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Abstract—We describe an approach for improving the robust-
ness to misregistration of pixel-wise anomalous change detection
(ACD) algorithms. The aim of ACD is to distinguish actual
anomalous changes from the irrelevant incidental differences that
occur throughout the scene. For such change detection to be effec-
tive, it is important that corresponding pixels in the two images of
interest correspond to the same location in the scene. Indeed, one
of the most confounding sources of incidental differences is the
inevitable imprecision in the co-registration of the two images. We
address this with small local adjustments to the co-registration
which leads to a modified misregistration-insensitive measure of
anomalousness. Several variants are considered, and the resulting
performance improvements are evaluated using both real and
simulated changes, and real and simulated misregistration.

Index Terms—Change detection, Anomaly detection, Anoma-
lous change detection, Co-registration, Multispectral imagery,
Hyperspectral imagery

I. INTRODUCTION

Anomalous change detection (ACD) seeks the small, rare,
and/or unusual changes that occur in a scene, based on two (or
more) images taken of the same scene at different times [1].
The emphasis of ACD is on distinguishing these anomalous
changes from the pervasive differences (due, for instance,
to differences in calibration, illumination, atmospheric con-
ditions, etc.) that occur throughout a scene.

While there are many cases in which pervasive differences
are also of interest – e.g. flood damage, crop failure, urban-
ization – the motivation for ACD is that the small but unusual
changes could easily escape the notice of a human analyst
(who ultimately decides whether a given change is actually
interesting or meaningful). What automated ACD offers is a
way to cull through a collection of imagery, and to narrow
down the changes that the analyst may need to examine.

One of the most confounding sources of “pervasive differ-
ence” is misregistration of the images. Thus it is important
to align the images as precisely as possible in the first place,
so that corresponding pixels in the two images correspond to
the same position in the scene [2], [3], [4], [5], [6], [7], [8].
In some cases this alignment can be performed to subpixel
accuracy, but there is always some residual misregistration in
the aligned images. Since the effects of this misregistration
are pervasive over the whole scene, ACD already provides
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some robustness to misregistration [9], [10], [11]. In this
paper, we develop a more active misregistration compensation
strategy, Local Co-Registration Adjustment (LCRA), based on
preliminary work reported earlier [12], [13]. We emphasize
that LCRA is not a co-registration algorithm in its own right,
but a scheme that is applied after the co-registration process.
Its purpose is not to improve that co-registration, but to
improve the anomalous change detection by making it more
robust to the residual misregistration that inevitably remains.
As such, its efficacy diminishes with increasing accuracy of
the initial co-registration, but we have observed performance
improvements even when the misregistration errors are smaller
than a pixel.

This paper is organized as follows. Section II describes
the direct pixel-wise ACD algorithms that underlie the local
adjustment schemes that we are advocating here. These pixel-
wise algorithms define an “anomalousness” which our local
adjustments attempt to minimize. Before diving into the details
of how these local adjustments work, however, we step back
in Section III to briefly describe how ACD algorithms can
be evaluated. While this evaluation is carried out on real
data, quantitative results may require simulated misregistration
and/or simulated anomalous pixels; in an effort to keep this
section brief, the simulation details are described in the Ap-
pendix. With the evaluation criteria well-defined, we describe
the details of local adjustment algorithms in Section IV, and
provide computational experiments demonstrating the perfor-
mance. Finally, in Section V, we conclude.

II. PIXEL-WISE ANOMALOUS CHANGE DETECTION

Let χ and γ denote the two images of interest. At the
position indexed by (k, l), we have vector-valued pixels x =
χk,l ∈ Rdx and y = γk,l ∈ Rdy , with dx and dy the
number of spectral channels in χ and γ, respectively. Our
goal is to produce an “anomalousness” image A, in which each
scalar-valued pixel Ak,l represents how anomalous the change
is at the position (k, l). For pixel-wise ACD algorithms, we
can write the anomalousness at (k, l) in terms of a function
A(x,y) that depends only on the pixel values at (k, l), i.e.

Ak,l = A(χk,l,γk,l). (1)

Algorithms that have been proposed for pixel-wise ACD
include the chronochrome [14], neural net prediction [15],
covariance equalization [16], multivariate alteration detec-
tion [17], and a machine learning framework [18] that is
related to mutual information, and which has led to a number
of variations that optimize for different situations, such as
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sub-pixel anomalies [19] or fat-tailed elliptically contoured
data distributions [20]. A more direct information theoretic
change detection has also been proposed [21]. In all of
these pixel-based algorithms, a scalar “anomalousness” value
is assigned to every pixel in the image, and those pixels
with the highest anomalousness value are the top candidates
for the locations of anomalous change. Our approach for
misregistration compensation can be applied to any of these
pixel-based ACD algorithms, but in this paper we concentrate
on a family of detectors constructed from the covariance of
the data [22]; these detectors employ both the auto-covariances
of the individual images and the cross-covariance of the two
aligned images. Specific members of this family used here are
chronochrome (CC) [14], the hyperbolic anomalous change
detector (HACD) [18], and the elliptically-contoured change
detector (ECACD) [20].

III. EVALUATING ACD ALGORITHMS

A difficulty that arises in any kind of rare target detection
problem (such as anomaly or anomalous change detection)
is that the targets, being rare, provide few examples for
evaluating algorithm performance. While results on real data,
with real anomalous changes, are certainly important, these
evaluations are inevitably anecdotal, and should be augmented
with more controlled experiments with a statistically useful
number of anomalous changes.

In this paper, we concentrate on two datasets for evaluating
the relative performance1 of different approaches for ACD.
This performance is quantified in terms of receiver-operator
characteristic (ROC) curves that plot detection rate of anoma-
lous changes against false alarm rate. Because we care about
low false alarm rates in particular, we plot the false alarm rate
on a logarithmic axis.

1) Airborne remote sensing: We used a 126-channel
HyMap image pair with 280×800 pixels from the RIT Target
Detection Blind Test [23]. The radiance images were used,
and anomalous changes were simulated using the framework
described in the Appendix. (The “self test” image was treated
as the normal image and the “blind” image as the base image.)
The two images are based on separate overflights, and have
been georegistered, using ground control points [24], as part
of the blind test experiment. An advantage of this dataset is
that the residual misregistration is realistic. A disadvantage is
that the detailed structure of the misregistration is unknown.

2) Desktop clutter: A pair of RGB images of desktop
clutter is displayed in Fig. 2. Unlike the aerial imagery, the
misregistration for the desktop clutter is effectively zero, which
means that simulated misregistration (using the methodology
described in the Appendix) of precisely known detail can
be imposed. Also, the anomalous changes in this image pair
are real changes in the scene; while this is arguably more
realistic than simulated anomalous changes, it provides only a
very limited range (and a very limited number) of anomalous
changes.

1We caution against reading too much into absolute performance numbers;
while trends in relative performance of algorithms can provide useful com-
parative information, the absolute performance will vary dramatically from
problem to problem.

IV. LOCAL CO-REGISTRATION ADJUSTMENT

Pixel-based ACD algorithms effectively assume the two im-
ages are perfectly co-registered, and one way to improve ACD
performance is to provide a more accurate co-registration. But
even the best co-registration algorithms will exhibit residual
misregistration, and our suggestion is to make local co-
registration adjustments to compensate for this misregistration.

We have previously noted [13, Sec. 2.1] the similarity of
the approach proposed here to the use of mutual information
in co-registration algorithms [2], [3], [4], [7], as well as to
the use of mutual information for simultaneous co-registration
and change detection [9]. In particular, our local adjustments
are similar to the “local rigid displacements” described by
Inglada and Giros [5] (see their Fig. 1). Both methods look
for small adjustments to optimize a similarity measure (or, in
our case, the dissimilarity measure given by “anomalousness”).
But while the rigid displacements are deliberate attempts to
actually improve the image co-registration on local patches,
our adjustments are at the single pixel level, and are not
explicitly treated as improvements to the co-registration itself.
As an operational issue, the local rigid displacements might be
performed to produce a better pair of co-registered images, and
that would be followed by our local adjustment scheme. The
ultimate aim of our scheme is not to produce more precisely
registered images; it is to provide more resilience to residual
misregistration for pixel-wise change detection algorithms.
This distinction is motivated by the informal observation that
the “min” operator is generally more stable than the “argmin.”

The following subsections describe the local co-registration
adjustment algorithm in more detail. In IV-A, we describe
the basic algorithm, and note its inherent asymmetry. This
is followed in IV-B with the description of a symmetric
variant. Both of these algorithms consider integer pixel offset
adjustments, but in IV-C, the extension to non-integer offsets
is considered. An additional extension that uses the local
adjustments to tweak up the underlying pixel-wise detector
by recomputing the cross-covariance matrix is investigated
in IV-D.

A. Asymmetric Algorithm

The following scenario provides a motivation for the sim-
plest variant of the local co-registration adjustment algorithm.
We emphasize that the asymmetric nature of the algorithm
corresponds to a fundamental asymmetry in the problem: we
are explicitly interested in finding anomalous changes with
respect to γ that occur in χ (for example, the appearance
in χ of an object not present in γ).

If a pixel x in image χ really is an anomalous change, then
we expect x not only to be different from its corresponding
pixel y in γ, but to differ with all of y’s neighbors as well.
That is, A(x,y) is large and so is A(x,ym) for all the ym that
are neighbors of y. But if x merely seems like an anomalous
change, because of misregistration, then although x and y
may be different, we expect x to be similar to some of y’s
neighbors. Thus, even if A(x,y) is large, at least one of the
neighbors ym of y will have a small value of A(x,ym).
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Fig. 1. RGB image made from one of the two 126-channel HyMap images taken as part of the RIT Target Detection Blind Test [23], [24] experiment.

χ γ

���n ���n
Fig. 2. Two images of desktop clutter were taken under (very) slightly different lighting conditions with a camera on a stable tripod. The actual misregistration
between the images is much less than a pixel, and so we use these images as a starting point for simulating the effects of larger misregistration. The anomalous
change is small (a rotated sunflower seed indicated by the white circle) and does not have a well-defined direction of asymmetry.

This argument immediately suggests the following misreg-
istration compensation scheme (see Fig. 3): For each pixel
in χ, consider a window about the corresponding pixel in γ,
and choose the pixel within this window that gives the lowest
anomalousness. Formally, we write

Ak,l = min
(m,n)∈W

A(χk,l,γk+m,l+n) (2)

for the LCRA anomalousness at pixel (k, l). Here, A is the
anomalousness function provided by the underlying pixel-wise
ACD algorithm, and W is a set of integer pairs defining the
optimization window. One simple choice for W is the 3 × 3
window about the central pixel:

W = {(−1, 1), (−1, 0), (−1,−1), (0, 1), (0, 0),
(0,−1), (1, 1), (1, 0), (1,−1)} .

(3)

In general, we will consider square and circular optimization
windows of radius r, defined respectively as

WS,r = {(n,m) ∈ Z2 | |n| ≤ r, |m| ≤ r}, (4)

WC,r = {(n,m) ∈ Z2 | n2 +m2 ≤ r2}. (5)

The computational cost of LCRA is a factor of |W | times the
cost of the corresponding pixel-wise ACD algorithm, where
|W | is the number of pixels in the window. For a square

window of radius r, we have |WS,r| = (2r + 1)2; for a
circle, we have |WC,r| ≈ πr2. (Specifically, |WC,1| = 5,
|WC,2| = 13, and |WC,3| = 29.)

min

χ

γ

Fig. 3. Construction of a set of pixel pairs from a single pixel in image χ
and all pixels within a window about the corresponding pixel in image γ.

The offset (m,n) ∈ W that minimizes A(χk,l,γk+m,l+n)
is naturally interpreted as the misregistration at point (k, l) in
the image. We do not, however, treat it as an accurate estimator
of misregistration per se, but interpret it more loosely as a
way to compensate for the effect of misregistration on ACD
performance.

Fig. 4 shows that LCRA can usefully be applied to different
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Fig. 4. ROC curves for three different pixel-wise ACD algorithms –
chronochrome (CC), hyperbolic anomalous change detection (HACD), and
elliptically-contoured anomalous change detection (ECACD) – along with
the performance of the LCRA (using r = 1) approach, using each of
these algorithms as the underlying pixel-wise detector. This is for the RIT
blindtest data, using the natural misregistration between the “blind” and “self”
images, but employing artificial anomalous changes as described in Appendix
subsection B.

pixel-wise anomalous change detectors, and for an image
such as the RIT blind test data in which there exists residual
misregistration, can improve the performance of those pixel-
wise detectors.
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Fig. 5. ROC curves for LCRA using three different window sizes:
r ∈ {1, 2, 3}. Although improvement in the low false alarm rate regime
is observed for all choices of r, the best performance is seen here for r = 1.
Note that the ECACD and LCRA (r = 1) curves are the same as those seen
in Fig. 4.

Choosing the parameter r for the size of the window W
trades off several factors. In general, r should be large enough
to cover the expected magnitude of the misregistration between
the two images, but we note that substantial performance
improvement is observed when r is smaller than that. Larger
r is both more expensive and more prone to missing real
targets because of serendipitous matching of the anomaly with
something in the surrounding background. And any changes
that involve targets moving by fewer than r pixels between

images will fail to be detected. Fig. 5 shows that r = 1 gives
the best performance.

B. Symmetric Algorithm

The motivation for the asymmetric LCRA algorithm is
based on a scenario in which the anomalous change occurs
in a particular image of the pair (i.e., χ) and this asymmetry
carries through to the resulting algorithm. But if the anomalous
change is a pixel in the other image (i.e., γ), it may elude
detection. Note, however, that while a true anomalous change
will give either a high or low anomalousness depending on the
direction of minimization (i.e. χ to γ, or vice versa), a spu-
rious anomalous change due to misregistration is symmetric,
in that similar minimum anomalousness should be obtained
independent of the direction of minimization. This observation
suggests the Symmetric LCRA algorithm [13]

Ak,l = max

{
min

(m,n)∈W
A(χk,l,γk+m,l+n),

min
(m,n)∈W

A(χk+m,l+m,γk,l)
} (6)

in which minimization is performed in both directions, and
the maximum of the resulting minima is selected as the final
result, as illustrated in Fig. 6.

Fig. 7 shows that the performance of the asymmetric
LCRA dramatically depends on which direction the LCRA
is applied. If the anomalous change is in χ, then Eq. (2)
is the correct choice and LCRA(χ,γ) substantially improves
the performance of the pixel-wise ACD. But the “backward”
LCRA(γ,χ) – which reverses the role of χ and γ in Eq. (2)
– is terrible! The symmetric algorithm defined in Eq. (6),
SLCRA, does not require that the user correctly guess which
image has the anomalous change, and although it does not do
quite as well as LCRA(χ,γ), it still outperforms the pixel-wise
ECACD algorithm.

The experiment in Fig. 8 compares SLCRA with the pixel-
wise ECACD in two situations. In the “aligned” situation,
there is essentially no misregistration between the two images,
and in that case one pays a small penalty for using SLCRA
instead of the pixel-wise algorithm. In the second part of the
experiment, the images are misregistered (using the scheme
described in Appendix subsection A3). In the misregistered
situation, SLCRA outperforms the pixel-wise detector.

Fig. 9 compares the performance of SLCRA with different
values of r. Although the simulated misregistration (see Ap-
pendix subsection A3) is up to three pixels, we see substantial
improvement using only r = 1. Larger values of r provide
better performance in the low false alarm rate regime, though
they are poorer in the regime of higher false alarms. Since
larger values of r are also more computationally expensive,
we recommend being conservative in the choice of r.

Figs. 10 and 11 further emphasize the distinction between
using LCRA for better co-registration and using LCRA for
better change detection. That the latter works even though the
former does not is one of the main observations of this paper.
This is illustrated by taking the r = 3 curve in Fig. 9, and
looking at the intermediate results in more detail. A map of
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min minmax

χ

γγ

χ

Fig. 6. Symmetric version of the LCRA algorithm illustrated in Fig. 3. At each pixel, the minimum anomalousness pair is selected in each direction (i.e.
image χ to γ, and image γ to χ) and the final anomalousness value is the maximum of these two minima.
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Fig. 7. ROC curves comparing the asymmetric LCRA to the symmetric
SLCRA algorithms. We observe that SLCRA improves the performance of
the pixel-wise ECACD algorithm, and it does so without having to know
which image includes the anomalous changes. In this case, the SLCRA is
nearly as good as the “correct” LCRA, shown as LCRA(χ,γ), but avoids
the disastrous performance seen in LCRA(γ,χ), which is obtained when the
user incorrectly guesses which image has the anomalous change. Again, the
ECACD and LCRA(χ,γ) curves are the same as those that appear in Fig. 4
and Fig. 5. Multiple runs are shown (with different randomly chosen simulated
anomalous changes) to characterize to statistical variability in the ROC curves.

how the vertical component of the simulated misregistration
varies across the image is shown in Fig. 10(a). A similar map,
of the estimated LCRA offsets, is shown in Fig. 10(b). A visual
comparison of those two panels indicates that the adjustment
offsets are correlated with the actual misregistrations, but the
correlation is not strong (the correlation coefficient is 0.27
and 0.33 in the horizontal and vertical directions respectively).
Indeed, the weakness of that correlation is evident from the
histograms shown in Fig. 11. We see that error made by
the estimated offsets is on average (in the root mean square
sense) larger than the offsets themselves. (In other words, if
we estimated the offsets with zero instead of the argmin in
LCRA, we would have a smaller RMSE).

But in spite of these poor estimates, we still see improve-
ments in the ROC curves for LCRA-based ACD, as we have
seen in Fig. 9. What is happening (we speculate) is that
larger offset errors are observed in parts of the image where
misregistration is less important (for instance, where the image
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Fig. 8. ROC curves for desktop clutter images with no misregistration
(aligned) and with simulated misregistration (smooth random translation with
p = 2). The comparison of ECACD (aligned) with SLCRA (aligned) shows
that when the images truly are aligned, there is a small performance penalty
associated with SLCRA. Those two curves also provide an upper bound
on the expected performance of ECACD and SLCRA when the images are
misregistered. Comparing the unaligned ECACD to the other unaligned curve
shows that the underlying pixel-wise ACD is again improved by SLCRA.
Both SLCRA results are computed using r = 1.
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Fig. 9. ROC curves for desktop clutter images with simulated misregistration
(smooth random translation with p = 3). This comparison shows that r = 1
gives some performance gain even when the maximum misregistration is of
the order of 3 pixels, but performance is improved at low false alarm rates
for values of r closer to the actual maximum misregistration.
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(a) Actual vertical offsets (b) Estimated vertical offsets (c) Estimation error

Fig. 10. Maps of actual and estimated vertical offsets applied at each position by the smooth random translation with p = 3 (corresponding to the SLCRA
r = 3 results in Fig. 9). The estimated local adjustments correspond roughly to the actual local translations, but with a lot of noise. The (S)LCRA scheme
is not, per se, a scheme for making local adjustments to improve the co-registration; it is focused instead on improving the anomalous change detection
performance. Note that some spatial clusters of large estimation error correspond to relatively uniform regions in the test images (dark blue and dark red
correspond to the largest negative and positive values respectively).
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Fig. 11. Histograms of actual vertical offset and error in estimated vertical
offset in Fig. 10. (Similar behavior is observed in the horizontal offsets.) The
Root Mean Square (RMS) error of the estimated vertical offset is 1.33 pixels,
which is larger than the 0.82 pixels RMS of the offsets themselves. This is
an additional indication that the estimated offsets are not good estimates of
misregistration per se.

is smooth, so thatA(x,ym) doesn’t vary much with m). Those
errors don’t have much effect on anomalous change detection.
But in parts of the image where there is higher contrast and/or
finer spatial structure, i.e., where misregistration is more of an
issue, the local adjustments are better.

C. Sub-pixel Co-Registration Adjustment

We have seen that integer-based (S)LCRA can provide a sig-
nificant benefit even when the actual misregistration between a
pair of images does not consist of integer pixel offsets (which
in practice of course it never does). This benefit is diminished
when the misregistration is small, but by extending LCRA
to sub-pixel adjustments, we can improve the performance of
ACD even when the residual misregistration is smaller than a
pixel.

1) Interpolated LCRA: A simple approach that does not
require a substantially modified implementation is to redefine
the optimization windows to include fractional pixel offsets.
These are applied using interpolation to resample χ and γ

at higher resolution. Specifically, for s ∈ Z+, we consider
subsampling to 1/s of a pixel. The algorithm follows the
approach in Eq. (2) (or Eq. (6)), but the windows

WS,r,s =
{(n

s
,
m

s

)
| (n,m) ∈ Z2, |n| ≤ sr, |m| ≤ sr

}
WC,r,s =

{(n
s
,
m

s

)
| (n,m) ∈ Z2, n2 +m2 ≤ (sr)2

}
will be larger by a factor of s2, and the computational expense
will scale similarly.2 Fig. 12 shows two cases for which the
misregistration is known precisely (because it is simulated us-
ing the constant offset approach in Appendix subsection A2);
in one case it is very small (1/3 pixel), and in the other it is
more moderate (4/3 pixels), but in both cases it is well away
from being an integer pixel offset. For the small offset, we
see that the integer-based LCRA is actually worse than the
straight pixel-wise detector, but the subpixel LCRA provides
a small but significant improvement. For the larger offset,
integer-based LCRA gives substantial improvement over the
pixel-wise detector, but the subpixel approach provides only
marginal improvement over that.

In general, larger s gives better performance, but unlike the
case of larger r, there is less concern with overfitting, since
anomalousness varies smoothly across a pixel.

2) Quadratic Fit LCRA: In the case that the pixel-wise
detector is quadratic – e.g., for CC and HACD, but not for
ECACD – linear interpolation of subpixel image values leads
to anomalousness measures that are quadratic functions of sub-
pixel position. This suggests a way to take what amounts to the
s → ∞ limit of the subpixel interpolation scheme described
above.

We effectively construct a continuous version of the LCRA
function A(χk,l,γk+m+α,l+n+β) with fractions −0.5 ≤ α ≤
0.5 and −0.5 ≤ β ≤ 0.5 real-valued instead of integer-valued.

2The computation requires O(r2s2) pixel-wise anomalousness evaluations
per pixel. A more economical variant only considers the sub-pixel locations in
the vicinity of the offset (n,m) with minimum anomalousness; this requires
only O(r2)+O(s2) anomalousness evaluations per pixel, but it also requires
that the computation be done in two steps that are not as readily vectorizable.
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Fig. 12. Two images derived from a single image in the RIT blind test dataset have a simulated misregistration (using the process described in Appendix
subsection A2) that is fixed over the full image. In (a) the shift is 1/3 pixel, and in (b) the shift is 4/3 pixels. The first three principal components of the
two images are used. Anomalous changes are simulated in one of the images, using the scheme described in Appendix subsection B3. Shown here are ROC
curves that result from the pixel-wise ECACD detector, and from integer-pixel (s = 1) and subpixel (s > 1) LCRA. The relative performance of ECACD
and LCRA (s = 1) in (a) shows that integer LCRA does not give any improvement (and can in fact degrade performance) when the offset is significantly
smaller than one pixel. The relative performance of these two method in (b), on the other hand, shows that when the offset is on the order of a pixel, the
integer-based LCRA is nearly as good as the sub-pixel LCRA. Multiple runs are shown (with different randomly chosen simulated anomalous changes) to
characterize to statistical variability in the ROC curves.

The goal is to estimate a value

Ak,l = min
(m,n) ∈ W
−0.5 ≤ α ≤ 0.5
−0.5 ≤ β ≤ 0.5

A(χk,l,γk+m+α,l+n+β) (7)

and the way this is achieved in practice is in two steps.
First, the integer values (m,n) are identified that minimize
the whole-pixel LCRA anomalousness in Eq. (2). Then, linear
interpolation is employed to estimate the half-integer values

γk+m±0.5,l+n = (γk+m,l+n + γk+m±1,l+n)/2, (8)

γk+m,l+n±0.5 = (γk+m,l+n + γk+m,l+n±1)/2 (9)

and from these, we compute A(χk,l,γk+m±0.5,l+n)
and A(χk,l,γk+m,l+n±0.5). Combined with the already
known A(χk,l,γk+m,l+n), and the previously computed
A(χk,l,γk+m±1,l+n) and A(χk,l,γk+m,l+n±1), we can fit
quadratic functions to each of the four quadrants around the
point (m,n). Specifically, we can write

Â(χk,l,γk+m+α,l+n+β) = a+ bα+ cβ + dα2 + eβ2 (10)

where the five parameters a, b, c, d, e can be fit based on the
five points3 (α, β) ∈ {(0, 0), (0, 0.5), (0, 1), (0.5, 0), (1, 0)}.
We compute the minimum of the quadratic in Eq. (10),
constrained to the bound [0, 0.5]×[0, 0.5]. This is done for each
of the quadrants, and the minimum of those four minima is
used for Ak,l in Eq. (7). As an implementation issue, because
Eq. (10) is separable in α and β, what would be a set of
four two-dimensional quadratic-programming problems can be

3This quadratic function can be fit with only five points because we have
constrained the cross-term (proportional to the product αβ) to be zero. We
also considered the more general case of a nonzero cross-product, which uses
(α, β) = (0.5, 0.5) as a sixth point, but the performance was not substantially
altered and the extra computation is considerable.

decomposed into four one-dimensional quadratic problems.
We refer to this method as Quadratic Fit LCRA (QFLCRA).

Following the discussion in Section IV-B, we can symmetrize
the algorithm by taking the maximum of the two QFLCRA
anomalous measures, and the result is the Quadratic Fit
SLCRA (QFSLCRA).

We remark that this linear interpolation has a smoothing
effect, and one result of that can be a bias toward half-integer
offsets, as was pointed out by Inglada et al. [25]. But because
we are more interested in the “min” than the “argmin” we are
less concerned about these artifacts than we would be if we
were trying to infer explicit sub-pixel misregistration offsets.

Fig. 13 shows that this quadratic fit LCRA can substantially
improve the performance of the quadratic HACD detector, and
even outperforms the subpixel LCRA detector with s = 2,
which employs a comparable number of anomalousness eval-
uations.4

D. Covariance Re-Estimation

For LCRA, we can write m(k, l) and n(k, l) as the offsets
that minimize Eq. (2) as a function of pixel position (k, l). If
we make a new image, γ′, with γ′k,l = γk+m(k,l),l+n(k,l), then
we can treat γ′ as a “corrected” image, and another way to
express the LCRA algorithm is to write Ak,l = A(χk,l,γ′k,l)
where A is the underlying pixel-wise change detector. In
practice, we do not actually use this corrected image, partly
for reasons of computational efficiency, but also because we
don’t expect the offsets m(k, l) and n(k, l) to very accurately
reflect the actual misregistration.

In computing A(χk,l,γ′k,l), we use a pixel-wise detector A
that is based on covariance matrices that are computed from

4Actually QFLCRA uses four fewer evaluations, corresponding to the
offsets (α, β) = (±0.5,±0.5)
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Fig. 13. We use the same blind test dataset image we used in Fig. 12, but with
an offset of 1/8 pixel. We observe that QFLCRA substantially improves the
performance of the HACD detector even for this very small misregistration.
The QFLCRA outperforms the subpixel LCRA with s = 2, even though
QFLCRA involves fewer evaluations of the anomalousness function. There
were a total of 25 runs with different randomly simulated anomalous changes;
each curve is the average of five such runs.

the original, misregistered, images. The idea of covariance re-
estimation is to recompute the covariances using χ and γ′

rather than χ and γ (it is the cross-covariance, in particular,
that will change). In principle, the process is iterative: with
new covariances, we can obtain new offsets m(k, l) and
n(k, l), and thereby a new γ′. Note that only the covariances
are modified in each iteration of this algorithm, and each
iteration is applied to the original images χ and γ rather
than χ and updated γ′. As might be expected based on the
poor accuracy of the estimated offsets, using the updated
images was found experimentally to give significantly worse
detection performance. But in spite of the inaccuracy of
the individual estimated offsets, we nonetheless expect the
covariance estimate to improve. Partly this is because the
covariance matrix is an average over all pixels, and partly
because the covariance depends on the values of γ′ and not
the values of the offsets m and n.

In practice, we find diminishing returns after the first
covariance re-estimation, and therefore we recommend only
one or two iterations. The computation time for each iteration
is essentially the same as the computation time for regular
LCRA.

For SLCRA, the idea is basically the same. In this case,
we get offsets for both images – mχ(k, l) and nχ(k, l), as
well as mγ(k, l) and nγ(k, l) – though for any given position
(k, l) only one of the images will have a nonzero offset. With
corrected images χ′ and γ′, we can, as in the case for LCRA,
produce re-estimated covariances, and use these to improve
the SLCRA performance.

Fig. 14 compares the performance of SLCRA and SLCRA
with a single step of covariance re-estimation for the RIT
data, and indicates a small improvement. Fig. 15(a) provides a
similar comparison for the desktop clutter images. In this case
the detection rate variance across multiple trials is high (due
to the small number of anomalous pixels in this example), but
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Fig. 14. ROC curves comparing ECACD, SLCRA, and SCLRA with
covariance re-estimation for RIT data. SLCRA is computed using r = 1.

Fig. 15(b) shows that the improvement is positive in all five
runs.

V. CONCLUSIONS

In general, the more accurately two images can be co-
registered, the more effective change detection will be. Some
residual misregistration is inevitable, however, and we have
shown that local co-registration adjustments (LCRA) – even
if they are “too local” to improve the co-registration itself –
can lead to improved performance from anomalous change de-
tectors. The integer-pixel adjustments provided by LCRA and
its symmetric variant SLCRA achieve this improvement even
though the actual misregistrations are not limited to integer
pixel displacements. We have also shown that some further
improvement can be obtained with sub-pixel adjustments, and
have shown how local quadratic fits to the anomalousness
function enables an efficient implementation of those sub-
pixel adjustments. We have also seen incremental improvement
using an iterative covariance re-estimation scheme. In making
these performance comparisons, we have relied upon a hybrid
framework of real and simulated data.

APPENDIX

SIMULATION FRAMEWORK FOR ACD
In the framework proposed in [22], there are two distinct

simulations, either of which can be performed independently
of the other. One can simulate pervasive differences by ap-
plying some operator (brightening, smoothing, misregistering,
etc.) to every pixel in a base image B in order to produce
a normal change image γ. In the second kind of simulation,
anomalous changes are generated by applying some operator
to a single pixel in the base image, and thereby obtaining an
anomalous change image χ. This is illustrated in Fig. 16.

This simulated image pair – the normal change γ and the
anomalous change χ – can be used as input to an ACD
algorithm. The challenge is to find the pixel where the anomaly
was introduced. Because this is a simulation, it can be repeated
many times, and a ROC curve can be produced that shows the
trade-off of false alarm rate and detection rate.
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Fig. 15. ROC curves comparing ECACD, SLCRA, and SCLRA with covariance re-estimation for the desktop clutter images with synthetic radius 3 smooth
misregistration. (Each of the 10 trials includes generation of a new misregistration.) Since it is not possible to identify the corresponding curves for each
method in a single trial in (a), differences for each trial are plotted in (b), which shows a small improvement (note that most differences are positive) for one
step of covariance re-estimation, and less convincingly suggests a further improvement for an additional step.

Base Image B

(apply to all pixels)
Pervasive differences

Anomalous changes
(apply to one pixel)

Normal change

Anomalous change
Image χ

Image γ

Fig. 16. Construction of normal and anomalous images in simulation
framework. The normal change image χ is generated from the base image by
applying some operator over the whole image. The anomalous change image
γ is generated from the base image by altering one of the pixels. The resulting
images, χ and γ, are input to the ACD algorithm being evaluated. A good
algorithm will find the one altered pixel.

A. Simulating pervasive differences: misregistration

Since our concern in this paper is with the effects of mis-
registration, it is this pervasive difference that we emphasize
in our simulations. We employ three levels of sophistication
in our misregistration simulations.

In all cases, we trim an appropriate number of pixels from
the edges of the image to avoid the artifacts that the various
shifting procedures introduce there.

1) Simple translation: The simplest way to simulate mis-
registration is to translate one of the images by a fixed
integer number of pixels in the horizontal and/or the vertical
directions. That is, γk,l = Bk+m,l+n for some choice of
(m,n) that is fixed over the whole image.

2) Downsampled translation: To simulate translation by a
rational (i.e. fractional) number of pixels, one can begin by
misregistering by an integer number n of pixels, smoothing
the images with a smoothing kernel of size s pixels, and
then downsampling the images by an integer factor of s. The
resulting misregistration is n/s. The resulting images have

fewer pixels (by a factor of s) than the original images, and
therefore less statistical power, but the simulation provides a
direct model for sub-pixel misregistration.

3) Smoothed random translation: In both of the previous
schemes, the translation is the same over the whole scene. In
actual use, however, we can generally expect that any overall
translation will have been taken out, and that we are left
with a residual misregistration that varies across the image.
That is, the offsets m and n are themselves functions of
the pixel location (k, l). This often arises, for instance, when
the elevation varies across a scene; rotation and perspective
changes can also be modeled as local translational motions
that vary across the image.

We simulate this situation with a two-step procedure. The
first step applies a different randomly-chosen misregistration
to each pixel; that is: for each position (k, l), integers m and n
are randomly chosen from a uniform distribution over a fixed
range: −p ≤ m ≤ p and −p ≤ n ≤ p. The second step is a
low-pass filtering of the offsets as a function of (k, l); e.g., see
Fig. 10(a). In our experiments, we used a Gaussian smoothing
kernel with a standard deviation of ten pixels. For the non-
integer (i.e., sub-pixel) offsets produced by this smoothing, we
employ bilinear interpolation to generate the normal change
image γ.

B. Simulating anomalous changes
Whereas the pervasive differences are simulated across the

full image, the anomalous changes are simulated at single
pixels (or small local patches of pixels [26]). A variety of
choices are possible for these anomalous changes [22], but
in this paper we simulate anomalous changes with randomly
sampled pixels from somewhere else in the image.

1) Conceptual scheme: The idea is to produce pixels for
which the change is unusual, without employing pixels that are
individually unusual. Put another way, the change γk,l → χk,l
is unusual compared to the other changes in γ → χ, but χk,l
is not unusual compared to the rest of the pixels in χ.
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The way we do this by choosing two positions at random
in the image: (k, l) and (k′, l′). We let χ = B for all pixels
except the anomalous change; for that pixel: χk,l = Bk′,l′ .

2) Purely spectral scheme: When purely spectral ACD al-
gorithms are employed, one can take a shortcut and produce an
anomalous change image in which every pixel constitutes an
anomalous change – in this case, the anomalous change image
is obtained from the base image simply by scrambling its
pixels. The anomalous change detection algorithm is “trained”
(which is to say that the covariance matrices are computed)
using the base-normal pair. Applying the algorithm, at a given
threshold, to the base-normal pair provides an estimate of the
false alarm rate. Applying the same algorithm, with the same
threshold, to the normal-anomalous pair, one can estimate the
detection rate. By varying the threshold, a receiver operator
characteristic (ROC) can be generated: this provides detection
rate as a function of false alarm rate. This is equivalent to
running the conceptual scheme once for every pixel in the
image, but a lot cheaper.

3) Spatio-Spectral scheme: When spatial pre-processing is
built into the ACD algorithm, as it is in the LCRA algorithms,
the simulation framework requires additional complexity. It is
possible to avoid this complexity for the specific case where
the algorithm is asymmetrical, and the anomalies are known
to be on a particular image; that is the case we investigated
in our earlier work [12]. In order to address the more general
case, we employed a more appropriate simulation framework.

This framework incorporates the ideas used in earlier work
on spatial processing for anomalous change detection [26]. We
begin by introducing a target mask, which is a binary image
with spatially isolated 1’s surrounded by 0’s. Anomalous
changes are introduced only at locations in the image where
the target mask is 1. That is, the anomalous change image
differs from the normal image only at those locations where
the target mask is 1. Those anomalous pixels are chosen at
random from the rest of the image.

As before, we apply the algorithm at a given threshold to
the base-normal pair to provide an estimate of the false alarm
rate. We apply the same algorithm at the same threshold to the
base-anomalous pair, but only consider the pixels where the
target mask is 1. This provides an estimate of the detection
rate.

Because the anomalous changes are spatially isolated, we
can perform spatial processing without having the individual
anomalies interfere with each other. It is of course required
that the distance between the anomalies be larger than the
diameter of the spatial processing window.
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