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ABSTRACT

We investigate the detection of opaque targets in cluttered multi/hyper-spectral imagery, using a local
background estimation model. Unlike transparent “additive-model” targets (like gas-phase plumes),
these are solid “replacement-model” targets, which means that the observed spectrum is a linear com-
bination of the target signature and the background signature. Pixels with stronger targets are as-
sociated with correspondingly weaker backgrounds, and background estimators can over-estimate the
background in a target pixel. In particular, “subtracting the background” (which generalizes the usual
notion of subtracting the mean) to produce a residual image can actually have deleterious effect. We
examine an adaptive partial background subtraction scheme, and evaluate its utility for the detection
of replacement-model targets.
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1. INTRODUCTION

To detect weak or rare signals in a cluttered background, a key first step is to model that background.1

The classic choice – seemingly naive, but popular, and often quite effective – is a simple multivariate
Gaussian distribution, with a single global mean and a single global covariance. Both additive target
detectors (such as adaptive matched filter2–4 [AMF], the adaptive coherence estimator5,6 [ACE], or the
hybrid elliptically-contoured generalized likelihood ratio test7 [EC-GLRT]), and replacement target
detectors (such as mixture-tuned matched filter8 [MTMF], matched filter with false alarm mitigation9

[MF-FAM], or finite target matched filter10 [FTMF]), have been developed for the global Gaussian
background, though the additive models are more commonly used. In part this is because they are
easier to compute, but also because they often provide reasonable target detection performance even
for targets that are more physically well-represented by the replacement model.

A potentially more accurate model of the background at a given pixel is to compute a local mean,
based on an annulus surrounding that pixel.11–15 This is effectively a high-pass filter, and is related
to the “unsharp mask” approach16,17 for detecting point targets. Further accuracy can be obtained
by considering the background pixel value to be an arbitrary function of the annulus pixels, and then
fitting a regression of the center pixel as a function of the annulus pixels.18–20

Subtracting the estimated background from the observed image yields a “residual” image that can
be used for target detection. See Fig. 2 for an illustration of the residual image. With a better estimate
of the background, one might presume that target detection performance would be improved. This was
not observed in work reported previously,21 and in that work, we speculated that the culprit might be
the fact that the target signal is not strictly additive.22 To test that hypothesis, we develop an adaptive
residual that respects a replacement model, instead of an additive model, for targets in a scene.

Email: jt@lanl.gov, ziemann@lanl.gov

Proc. SPIE 10198 (2017) 101980V 101980V-1



Table 1. Notation

d Number of spectral channels in hyperspectral image
y ∈ Rd Pixel under test
t ∈ Rd Target signature
α ∈ R Strength, size, or quantity of target
ỹ ∈ Rd Background spectrum at pixel under test
x ∈ Rd Pixel in the annulus surrounding center pixel y
X ∈ Rkd Concatenation of k pixels in the annulus surrounding center pixel
f : Rkd → Rd Function estimating pixel y based on the annulus pixels X
ŷ ∈ Rd Estimate of y, given by ŷ = f(X)

2. WHAT’S WRONG WITH RESIDUALS?

LGOP: Looked good on paper
— Acronym Dictionary

(as related by David Messinger)

Let y be a pixel of interest, which may or may not include target signature. Let ỹ be the “back-
ground” at that pixel. It is (if this makes sense) what the pixel spectrum would have been if there were
no target present in the pixel. (For pixels in which a target is not actually present, which is usually
the vast majority of pixels in an image, ỹ = y). In terms of ỹ, we can employ either an additive model

y = ỹ + αt, (1)

or a replacement model
y = (1− α)ỹ + αt, (2)

to describe the pixel of interest y in terms of a background ỹ and a known target signature t. Here,
the scalar value α corresponds to some measure of the “strength” of the target signal in that pixel.
For the replacement model, α is often interpreted as the areal size of the target compared to the size
of the pixel. For a pixel that is pure background, we would have α = 0; and for a pixel that is pure
target, α = 1.

Using the regression framework,18 we can estimate y with a function of the pixels X = [x1,x2, . . .]
surrounding y: that is (see Fig. 1),

ŷ = f(X). (3)

But what ŷ is approximating is not really y, but that phantom ỹ. That’s because the surrounding
pixels X don’t “know” whether or not there is a target in y. Eq. (3) describes a very general scenario,
but it includes, in the simplest case, the estimate of y with a global mean; i.e., ŷ = µ, where µ is the
mean of all the pixel values y in the image. We remark that this kind of global mean subtraction is a
standard protocol in hyperspectral target detection.

A simple residual image is given by

e = y − ŷ = y − f(X) (4)
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Figure 1. The center pixel y is estimated as a function
of the pixels X = [x1,x2, . . .] in an annulus surrounding
the center pixel (and, possibly, a guard window, to reduce
the contamination of the background estimate by a target
that may not be entirely contained in the center pixel).
The estimator ŷ = f(X) could be a simple mean of the
pixels X in the annulus, or a more complicated function.

and if we are looking for target in the pixel y, we can apply our favorite detector to this residual. For
instance, writing E =

〈
eeT

〉
as the covariance matrix of the residuals, the ACE detector is given by

D(e) =
tTE−1e√

tTE−1t
√
eTE−1e

= cosE(t, e) (5)

where we write cosA(b, c) to be the cosine of the angle between the vectors A−1/2b and A−1/2c; as
such, it is bounded between −1 and +1. Further, for any positive scalars p and q, we have that
cosA(pb, qc) = cosA(b, c).

To the extent that ŷ is a good approximation for ỹ, we can write e ≈ y − ỹ. And for the additive
model, we can invoke Eq. (1) to write e ≈ αt; thus, D(e) ≈ cosE(t, αt) = cosE(t, t) = 1 approaches
its maximum value. This suggests that residuals can be effectively combined with the ACE detector
to find additive targets in imagery.

Actually, this ‘≈’ argument is pretty informal. An only slightly more formal argument writes
e = αt + (ỹ − ŷ). Thus, D(e) = cosE(t, αt + (ỹ − ŷ)) = cosE(t, t + (ỹ − ŷ)/α), which illustrates that
fact that as α becomes small, the mismatch between ỹ and ŷ becomes more important. To say this
another way: the weaker the target, the better the background model needs to be.

Now consider the replacement model. Here, the residual, as given by Eq. (4), is approximated by
e = y − ŷ ≈ y − ỹ = (1− α)ỹ + αt− ỹ = α(t− ỹ). And thus,

D(e) = cosE(t, e) = cosE(t, t− ỹ) (6)

and we see that to the extent t and ỹ are not parallel, D(e) will be bounded away from 1, even for
relatively large values of α.

2.1 Adaptive residual

Consider a more general residual, in which we only subtract off part of the estimated background:

e = y − βŷ = y − βf(X) (7)

and observe in this case that e = αt+(1−α)ỹ−βŷ. If (perhaps being clairvoyant24–26) we knew what
α was ahead of time, we could use β = 1− α, and achieve

D(e) = cosE(t, e) = cosE (t, αt + (1− α)(ỹ − ŷ)) (8)

≈ cosE(t, αt) = 1. (9)
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(a) Image y (b) Estimate ŷ

(c) Residual e = y − ŷ

Figure 2. Shown is a red-green-blue (RGB) image
of (a) the initial SHARE 2012 hyperspectral data
cube under consideration,23 (b) the estimated back-
ground image obtained using the regression frame-
work, and (c) the residual image obtained by sub-
tracting the estimate from the original.

In the unlucky circumstance that we are not clairvoyant, we need some a priori guess for α. For
example, we might know that there is a range of full pixels and subpixels in an image so we might just
use β = 0.5 as a kind of heuristic halfway guess.

Note that β could vary from pixel to pixel. Suppose we have some way to compute an estimator α̂
for α. Then β = 1− α̂ would lead to a residual map of the form

e = y − (1− α̂)f(X). (10)

One such estimator was described by Schaum and Stocker10 as part of the derivation of the Finite Target
Matched Filter; it is based on a generalized likelihood ratio test (GLRT) estimator for α. Alternatively,
we can employ multiplication by a vector quantity to produce scalar values. We posit a vector a, and
use it in a dot product with both sides of Eq. (2) for the replacement model:

aTy = αaTt + (1− α)aTỹ, (11)

implies

α =
aT(y − ỹ)

aT(t− ỹ)
, (12)

which suggests the estimator

α̂ =
aT(y − f(X))

aT(t− f(X))
. (13)
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To keep the denominator away from zero, we can take a = t− f(X) to obtain

α̂ =
(t− f(X))T(y − f(X))

‖t− f(X)‖2
, (14)

and then the new adaptive residual in Eq. (7) becomes:

e = y − (1− α̂)f(X) = y −
[
1− (t− f(X))T(y − f(X))

‖t− f(X)‖2

]
f(X). (15)

Should we decide to constrain 0 ≤ α̂ ≤ 1 (note that Eq. (13) includes no such constraints), then we
can achieve that with

e = y −H
(

1− (t− f(X))T(y − f(X))

‖t− f(X)‖2

)
f(X), (16)

where

H(z) =


0 if z ≤ 0
z if 0 ≤ z ≤ 1
1 if 1 ≤ z

(17)

We remark that this residual, unlike the full residual (as shown, for instance, in Fig. 2), depends on
the target t. But for pixels in which the measured pixel y and the target signature t are orthogonal,
vis-a-vis the local centroid ŷ = f(X), then (t − f(X))T(y − f(X)) = 0 and our adaptive residual in
Eq. (16) becomes e = y − f(X), the same as the full residual.

3. EXPERIMENT

Our experiments are conducted on a georectified 170×280 pixel image with 360 spectral channels
ranging from the visible to the short-wave infrared (wavelength range: 0.4µm-2.45µm). The dataset
was collected by the SpecTIR VS sensor as part of the Rochester Institute of Technology Digital
Imaging and Remote Sensing Laboratory’s SHARE 2012 campaign.23 In our experiments, we eliminate
lower quality channels (1-6,115-127,129-139,144-152,178-210,253-291,341-360) which leaves us with 229
spectral channels. The pixel size on the ground is approximately one meter, and square red and blue
felt cotton panels of size two and three meters on a side were placed in the scene prior to acquisition.

An RGB image of this data is shown in Fig. 2(a). At each pixel, a background level is estimated as
a linear function of the pixels in a 13× 13 annulus with a 5× 5 guard window, and the resulting image
is shown in Fig. 2(b). The estimated background image is, roughly speaking, a spatially smoothed
version of the original image; because the smoothing kernel is the annulus, several ring-shaped artifacts
are evident in the image. This is due to a kind of contamination of the background estimate with the
target itself, but this contamination is not expected to be especially problematic.27

In our first experiment, we try to detect the cotton felt panels using the ACE detector, with a
laboratory-measured spectrum as the target signature. This is a reflectance spectrum, and to the extent
that the image has been corrected for atmospheric and other effects, it should match the spectrum of
the targets in the imagery. To the extent that these corrections are inexact, however, we expect some
mismatch between the spectrum of the targets in the scene and the spectral signature that we use in
our detection algorithm.

Fig. 3 shows the result of this first experiment, which uses only full residuals (assumes α̂ = 0)
using both local and global background estimation. In particular, the detection maps in Fig. 3(b,c)
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(a) Truth Maps

(b) Global Detection Maps

(c) Local Detection Maps

Figure 3. Left maps are for blue panel targets; right maps are for red panel targets. In these experiments the
lab-measured target signatures are used for the blue and red panel targets.
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(a) Blue panels
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Figure 4. ROC curves compare target detection performance using locally and globally estimated backgrounds.
In these experiments the lab-measured target signatures are used for (a) blue panels and (b) red panels.

are darker for pixels that are more likely to be targets. Both global and local detection maps are
fairly unstructured, spatially, suggesting that the ACE detector is suppressing a lot of the background
variability. The local maps appear to have slightly less variance, and they also exhibit a “halo”-like
artifact around the detected targets (which is directly related to the ring-like artifacts observed in
the local background estimate image). The ROC curves in Fig. 4 indicate the the local background
estimators lead to better detection performance than the global background estimators, though the
difference is not large, and the performance overall is anemic. (In this experiment, we saw virtually no
difference between full versus adaptive residuals, so we only show the results with full residuals.)

To improve the overall performance, we did a second experiment with a new target signature, this
obtained by averaging all the in-scene target pixels. It is important to remark that this experiment is
not operationally plausible – if you knew all the target pixels in the image, there’d be no need to do
target detection. Nonetheless, this eliminates the confound of spectral mismatch, and concentrates on
the effects of background subtraction. We expect (and indeed we see) much better performance overall.

In this experiment, comparing the global to local, using the full residual, we obtained the counter-
intuitive result that the globally estimated background led to better detection than the more accurate
locally estimated background. (This is the result we reported in last year’s SPIE paper21 and that
inspired the current research.) We can begin to see this in the detection maps, in Fig. 5(a,b), and even
more clearly in the ROC curves, in Fig. 6.

But when we use the adaptive residual, the results improve. For both the red and blue panels, the
adaptive residual leads to better performance than the full residual. Fig. 5(c) shows the estimated α̂,
which corresponds to (but does not exactly match) the detection maps, and Fig. 5(d) shows detection
maps using the adaptive residuals. Comparing Fig. 5(b) and Fig. 5(d), we see that the detection map
background has less evident spatial structure in the adaptive case. And more to the point, the ROC
curves in Fig. 6 show better performance for the adaptive vs full residuals in all cases. Indeed, it bears
remarking that the adaptive residual even improves the global background estimator.

4. DISCUSSION

Because the residual space has smaller variance than the original space, we expect target and anomaly
pixels to stand out more from the background. This has been observed for anomaly detection,18–20
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(a) Global Detection Maps

(b) Local Detection Maps

(c) Estimated fraction α̂

(d) Local Adaptive Detection Maps

Figure 5. Left maps are for blue panel targets; right maps are for red panel targets. In these experiments, in-scene
target signatures were used.
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(a) Blue panels
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Figure 6. ROC curves compare target detection performance using locally and globally estimated backgrounds.
In these experiments, in-scene target signatures were used for (a) blue panels and (b) red panels.

albeit with some glitches.28 For target detection, however, this has not always been observed in
practice,21 and the experiments presented here represent an attempt to understand and explain (and
possibly fix) those negative results.

In Section 2, we showed that when the target is not additive, as for instance occurs in solid (versus
gas-phase) targets, then the full residual is not necessarily desirable. In particular, when a replacement
model is used, we argue for an adaptive residual; here, instead of fully “subtracting off” the best
estimate of the target-free value at a pixel, a “partial” subtraction is used instead. Eq. (15) is the
adaptive residual that we employ in our numerical experiments, and as Fig. 6 shows, the performance
of the ACE detector improves when an adaptive instead of full residual is employed. For the blue
panels, we have the result that the local background estimator leads to better performance than the
global estimator, but for the red panels, the global estimator is more effective.
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