
Resampling Methods for the MTI Coregistration Product

Amy Galbraith, James Theiler, and Steve Bender

Space and Remote Sensing Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

Accurate coregistration of images from the Multispectral Thermal Imager (MTI) is needed to properly align bands
for spectral analysis and physical retrievals, such as water surface temperature, land-cover classification, or small
target identification. After accounting for spacecraft motion, optical distortion, and geometrical perspective,
the irregularly-spaced pixels in the images must be resampled to a common grid. What constitutes an optimal
resampling depends, to some extent, on the needs of the user. A good resampling trades off radiometric fidelity,
contrast preservation for small objects, and cartographic accuracy – and achieves this compromise without
unreasonable computational effort.

The standard MTI coregistration product originally used a weighted-area approach to achieve this irregular
resampling, which generally over-smoothes the imagery and reduces the contrast of small objects. Recently,
other resampling methods have been implemented to improve the final coregistered image. These methods
include nearest-neighbor resampling and a tunable, distance-weighted resampling. We will discuss the pros and
cons of various resampling methods applied to MTI images, and show results of comparing the contrast of small
objects before and after resampling.
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1. INTRODUCTION

1.1. Multispectral Thermal Imager

The Multispectral Thermal Imager (MTI) is a U.S. Department of Energy multispectral pushbroom sensor that
collects data in fifteen spectral bands, from the visible to the thermal infrared.1, 2 Each spectral band has its
own linear detector array that is filtered to collect light in a desired spectral region. As the satellite travels,
a two-dimensional image is formed for each band, with a ground sample distance (GSD) in the cross-track
direction determined by the detector element size, elevation of the satellite above the ground, and off-nadir look
angle; the GSD in the along-track direction also depends on the integration time, and the speed and pitch of the
satellite motion. For near-nadir images, the ground sample distance is approximately 5 meters for the visible and
near-infrared bands (bands A through D), and 20 meters for the midwave and thermal bands (bands E through
O). The focal plane of the MTI contains three sensor chip assemblies (SCAs), each consisting of linear detector
arrays for each band. The purpose of multiple SCAs is to increase the crosstrack field of view (nominally 12
km). Fig. 1 shows the layout of the MTI focal plane.

1.2. MTI Coregistration

The 48 collected images (3 SCAs, 16 line detectors) are maintained in the LEVEL 1B U data product, which has
been calibrated to units of radiance, but has not been registered or resampled. This is the input data product
for the MTI coregistration process, which forms these images into a single multispectral image cube, with all
spectral bands resampled to a common grid.3 The MTI coregistration software uses a dead reckoning approach
that maps every pixel in the LEVEL 1B U data product to an absolute position on the surface of the earth, then
resamples the projected pixels to a single4 regularly-spaced grid. Resampling allows removal of distortions due
to spatial nonuniformity of the optics and due to temporal nonuniformity of satellite motion. The physical
separation between the detector arrays on the focal plane results in each image having a small spatial shift with
respect to other bands and SCAs. In order to compensate for the physical distance between detector arrays,
each band is collected at a different offset in time. A small overlap between SCAs allows later SCA-to-SCA
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Figure 1. Layout of the MTI focal plane. The line detectors for the VNIR bands are located near the center of the focal
plane where optical quality is highest. Each line detector has a delayed start time for readout, such that 48 images (3
SCAs, 16 line detectors each) are collected sequentially in time (on the order of one-half of a second). The visible/NIR
bands (A-D) are arranged in a staggered pattern to reduce crosstalk and increase the signal-to-noise ratio. Also, there
are redundant line detectors for bands E to O. Both line detectors for band H are read out, resulting in an H1 and an H2
band in the coregistered data product. Bands E-G and I-O also have two line detectors apiece, but active and inactive
detectors are selected, resulting in only the active detectors being turned on for a given image acquisition. In practice,
one complete line detector is activated to acquire each band, rather than picking and choosing detectors as shown here,
but the software does have the ability to do so. The possibility of using alternate detectors to construct an image for each
band is one good argument for using some form of irregular (re)sampling for the generation of coregistered MTI images.
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alignment in the coregistration software as well. All of these factors result in a difficult problem to properly
align and resample each band for a good reconstruction of the viewed scene. Two standard MTI data products,
LEVEL 1B R COREG and LEVEL 1B R GEO, may be generated using the coregistration software; the COREG product
is generally aligned with the orbital motion of the satellite, while the GEO is geo-referenced to absolute terrestrial
coordinates.

Several other algorithms have been developed for coregistration of MTI images. An alternative registration
algorithm that does not employ resampling, but rather, uses whole-pixel spatial translation to align the bands
and SCAs, has been developed at Sandia National Laboratory for use on MTI imagery.5, 6 In addition, a Simple
Interactive Registration (SIR) product is sometimes generated by hand at Los Alamos National Laboratory.
Both methods require user input, as compared to the automated coregistration method discussed here. Another
automated registration method has been developed at Los Alamos, called Automated Image Registration (AIR).7

The AIR method uses a maximum cross-correlation algorithm along with a weighted-least-squares approach to
determine the optimal translations to apply to each band. The above algorithms do not incorporate knowledge
of the distortions due to the optical system, spacecraft motion, etc., but instead assume that translational shifts
between the bands are sufficient for a registered data cube.

2. RESAMPLING METHODS

Image resampling may be defined as the reconstruction of a continuous function from observed sample points
on a discrete input grid, followed by a sampling of the continuous function to a new discrete grid.8, 9 In
practice, we compute a mapping, or projection, between the input and output grid, then use interpolation to
do the reconstruction and sampling. Using the direct projection approach to map pixels to the ground requires
that the resampling methods used for MTI data products must be able to handle input images on an irregular
grid. Distortions due to satellite motion, optical distortion, jitter, etc. cause slight deviations in the projection
vector for each pixel in a collected image. The mapped pixel positions on the ground are almost, but not quite,
regularly spaced. For display and analysis purposes, these irregular data points must be remapped to a regular
grid through appropriate resampling methods. Fig. 2 illustrates the irregular spacing of points on an input data
grid that is overlaid on a regularly-spaced, output resampled grid.

One straightforward approach for resampling from an irregular grid is to compute a Delaunay triangulation of
the irregularly-spaced data points, and then to use linear interpolation to determine the values on the resampled
grid points that are in the the interiors of the triangles. In fact, early versions of the coregistration software
employed this “triangulation-gridding” method, but the approach was soon abandoned due to unreasonable
memory and computation times required.10

By the time of the MTI launch, a resampling method based on overlapping projected pixel areas was im-
plemented. More recently, to address the needs of different types of users, a nearest-neighbor resampling and a
distance-weighted resampling method have been added as options to the MTI registration code. The outputs of
these resampled LEVEL 1B R COREG and LEVEL 1B R GEO standard data products may then be input to LEVEL 2
algorithms as usual.

We next discuss several different approaches to image resampling, then describe our resampling algorithms
in detail.

2.1. Resampling schemes

We categorize resampling algorithms into three general approaches: ideal convolution schemes, averaging schemes,
and selection schemes. Each method has advantages and disadvantages associated with it.

• Ideal convolution schemes: When a good model can be found for the point spread function, and for the
correct position of pixels projected to the ground, the optimal resampling schemes are based on convolution.
However, these methods are sensitive to inaccuracies in those models, and in fact are somewhat more
sensitive to noise in the radiance data as well. For irregularly sampled data, these schemes are also
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Figure 2. Left: Illustration of the resampling problem. Here, the
crosses (+) are the centers of grid squares in a resampled grid on
the ground. The dots (•) represent the locations on the ground cor-
responding to the data pixels. While the resampled grid is regular,
the data grid is irregular – often, it is approximately regular, but we
make no assumptions about its approximate regularity. Resampling
assigns values to the crosses that are consistent with the values that
have been measured at the dots. Above: To estimate the radiance
for the resampled pixel centered at the cross (+), the area of overlap
between the (solid) resampled pixel and and each of the (dashed)
data pixels is computed. Here, only three data pixels overlap the
resampled pixel, and so the value of the resampled pixel will be a
weighted average of those three with the most of the weight assigned
to the upper right data pixel.

more complicated and more expensive. The optimal function for sampled image interpolation is the sinc
function,8, 11, 12 with its one-dimensional form given by

sinc(x) =
sin(πx)

πx
. (1)

Ideal sampling requires that all frequencies present in the sampled signal are preserved (no blurring occurs),
so a rect function is needed in the Fourier domain. From linear systems theory, multiplication with a rect
function in Fourier space is equivalent to convolution with a sinc function at each sampling location in the
spatial domain.13 Note that in our case, we do not assume regular spacing of our sample points, therefore
normal interpretations of proper Nyquist sampling are not valid. However, any function of the form

f(x) =
∑

i

sinc(2fo(x− xi)) zi (2)

will have no power beyond frequency fo, since the sinc function has no power beyond that frequency. If we
are given f(xi) for each sample location xi, then we have a situation with N equations and N unknowns.

f(xj) =
∑

i

Kjizi (3)

where Kji = sinc(2fo(xj − xi)); Eq. (3) can be used to solve for the coefficients zi. But in general, the
solution to Eq. (3) involves an N × N matrix decomposition. And, since the sinc function is of infinite
extent, the matrix will not be sparse. Rather than resort to direct inversion of the N × N matrix to
solve for the zi’s, iterative schemes, such as projection onto convex sets (POCS)

14 or conjugate gradient15

algorithms, are often employed; further details, especially for the case of irregular sampling, may be found
in the literature.16 Note, however, that if xi is regularly sampled (i.e., xi = xo + i∆x), and fo∆x = 1,
then the fact that sinc(x) = 0 for integer x leads to zi = f(xi).

Implementing ideal convolution is prohibitively slow due to the large neighborhood required around each
input pixel location. In practice, a truncated approximation to a sinc function is used, such as cubic splines
(called cubic convolution, or third-order hold interpolation) or quadratic functions (second-order hold
interpolation).8, 15 The main lobe and first sidelobes of the sinc function are typically used. Inclusion of
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the negative sidelobes has important implications for the resampled image; pixel values are not constrained
to their original range, which can cause ringing, or overshoot, in the image radiance values.11

• Averaging schemes: A more robust resampling scheme is based on the principle of averaging neighboring
pixels. This guarantees that a resampled pixel won’t have a radiance value that is any larger or any smaller
than the actually measured radiances in the region of that pixel. This has as a nominal consequence that
the data will be “smoothed” – a small bright object in the scene, even if it is picked up as a bright pixel
in the calibrated but unregistered LEVEL 1B U data, will be “smeared out” in the resampled image.

The area-weighted and distance-weighted resampling methods that we will discuss in more detail in the
subsequent sections are both averaging schemes. Bilinear resampling is a simple method that fits in this
category as well, though it is not well adapted for irregular data grids. The inefficient triangular mesh
approach, described above, is also an averaging scheme.

• Selection schemes: A special case of an averaging scheme is one in which each resampled pixel is taken to
be the same value as one of the pixels in the raw image data. Although spatial fidelity is compromised
in this scheme, the smoothing effects of averaging are ameliorated. Smith et al.5, 6 has advocated this
approach with a whole-pixel translation-only registration algorithm. However, this method does not deal
with optical distortions, nonuniform motion of the satellite, etc.

With the different schemes taken into consideration, we implemented two averaging methods (area-weighted
resampling and distance-weighted resampling) as well as a selection scheme (nearest-neighbor resampling). The
desire for a more computationally efficient resampling than our initial triangulation-regridding approach, along
with robustness requirements, led to the following algorithms, which we discuss in Sec. 2.2 through 2.4.

2.2. Area-weighted Resampling

Area-weighted resampling is an averaging scheme in which each point in the resampled grid is given a value that
corresponds to the weighted average of points in the data grid whose “support” overlaps that of the resampled
grid point. The weight, in this weighted average, is proportional to the area of this overlap. This is illustrated in
the top right panel in Fig. 2. Although conceptually straightforward, some practical issues need to be addressed.

We comment that computing the area of overlap becomes a lot more complicated when the axes of the
support squares are not aligned with the axes of the resampling grid. The automatic resampling scheme has two
modes: “orb-aligned” and “geo-aligned.” In the orb-aligned mode, the axes of the resampling grid are aligned
with the orbit of the satellite over the ground. (See Ref. [3] for a fuller explanation.) But in the geo-aligned
mode, the axes of the resampling grid are aligned with local latitude and longitude. An approximation is made
in that case, which treats the individual pixel supports as if they were aligned. For the georeferenced product
(LEVEL1B R GEO), clearly a geo-aligned mode is in effect.

Depending on the size of the resampled pixels, and the irregularity of the data pixels, it is possible for this
method to leave some of the resampled pixels undetermined. To ensure that this does not happen, we increase
the “support” of the data pixels by a fixed percentage – in practice, we find that 25% is adequate. We choose
this percentage as small as possible because a large increase in the support will lead to a greater blurring of the
resampled image.

Finally, we note that there is a potential computational difficulty in finding the data points that are nearest
to each of the resampled pixel locations. The problem is that the data points are irregularly spaced, so their
positions are not a priori predictable. A naive algorithm would have to check each data point to see if it
overlapped a given resampling point, and that would lead to an O(N 2) algorithm if there were N data points
and N resampled pixels. Sophisticated search algorithms, based for instance on a k-d tree, can reduce this to
O(N logN), but the software is nontrivial to implement. It is tempting to take advantage of the approximate
regularity in the data positions, but this is dangerous, because it is hard to know how much regularity can be
safely assumed.

There turns out to be a fairly simple solution. It is difficult, given a resampled pixel, to identify from an
irregular grid the points that are close enough to the resampled pixel to overlap with it. But, given one of the
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1. For each data pixel i, with position xi and radiance ri:

(a) Find the point ji in the resampled grid which is closest to the i’th data
pixel. Since the resampled grid is regular, this is straightforward; it is
the pixel on the resampled grid which is at the “rounded off” value of
the data pixel’s position: xj = ∆xbxi/∆x+ 0.5c.

(b) Define the set Ji = {j | |xji −xj | ≤ n} where n is some number of pixels
(often n = 1) which describes the size of a square neighborhood of points
in the resampled grid that are near enough to the data pixel i so that
Aij , the area of overlap between the ith data pixel and the jth resample
pixel, might be nonzero.

(c) For each one of these resampling pixels j ∈ Ji:

i. Compute the area overlap Aij between the ith data pixel and the
jth resample pixel.

ii. Update for this resample pixel j a running sum of areas Aij

iii. Update for this resample pixel j a running sum of the product Aijri.

2. For each resample pixel j:

(a) Compute the ratio of the two running sums:
∑

iAijri/
∑

i Aij

(b) This ratio is the estimated radiance for the jth resample pixel.

Figure 3. Pseudo-code for the area-weighted resampling algorithm. Although it would be more natural for the outer loop
to be over the resample pixels j, it would be more expensive because it is difficult to find the neighbors Ij = {i | Aij 6=
0} when the data pixels i are irregularly placed. The advantage of this approach is that in Step 1(a), the set Ji is
straightforward to find because the resample pixels j are regularly gridded.

data points, it is not difficult to find the regular resampled pixels with which it overlaps. Thus, although it
takes a little extra (just O(N)) memory, it is more efficient for the algorithm to work in what at first seems the
backward way, as shown in Fig. 3.

Recently, other resampling methods have been implemented to improve the final coregistered image with
respect to over-smoothing and contrast reduction by the area-weighted resampling algorithm.

2.3. Distance-weighted Resampling

A tunable distance-weighted resampling method has been implemented which computes the value of each output
pixel as a linear combination of input data points that are weighted according to their distance d from the output
pixel center.

Looping over the input data grid, we first find the Euclidean distance d from a data pixel i to the center of
each of its neighboring resample pixels j. As in the area-weighted resampling case, we map from the irregular
input grid to the output grid because the neighbors may be found with an O(N) algorithm. The number N of
output neighbors can be selected with a support region. In practice, we found that a 5 by 5 region, or N = 25,
was sufficiently large for resampling without requiring unreasonable computing time, and is used by default.

As each distance value is found, we compute a weight wij using a Gaussian-shaped function with tunable
width, or, standard deviation σ,

wij = e
−dij

2/σ2 . (4)

(The standard scaling used for a Gaussian probability distribution17 is not used because we later renormalize,
and it saves computation time.) After multiplying the current data pixel radiance ri by the weight wij , we add
this weighted value to pixel i’s neighboring output pixel bins. Each output pixel will have a running sum of
weighted radiances.
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output grid pixel center

input grid sample point location1.0

weight

distance d ij

Figure 4. Left: Illustration of distance-weighted resampling. As
in Fig. 2, the crosses (+) are the centers of grid squares in a re-
sampled, regular grid, and the dots (•) represent the locations on
the ground corresponding to the data pixels. The radiance for the
resampled pixel centered at the cross (+) is a weighted average of
the input values at the locations given by the dots (•) inside a lo-
cal neighborhood with N neighbors. For this example, N = 9.
Above: One-dimensional slice showing Gaussian weighting used in
the distance-weighted resampling method. The values at the dot lo-
cations closer to the cross will be more heavily weighted than values
at dot locations that are far from the cross. Exponential weighting
does not fall off as rapidly as Gaussian weighting, and may be used
to prevent underflow errors that cause non-filled pixels.

Once we loop over every data pixel, the final radiance for each resample pixel is computed by dividing the
weighted input radiances by the total weights applied to that output bin. This normalizes the values back to
units of radiance:

rj =

∑N
i=1

(

e−dij
2/σ2 ri

)

∑N
i=1 e

−dij2/σ2
. (5)

The concept of finding the distances to each resample pixel in the output grid is illustrated in Fig. 4. The
weight assigned to each positive distance dij can take values between 0 and 1. The width of the weighting
function may be modified with a parameter σ. The distance-weighted resampling scheme becomes, in a limiting
case, a selection scheme. As σ gets small, contributions from the majority of the neighboring pixels approach
zero, leaving the closest neighboring pixel to provide nearly the entire contribution to the output pixel. The
resulting output is much like nearest-neighbor resampling, described subsequently in Sec. 2.4. Larger values of
σ provide more smoothing, and produce images similar to those from applying the area-weighted resampling.
Pseudo-code for the distance-weighted method follows that approach for area-weighted resampling in Fig. 3 with
the difference that wij is used in place of Aij .

2.4. Nearest-neighbor Resampling

Radiometric fidelity is sometimes the most important criterion for a user of MTI imagery. To address the needs
of these users, we implemented the standard nearest-neighbor resampling algorithm. Rather than average or
otherwise combine input data points, pixels in the resample grid are assigned the unaltered value of the “nearest”
input data point measured by Euclidean distance. This results in improved radiometric accuracy at the expense
of spatial location accuracy. Nearest-neighbor resampling can introduce stair-step errors of up to a one-half pixel
shift, which can be quite noticeable along diagonal edges. For this reason, nearest neighbor resampling may not
be best for visual interpretation tasks. Another type of artifact that may occur is related to the fact that each
band image in the 15-band MTI image cube is collected by a separate line detector. When the pixels are shifted
in each band by the nearest-neighbor resampling, different areas (and thus different physical materials) on the
ground can be remapped to the same pixel. This “mispairing” of bands18 can give an incorrect spectrum at that
pixel location because different materials appear in each band rather than a smooth spectral mixture. Color
display of multiple bands will have blocky colors at material boundaries.

To appear in: Proc SPIE 5093 7



(a) (b) (c)

(d) (e)

(f) (g)

Figure 5. Single band (Band M) imagery taken at large yaw.
(a) Calibrated but unregistered LEVEL1B U data from band M
shows a highly skewed image corresponding to the fact that the
satellite was yawed at about 80◦. (b) Data in (a) is manu-
ally de-skewed by moving each vertical line of pixels up by four
pixels relative to the vertical line on its left. (c) The coregis-
tration product (LEVEL1B R COREG) automatically de-skews the
image, putting each pixel from panel (a) onto the appropriate
place on the ground, and then resampling to a uniform grid
in ground coordinates. (d) Detail of an area from the man-
ually de-skewed image in panel (b); although the pixels are
nominally 20m on the ground, the high-angle yaw produces a
ground sample distance that is much smaller than 20m. (e)
Detail of the same area, but from the coregistration product
shown in panel (c). In the default mode, IR pixels are resam-
pled to 20m. The detail in panel (d) is lost, but the pixel sizes
are correctly calibrated and the aspect ratio is right. (f) Same
as (e), but the resampling is to 3m. This combines fine resolu-
tion in panel (d) with the spatial accuracy of panel (e); it also
employs an interpolation scheme that reduces the effect of the
vertical streaks in panel (d). (g) Similar to (f), but using the
nearest-neighbor resampling scheme. Panels (e) and (f) used
the default distance-weighted resampling, with σ = 0.3.
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(a)

(b)

(c)

(d)

Figure 6. Contrast of a small target using different resampling methods and parameters: (a) area-weighted, (b) distance-
weighted with σ = 0.3, (c) distance weighted with σ = 0.2, (d) nearest neighbor resampling. A zoomed portion of each
image on the left is shown in the center. A vertical profile through each zoomed image clearly shows the increase of
contrast from area-weighted, to distance-weighted, to nearest neighbor resampling. Note, however, the stair-step errors
along diagonal edges that are present in the nearest-neighbor example. These errors can be up to a one-half pixel shift
from the true location.
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3. RESAMPLING OF LARGE YAW IMAGES

The LEVEL1B R COREG data product can be resampled at any user-specified grid size. For instance, rather than
sample the visible bands to 5m (close to actual sampling for most typical nadir looks), the coreg can produce
20m data to more efficiently align with the 20m IR bands. Alternatively, the IR bands can be remapped to 5m
to match the higher resolution of the visible bands.

An unusual spacecraft collect demonstrates another application of this ability to alter grid sizes. The satellite
flew at an 80 degree yaw, so that the cross-track ground sample distance would be significantly compressed, and
the motion of the pitch and roll were controlled so that the satellite boresight would sweep by the ground much
more slowly than is usually the case, thereby compressing the along-track ground sample distance.

The effect is to produce a highly skewed LEVEL1B U image, as seen in Fig. 5(a). However, when this image
is de-skewed, it results in a much higher resolution image than is usually possible from a satellite with a 20m
nominal GSD. Fig. 5(b-g) shows various resampling methods applied to this image that was acquired at a large
yaw angle. By simply resetting the resampled pixel size to 3m, the ordinary LEVEL1B R COREG product is able
to capture the high resolution that this unusual flight path provided.

4. CONTRAST OF SMALL OBJECTS

Radiometric contrast can be an important factor when resampling images that contain small objects of interest.
The effects of resampling on a small object in an image are shown in Fig. 6. As noted in previous sections,
the area-weighted and distance-weighted resampling methods introduce some blurring, but the nearest neighbor
resampling can introduce staircase artifacts along edges.12 The loss of contrast due to use of averaging-based
resampling methods is due to both the type of averaging and the relative location of the viewed object with
respect to the regular output grid. The relative location of the sample grid and a target is called sample-scene
phase,11 and affects the measured contrast between the object and its background in a sampled image. When
resampling an image, a similar spatial phase effect occurs; contrast can be reduced if the input pixel is split
between two (or more) output pixels.

5. DISCUSSION

What, then, is the best method to coregister images? Under ideal situations, certain convolution methods can be
shown to be optimal. However, these methods are susceptible to overshoot and ringing artifacts. Furthermore,
for irregular sampling, these methods are computationally expensive.

Both nearest-neighbor and averaging-based resampling are more robust, but also have drawbacks, and trade
off spatial fidelity for reduced contrast. For analysis of small objects, nearest-neighbor resampling is best when
viewing only a single band. When viewing multiple bands, the distance-weighted and area-weighted resampling
generally have smaller spatial shifts; for the distance-weighted method, one can use σ as a tuning parameter to
regulate this trade-off. The optimal value of σ will depend on the viewing geometry for each scene. The ability
to adjust σ is an advantage of the distance-weighted resampling, compared to the area-weighted resampling
algorithm, which generally over-smoothes. Finally, we point out that even for panchromatic imagery, resampling
is sometimes unavoidable; change detection studies employ multiple images taken at different times coregistered
to within subpixel accuracy and then resampled.19, 20 Distance-weighted resampling is the recommended method
to use on MTI imagery for this application.
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