
SEGMENTED REGRESSION FOR SPATIO-SPECTRAL BACKGROUND ESTIMATION

James Theiler and Amanda Ziemann

Space Data Science and Systems Group
Los Alamos National Laboratory

Los Alamos, NM 87545

ABSTRACT

We formulate hyperspectral target detection in terms of a lo-
cal context by modeling the relationship of individual pixels
with the annuli of pixels that surround them. A prediction
of the center pixel in terms of the annulus pixels provides an
estimate of the target-free pixel value, and this estimate can
be used as a baseline against which a measurement of that
pixel is compared. When the measurement is far from the
baseline, that is evidence that the target-free hypothesis is in-
correct – and that there is a target at that pixel. The predictor
is adaptive to the image, and in this paper, we suggest making
it more adaptive by segmenting the image into qualitatively
different regions, and learning a new predictor for each re-
gion. We learn a new predictor for each segment, and attempt
to optimize the segmentation so as to minimize the prediction
error, overall. We apply this approach to some well-known
hyperspectral datasets, and find that (as expected) the average
prediction error is reduced and (less expected) that the “seg-
ments” that are discovered are spatially quite scattered, and
(in the case with two segments) tend to group image pixels
into edges and non-edges.

Index Terms— Hyperspectral, Target detection, Anomaly
detection, Background estimation, Machine learning, Regres-
sion

1. INTRODUCTION

To detect an anomaly or target at a given pixel location is
to distinguish that pixel as inconsistent with some model for
the background [1]. One very simple model is a multivariate
Gaussian; for this model, the expected target-free value at ev-
ery pixel in the image is given by the mean of that Gaussian.
This is the basis of many standard target detection algorithms,
such as the adaptive matched filter [2] and the adaptive coher-
ence estimator [3]. Despite the simplicity of this model, it is
often surprisingly effective [4]. Extensions of the Gaussian
to, for instance, elliptically contoured distributions can lead
to more flexible detectors [5–8].
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To further extend these global models is to make a sepa-
rate estimate at each pixel based on that pixel’s local context.
For instance, the well-known RX algorithm [9] computes a lo-
cal mean from a moving window (an annulus, actually, since
it doesn’t include the pixel itself) centered on the pixel of
interest. This kind of local background estimation has been
applied to target detection as well, with very promising re-
sults [10–14]. A related approach applies image sharpening
before applying a global detector [15, 16]; the effect of this
filter is similar to the subtraction of a local mean. More re-
cently, it has been suggested that instead of a local mean, a
more general model be used to predict the center pixel as a
function of the pixels in the annulus that surround it [17–19].
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Fig. 1. A given pixel of interest is estimated by the pixels in
the annulus that surround the pixel. This estimate can be done
for every pixel in the image.

2. LOCAL REGRESSION

Consider a pixel y surrounded by an annulus of pixels x
(Fig. 1). If y is target-free and corresponds to typical back-
ground, then we expect to be able to approximate it with
ŷ = f(x) for some function f that can be learned from the
data. In particular, we choose f to minimize some measure
of the average error that ŷ makes in approximating y. The
simplest way to do this (and this simple way is what we do



here) minimizes squared error:

N∑
n=1

‖yn − f(xn)‖2, (1)

where the samples are taken from the image: (x1, y1), . . . ,
(xN , yN ). Ideally, these samples are taken from parts of the
image that are free of targets, but generally we tolerate a few
target-containing pixels in exchange for having the samples
be truly representative of the image statistics. We will call
f(x) a “local estimator,” and think of it as a generalization
of the concept of “local mean” – whereas local mean would
be the average of the pixels represented in x, this framework
considers more general functions of those pixels.

Although Eq. (1) seems like the obvious thing to opti-
mize, it has been pointed out [20] that there are times “when
closer isn’t better.” Even though this is what was optimized
in Ref. [17], that paper noted: “Although mean squared er-
ror provides one way to evaluate performance, we ultimately
prefer an approach that more directly maps to target detection
performance.” In more recent work [18, 19], direct measures
of performance were employed. But for the current work, in
its current stage, we employ squared error while acknowledg-
ing its imperfection. (After all, “farther isn’t better” either!)

Given the local estimator f(x), we can define a global
covariance:

R = (1/N)

N∑
n=1

(yn − f(xn)) (yn − f(xn))
T
, (2)

and we can use this covariance to define both anomaly and
target detectors. For instance, the anomalousness for a pixel
y, given an annulus x, will be given by

A(x, y) = (y − f(x))
T
R−1 (y − f(x)) . (3)

We can also use a matched filter to detect an additive target t
in this background; that detector would be given by

D(t,x, y) = tTR−1 (y − f(x)) = qT (y − f(x)) , (4)

where q = R−1t is the matched filter coefficient vector. As
an aside, we could also consider ACE instead of matched fil-
ter:

DACE(t,x, y) =
tTR−1 (y − f(x))√

(y − f(x))
T
R−1 (y − f(x))

. (5)

3. SEGMENTED REGRESSION

It makes sense to tailor f(x) to different parts of the image;
the best f(x) for a deep jungle might be different from the
best f(x) for an arid desert. Rural scenes might be different
from urban scenes, farmland different from forest, etc. A nat-
ural approach for dealing with this issue is to first segment the

Algorithm 1 Segmented regression
Require: Pixel values y1, . . . , yN
Require: Annulus values x1, . . . ,xN

Require: Initial segmentation (could be random) k1, . . . , kN
with ki ∈ {1, . . . ,K}

1: repeat
2: for k ∈ 1, . . . ,K do
3: Define Nk ← {n : kn = k}
4: fk ← argminf

∑
n∈Nk

‖yn − f(xn)‖2

5: for n ∈ 1, . . . , N do
6: kn ← argmink‖yn − fk(xn)‖
7: until convergence
8: return f1, . . . , fK

scene into these different kinds of areas, and then to fit f(x)
separately to each segment. This leaves open the (notoriously
ill-defined) question of how to approach the segmentation in
the first place.

Our approach is to simultaneously optimize f(x) and the
segmentation. Imagine that we have segmented the image into
K distinct categories, and let kn be the category label for the
n’th pixel. Let fk(x) correspond to the regression function
that is optimized to the k’th segment. What we want to opti-
mize is ∑

n

‖yn − fkn
(xn)‖2. (6)

The best choice for cluster label is the label that leads to the
best fit:

kn = argmink ‖yn − fk(xn)‖2, (7)

and so Eq. (6) can be written∑
n

min
k
‖yn − fk(xn)‖2. (8)

One “solution” to Eq. (8) is to treat it as a k-means prob-
lem. Starting with some initial segmentation of the image kn,
optimize the function fk by fitting to the points n for which
kn = k, and do this for each k, as shown in Algorithm 1. Note
that many of the tricks that can be used to break out of lo-
cal minima in k-means (e.g., splitting and merging schemes)
would apply equally well in this context.

It bears remarking that this is not just a more complicated
function f(x); the choice of which k to use depends not only
on x but on y as well.

This approach solves two problems with the segmented
regression idea. One is that it provides a tangible criterion
to the segmentation step, which is a perennial matter of con-
tention with segmentation; two is that the optimization of the
segmentation is simultaneous with the optimization of the f ’s.



Table 1. Comparison of RMS values with a single function
f(x) and with the segmented f1(x), . . . , fK(x) with K = 2.

Size K = 1 K = 2
Dataset Bands (Pixels) RMS RMS
Omaha 8 1384× 1243 126.3 96.4

Indian Pines 200 145× 145 2106.6 1853.5
Cooke City 126 800× 200 1633.1 1414.6

Reno 356 600× 320 6268.6 5332.1

4. EXPERIMENTS

In this study, we considered four spectral images: an eight-
band multispectral image of Omaha, Nebraska from the
WorldView-2 satellite [21]; the venerable hyperspectral In-
dian Pines dataset [22]; the hyperspectral Cooke City, Mon-
tana dataset from the RIT Blind Test study [23]; and a hy-
perspectral image of Reno, Nevada from SpecTIR [24]. In
all three cases, we used a small annulus (5×5 with a 3×3
guard window surrounding the single pixel of interest). Al-
though there are 16 pixels in this annulus, we invoke the
dihedral symmetry of the grid (i.e., invariance to reflections
and ninety-degree rotations) [18] to reduce the effective num-
ber to three. To further simplify the experiment, we take
f(x) to be linear in x. In every case, we iterate ten times
and observe informally that the solutions appear to be near
convergence.

We see in Table 1 that segmented regression more accu-
rately estimates the background (it has lower RMS) for all
four of these images. The segmentation that minimizes RMS
is seen (in Fig. 2) to be fairly scattered, but with a definite
tendency to organize along the edges in an image.

5. FUTURE WORK

The results presented here are preliminary. So far, we have
only used K = 2 segments. Although extension to more seg-
ments is warranted, we see already that the two segments are
often qualitatively different, that the two models (f1 and f2)
are quite distinct, and that the resultant RMS is substantially
lower with K = 2 instead of K = 1.

We note that RMS is a doubly naive measure of perfor-
mance. For one thing, we measure in-sample fitting error, and
it is no surprise that that is smaller when the number of free
parameters is larger. It is incumbent upon us, in future work,
to demonstrate that the better RMS is statistically significant
and that it extends to out-of-sample performance. Also, we
know that smaller RMS does not always map directly to bet-
ter performance [20], so future experiments will measure de-
tection and false alarm rates for target and anomaly detection
problems.
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Fig. 2. RGB images (left) and pixel segmentations (right).
Two segments (K = 2) are shown here, indicated with white
pixels and with black pixels. Shown are: (a) Omaha, (b) In-
dian Pines, (c) Cooke City, and (d) Reno.
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