imager, there are fewer bands, and they cover a broader wavelength
range. But with careful choice of wavelength cutoffs, sensitive discrimination can be achieved. For the MTI
(Multispectral Thermal Imager) sensor, for instance, these wavelength cutoffs were chosen by hand, based on
careful consideration of a wide range of potential applications.28

Hyperspectral imagery is a great resource for investigating this problem. We can define a “band” as a
contiguous set of hyperspectral channels. Each band is defined by a start channel and an end channel, and the
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Figure 7. (a-d) Sparseness plot for Fisher discriminant, based on the twelve data sets used by Harvey et al..27 There
are three different cases for each of four different target types. Here, the target types are shown in separate plots. (a)
clouds. (b) golf courses. (c) roads. (d) urban areas. (e) For a sparse model that chooses just twenty channels, shown
here are the channels that are chosen, for each of the twelve datasets in (a-d). From top to bottom, each set of three
channel choices are roads, urban areas, golf courses, and clouds. It is evident that the choice of channels depends not only
on the nature of the problem, but also varies considerably from instance to instance of that problem. On the other hand,
there are some band ranges (such as channels 150-170) where channels are never chosen. For the clouds, for instance,
which is the bottom row of three, identity or near-identity is observed in these locations: 32-33, 66, 171, 177.

signal in that band is the sum of the signals in each of the channels. Thus, with d channels in a hyperspectral
image, there are d(d+ 1)/2 spectral bands that can potentially be generated.

We remark that this band selection problem (and variants thereof) has elicited considerable interest in
the remote sensing community.29–34 In a paper by Paskaleva and Hayat,35 the performance of optimized band
selection is compared directly to the performance of the MTI bands. Shen and Bassett36 addressed this problem
using an information theoretic approach. This work was a follow-on to previous work37 which considered a smaller
set of problems (anomaly detection vs anomaly and specific target ID) over a narrower range of wavelengths (0.4
to 1.5 versus 0.4 to 2.5 microns). Based on a library of material spectra, bands were selected to optimize the
entropy of histograms. The optimization itself was done with a genetic algorithm.

8. DISCUSSION

There are a number of reasons to limit the number of bands in a matched filter or a discriminant model, and these
reasons can be put into into two classes: convenience, and regularization. Convenient reasons include reduced
computation time and storage overhead, as well as the possibility that the inclusion of fewer bands will assist
with the physical interpretability of the solution. Regularization refers to schemes that reduce the complexity of
the solution for the purpose of avoiding overfitting. It is well known that heroic efforts to fit an in-sample data
set can lead to very poor out-of-sample performance.38 In the words of the folk aphorism: the hurrier you go,
the behinder you get. Regularization enforces a principled limitation on how hard you can try to fit data, and
it can lead to improved out-of-sample performance, even as it hobbles the in-sample model.
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If convenience-based reasons are the main consideration (this often occurs when there is a plentitude of
training data), we find that it pays to use more aggressive (and expensive) efforts to find the best sparse models.
Among the heuristic selection techniques we looked at, the sequential stepwise floating selection14 provided the
best SCR performance, and was also the most expensive. Convex optimization, in this convenience-based regime,
does relatively poorly (although it is cheap), presumably because it is optimizing the wrong loss function.

But in the regularization regime, where the purpose of sparsity is to avoid overfitting, then convex optimization
provides algorithms that are not only computationally much faster, their performance on out-of-sample data is
comparable. In fact, using a matched filter from the LARS-lasso-q algorithm, which incorporates “shrinkage”
as well as sparsity, we achieve better out-of-sample SCR than any of the heuristic stepwise selection algorithms.
It bears remarking, however, that this out-of-sample performance is obtained by models with upwards of 100
bands – they are not, in short, very sparse.

The problem of finding the optimal subset of bands for a given application is NP-hard, and it seems that the
only way to get improved performance is to employ increased computation. On the other hand, the problem
of finding a model that works well out-of-sample is not computationally expensive. The LARS algorithm, in
particular, is an efficient implementation of an adaptive L1 penalty; although it was derived for regression
problems, we have shown that it can be modified for sparse filters.

In the regime of unduly many features, such as the multispectral band selection problem, online feature
selection21 may be provide an appropriate approach. Here, features are treated as an incremental resource which
are evaluated and then either kept or discarded. We have investigated online feature selection in an image
processing context,39 but we speculate that it may be useful in the band selection problem as well.
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