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ABSTRACT

We describe the development and implementation of plume detection algorithms under severe bandwidth and
processing constraints imposed by a CubeSat architecture. In particular, two ideas will be presented: one employs
onboard processing to reduce the data that is downlinked, and one employs the Sparse Matrix Transform (SMT)
to speed up the onboard computation of an approximate Mahalanobis distance.
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1. INTRODUCTION

The Targeted Atmospheric Chemistry Observations from Space (TACOS) project aims to launch lightweight
CubeSat hardware into orbit, carrying an ultra-compact UV-Visible hyperspectral imager whose purpose is to
detect and characterize anthropogenic and volcanic gas-phase emissions. Specific targets include NO2, SO2,
ozone, and formaldehyde, with sufficient spectral resolution to confidently separate the trace gas signatures from
the atmosphere. The TACOS instrument is similar in purpose and design to NASA’s OMI (Ozone Monitoring
Instrument)1 but with a much smaller pixel size – 0.4km instead of 12km – suitable for characterizing individual
power plants or detecting the low-level emissions of recently-awakened volcanoes.2, 3 Building on a legacy
of compact hyperspectral sensors,4 the TACOS imager has custom-designed optics that focus and spectrally
disperse a slit of light onto a 320×320 patch of the CCD focal plane. The 320 spectral channels span a 300–
500nm wavelength range, with a resolution of 0.6nm.

Routine downlinking of raw hyperspectral data cubes is always a challenge, but the extremely limited band-
width of CubeSat telemetry makes this particularly so. Our CubeSat bus will have an approximately 16.4MB
single-pass downlink capability. For a nominal hyperspectral data cube comprising 2000 (along-track) × 320
(across-track) pixels, each with 320 spectral channels, a full downlink of 16-bit data would require 25 passes to
transmit.5 We will therefore include on-board processing to produce chemical retrieval images on orbit; then
downlink just a few (up to ten, or so) of these processed 2D grayscale images, along with a small sample (up to
a thousand or so) of unprocessed full-spectrum pixels, all of which can be fit into a single-pass downlink.

A further challenge is the limited computational power that is available onboard. Although optimized im-
plementations for gas detection algorithms have been developed for sophisticated CPU and GPU platforms,6, 7

we will be dealing with substantially more limited processing power (see Table 1). Further, with the proposed
low-earth orbit altitude of approximately 550km, we will only have about 90 minutes of processing time per
collect.

Two of the most computationally expensive steps in our processing chain are the computation of the d × d
covariance matrix from the N pixels (where nominally, d = 320 and N = 2000 × 320 = 6.4 × 105) and the
computation of the Mahalanobis distance for each of the N pixels. Both of these computations scale as O(Nd2),
and would nominally require over five hours of processing to complete. The covariance matrix computation can
be straightforwardly expedited by making the estimate with a subsample of N∗ � N pixels (called “covariance
sparse sampling,” according to Buckland et al.8). Speeding up the Mahalanobis distance computation is more
challenging because it has to be done for every pixel. We will describe how we employ the the sparse matrix
transform (SMT) of Cao and Bouman9 to obtain an accurate approximation with substantially less computational
effort.
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Microcontroller ARM Cortex-M7
FPGA A3P100L

Bus Width 32 bits
Clock Speed 216 MHz

Flash Program Memory 2 MB
Instruction/Data Cache 16 kB

Internal RAM 512 kB
External SRAM 8 MB

External SDRAM 512 MB
External Storage (Flash) 2-4 GB

Table 1. TACOS on-board processor includes a Field Programmable Gate Array (FGPA) and associated microcontroller.
The 512MB SDRAM, which is accessed through the FPGA, is used to store the hyperspectral image cube (up to 2500
320×320 CCD frames, corresponding to a single hyperspectral image with 2500 × 320 pixels and 320 spectral channels).
The 8MB SRAM is accessed directly by the microcontroller and is used for storing the covariance matrix and other
intermediate computations (that require more space than can be fully allocated within the faster 512kB internal RAM).

2. DATA PROCESSING

This discussion begins with a review of various gas-phase plume detection algorithms, along with some of their
computational requirements. First among these is the classic adaptive matched filter (AMF).10–12 The AMF
provides a grayscale image, each pixel of which characterizes a measure of detectability of the plume at that
pixel. A set of AMF images will be computed onboard, each image corresponding to a specific chemical species
of interest.

For each set of matched filter images, we will also downlink a Mahalanobis distance (also called “global
RX”) image.13, 14 In addition to providing anomaly detection diagnostics, the RX image can be combined with
the matched filter images to produce adaptive coherence estimator (ACE) images,15, 16 as well as more spe-
cialized output images that are better adapted to the background statistics. These include the mixture-tuned
matched filter,17 a false-alarm mitigating matched filter,18 a family of detectors built on an elliptically contoured
multivariate-t model of background variability,19 and a machine learning approach based on matched pairs of
real and simulated data.20–23

2.1. Hyperspectral detection of chemical plumes

A satellite looks down on the ground, and does not directly observe a plume, but instead observes the effect of
the plume on the spectral image of the ground. In the thermal infrared, there are both emissive and absorptive
features, depending on the temperature of the plume and of the ground that is observed through the plume.
But for the visible wavelengths employed on the TACOS mission, the effect is primarily absorptive. Particularly
for a weak plume, the effect of the plume on the observed spectrum is subtle. But because there are so many
distinct spectral channels, this subtle signal can nonetheless still be teased out from the cluttered background.

Although radiative transmission and absorption are fundamentally nonlinear physical processes, the role of
the chemical plume in all of this, because we assume the plume is weak, can be treated as a linear additive
signal-in-noise problem.8, 24–26

To correspond to the d spectral channels in the hyperspectral image, each pixel is associated with a vector
x ∈ Rd of radiance values (or reflectance values if the appropriate conversion has been made). Write s ∈ Rd

as the target vector; this is the spectral signature of the chemical we are interested in. The hypothesis test we
make for each pixel is

Ho : x = z (1)

H1 : x = z + εs (2)

where z is the (non-target) background, which we take to be distributed as a Gaussian with mean µ and
covariance R, and ε is a measure of the strength of the plume. For this additive model, a likelihood ratio test
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leads to the AMF detector10–12:

AMF: D(x) = sTR−1(x− µ)/
√

sTR−1s (3)

where the denominator is a scalar constant that ensures that the AMF does not depend on the magnitude (only
on the direction) of the target vector s; it also ensures that D(x) is dimensionless.

The mean µ and covariance R are estimated from the observed data cube. Since the observed pixels include
both target and background, there is a contamination effect,27–30 but for small and/or weak plumes, the effect
is small, and in the onboard analysis, we do not attempt to account for it.

From the N pixels in the hyperspectral image cube, we compute mean µ = 〈x 〉 = (1/N)
∑N

n=1 xn with
O(Nd) effort (and most of those operations are additions; the number of multiplications is only O(d)). On

the other hand, the covariance matrix computation R =
〈

(x− µ)(x− µ)T
〉

= (1/N)
∑N

n=1(xn − µ)(xn − µ)T

nominally requires O(Nd2) multiplications, which is a considerably greater computational expense. By taking a
small subsample of N∗ � N pixels, however, this expense is reduced to O(N∗d

2). For matched filter estimates,
as long as N∗ � d, this leads to an accurate approximation.10

Once the covariance matrix is computed, it can be inverted with O(d3) effort. We currently do this in two
steps: first a Cholesky decomposition, followed by inversion of the Cholesky component. That is: R = LLT

where L is a lower triangular matrix; and then from L−1 we can obtain R−1 = (L−1)TL−1. Because this is only
done once per data cube, this is not a computationally expensive step, but it is a very numerically demanding
step. Preliminary work was performed with double precision floating point, but more recent work with 32-bit
floating point has identified numerical issues that may require some kind of automated pre-regularization.31

From the inverse covariance, the vector q = R−1s and scalar quantities qTµ and
√

sTR−1s can be readily
computed. The computation of D(x) then amounts to a dot product (qTx) for each pixel: a total effort of O(Nd)
multiplications. Although this computation is not a bottleneck, it could in principle be reduced even further by
using a sparse approximation to the matched filter.32, 33

An alternative, and actually somewhat more popular (and by most accounts, better34) detector is given by
the Adaptive Coherence (sometimes “Cosine”) Estimator,15, 16 and is related to the angle between s and x.
Specifically:

ACE: D(x) =

[
sTR−1(x− µ)

]2
[sTR−1s] [(x− µ)TR−1(x− µ)]

(4)

The “one-sided” (aka “single cone”) variant of ACE is given by the signed square root:

ACE: D(x) =
sTR−1(x− µ)√

[sTR−1s] [(x− µ)TR−1(x− µ)]
(5)

This one-sided variant is sometimes called the normalized matched filter (NMF), but is usually just called “ACE”.

A detector that is in some sense “in between” AMF and ACE is based on a generalized likelihood ratio test
(GLRT) of an additive target against an elliptically-contoured background;35, 36 this is the EC-GLRT detector:19

EC-GLRT: D(x) =

√
(ν − 1)

(ν − 2) + (x− µ)TR−1(x− µ)

sTR−1(x− µ)√
sTR−1s

. (6)

Here, ν → 2 leads to ACE and ν →∞ leads to AMF. For Gaussian data, (x− µ)TR−1(x− µ) has mean given
by the dimension d of the data. Values of ν ≈ d provide behavior that is “between” that of ACE and AMF.
Further, since the equation is derived in the context of a multivariate-t distribution with ν degrees of freedom,
one can estimate ν directly from the data; in particular, ν can be estimated from the distribution of Mahalanobis
distances that are available in the RX image (e.g., see the Appendix in Ref. [37]).

It would not be practical to compute all of these detectors – AMF, ACE, and EC-GLRT – directly onboard,
but we enable the computation of ACE and EC-GLRT on the ground by downlinking one further image, the
quadratic RX term, (x−µ)TR−1(x−µ), that appears in the expressions for ACE and EC-GLRT. And it bears
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remarking that the RX term does not depend on the target spectrum s. Thus, only one RX image needs to be
computed and downlinked for each scene, no matter how many AMF images (one for each chemical species of
interest) are computed and downlinked.

Unfortunately, the computation of the RX image is considerably heavier than the computation of the AMF
images. For instance, using a Cholesky decomposition, and writing R−1 = (L−1)TL−1, we can express the
Mahalanobis distance (x − µ)TR−1(x − µ) = (x − µ)T(L−1)TL−1(x − µ) = ‖L−1(x − µ)‖2. Since L is lower
triangular, the matrix-vector multiplication takes only only d2/2 multiplications. But this is still an O(d2)
calculation, and since it must be done for every pixel, the total computation is O(Nd2). In Section 3, we discuss
ways to approximate the Mahalanobis distance at far less cost.

2.2. Matched-Filter-Residual

Foy et al.20 argue for a general decomposition of the spectral output into two components, a (signed) matched-
filter output component and a (non-negative) residual component.

MF(x) = sTR−1(x− µ)/
√

sTR−1s (7)

R(x) =

√
(x− µ)TR−1(x− µ)−MF2 (8)

This two-dimensional space is called matched-filter-residual space, and in this space one can construct many of
the classic detection algorithms, including AMF, ACE, and EC-GLRT, in addition to others. In particular, AMF
is given by MF(x), and ACE is monotonically equivalent to MF(x)/R(x). By downlinking the matched filter and
the Mahalanobis distance images, one can construct the matched-filter-residual decomposition in which those
algorithms operate.

2.3. Solid target detection (an aside)

For solid targets, the additive model expressed in Eq. (2) is not representative of the underlying physics; the
replacement model x = (1 − α)z + αs provides an alternative in which the target with signature s occludes
a fraction α of a pixel. Some detectors take the replacement model literally, and derive GLRT detectors for
specific background distributions.38, 39 Less formal approaches have a matched-filter “flavor” but exclude pixels
that are far from the matched-filter signature even though they have a large projection in that direction.17, 18 An
adaptive residual approach recognizes the (1−α)z term as an indication that only a fraction (1−α) of the mean
background should be subtracted, with the value of α being adaptively estimated.40 Other models are possible,
in which the effect of a target can be quite arbitrary as long as it can be modeled; for instance, one can model
exponential Beer’s law behavior in a plume without having to make the linear low-concentration approximation.
This leads to a situation in which data is created in matched pairs,21–23 and machine learning can be used to
address the problem in terms of binary (target/no-target) classification.

Although the TACOS project mission does not include solid target detection, that expansion might be
accommodated by including target signatures s for the solids of interest. By also downlinking µTx, this (in
combination with the matched filter image) would enable the computation of terms like (t − µ)T(x − µ) that
appear in some of the solid target algorithms. We remark that (like the Mahalanobis distance image), this
mean dot product image µTx does not depend on target signature, so there would only be one such image per
hyperspectral data cube, even for multiple target signatures.

3. FAST COMPUTATION OF RX

The computation of RX, or Mahalanobis distance, is nominally O(Nd2) and (unlike the case for the covariance
matrix), that factor of N is inevitable, since we need RX for every pixel. The goal then is to reduce the O(d2)
effort required for each pixel.

Proc. SPIE 10644 (2018) p. 1064405-4



(a) OMI data (b) Simulated data

Figure 1. Scatter plots of true vs approximate Mahalanobis distances, with each point corresponding to a pixel. In
these plots the lighter (cyan) points correspond to the subspace approximator (with d∗ = 15), and the darker (magenta)
point are for SMT (with K = 2000). See the caption of Table 2 for more details. (a) Pixels from an OMI hyperspectral
image, spectrally resampled to match the TACOS instrument. (b) Simulated data sample drawn from a multivariate-t
distribution, having ν = 3 (very non-Gaussian) and a covariance that matches that of OMI data.

Approximator OMI Simulated
Diagonal 1.537 1.480
Subspace (d∗ = 15) 0.319 0.291
SMT (K = 2000) 0.236 0.121
Shrinkage (ε = 0.00006) 0.234 0.123

Table 2. Average absolute deviation of the log ratio of approximate to true Mahalanobis distances. For instance, the SMT
approximates the Mahalanobis distance on OMI data with an error factor of exp(0.236) ≈ 1.266 which corresponds to a
27% error. By contrast, the subspace error factor is about 38% on the same data. Note that the parameters for subspace
and SMT were chosen so both correspond to roughly the same computational effort, about 4700 multiplications per pixel
(compared to d2/2 for the standard computation, which is over 50,000 multiplications per pixel). Two approximators in
this table that are not shown Fig. 1 are a simple diagonal approximator (only 2d = 640 multiplications) and a shrinkage
regularized estimator (same cost as standard computation), which is included to illustrate that the magnitude of error
in the SMT approximation corresponds to what would be obtained if the covariance were regularized with a factor of
ε = 0.00006. The “true” Mahalanobis distances is computed with ε = 0.
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3.1. Subspace approximation

Consider a low-rank approximation to the covariance matrix given by R̂ = UDUT, where U is an orthogonal
matrix of size d × d∗ for d∗ � d, and D is a diagonal matrix of (smaller) size d∗ × d∗. By construction, R̂

is not invertible, but if we employ the pseudoinverse, and write R̂−1 = UD−1UT, then we can use xTR̂−1x =
‖D−1/2UTx‖2 to approximate the Mahalanobis distance. On average, we expect the estimated distance to be a
factor d∗/d of (i.e., smaller than) the actual distance. Thus, we take our approximation to be

d

d∗
‖D−1/2Ux‖2 (9)

The matrix D−1/2UT is of size d∗ × d and can be computed just once, and then applied to all of the pixels, at a
cost of d∗d per pixel. Taking the norm of the vector D−1/2UTx is a further cost of d∗ per pixel, for a total cost
of Nd∗(d+ 1) multiplications. This is much cheaper than the nominal O(Nd2), but it is an approximation, and
one that (even after the d/d∗ correction) may have systematic biases.

For pixels that are anomalous because they are of unusually large magnitude (and have large components in
the direction of the largest eigenvectors), they will have their anomalousness suppressed by the approximation
in Eq. (9). By the same token, pixels that are anomalous because they have unusual direction (and have large
components in the direction of the smallest eigenvectors) will have their anomalousness exaggerated.

Note that even though D−1/2U is a d∗×d matrix, the associated approximation to R−1 given by UTD−1U is
still a dense matrix. In the next section, we consider an approach that explicitly creates a sparse approximation
to R−1.

3.2. Graphical lasso

A natural idea for speeding up the computation of the RX term is to replace the matrix R−1 with an approxi-
mation that includes a lot of zero-valued elements. A scheme for doing just that was proposed by Friedman et
al.,41 and a nice software package for python was identified (called skggm42) for trying this idea out on our data.
The approach is an L1-penalized log likelihood:

R̂−1 = argmaxΨ log det(Ψ)− trace(RΨ)− ρ‖Ψ‖1 (10)

where the term ‖Ψ‖1 is the sum of the absolute values of the non-diagonal elements of Ψ. As ρ→ 0, the solution
just becomes R−1, an accurate but dense inverse. As ρ increases, the approximation becomes poorer but sparser.
To be useful, there needs to be a range of values of ρ for which the approximation is good enough to give accurate
estimates of RX, but at the same time sparse enough that there is an appreciable gain in computational efficiency
in computing RX.

Preliminary studies indicate that there is no such range. In order to get a reasonably sparse solution, a large
penalty term is required, and that distorts the accuracy of the approximation, as illustrated in Fig. 2.

We remark that even if we were able to obtain approximations to R−1 that were both sparse and accurate,
we would also have to incorporate the fairly complicated glasso algorithm into the onboard software. That might
be possible, but we found a much better solution with the sparse matrix transform (SMT) described below.

3.3. Sparse matrix transform (SMT)

We were led to the SMT9 because it has been employed for a variety of hyperspectral data analyses43–47; in most
of those studies, SMT is employed for its favorable regularizing properties, but SMT can also be used to speedup
computation.48, 49

Since the covariance matrix R is symmetric and non-negative definite, we can write it using a singular value
decomposition: R = EDET, where E is orthogonal, and D is diagonal, with non-negative elements on the
diagonal. We will approximate the covariance, using an approximation for E based on a product of Givens
rotations.
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Figure 2. SMT (left) vs Glasso (right) – shown are the inverse covariance matrices with nonzero components in white,
and zero-valued components in black. The SMT value for K = 310 has been adjusted so that both exhibit approximately
the same level of “sparsity” (approximately 3×105 nonzero elements, or about 30% of the total). But the SMT is a better
approximation, and is computed with many fewer computations (∼ 103 for SMT vs ∼ 105 for Glasso).

A Givens rotation is a matrix of the form

G = Θ(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · sin θ · · · 0
...

...
. . .

...
...

0 · · · − sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


, (11)

which is the identity matrix except for four elements, which define a rotation by an angle θ over two channels,
i and j. The Givens rotation is an orthogonal matrix, and it can be shown that any orthogonal matrix can be
written as a product of d(d + 1)/2 Givens rotations. Our approach, however, is to use a much smaller product
of Givens rotations to approximate the orthogonal matrix E.

In particular, write E ≈ Ẽ = G1G2 · · ·GK where K is the number of rotations in the approximation. If we
define D∗ = ẼTRẼ, then we have R = ẼD∗ẼT. If we choose our Givens rotations so that D∗ is nearly diagonal
(as shown in Algorithm 1), then D̃ = diag(D∗) will be a good approximation. Specifically, we write

D̃ = diag(GT
K · · ·GT

2G
T
1RG1G2 · · ·GK). (12)

from which
R ≈ R̃ = ẼD̃ẼT. (13)

Now, if we write Q = D̃−1/2GT
K · · ·GT

2G
T
1 , then it follows that QTQ = R̃−1 ≈ R−1. Hence, the RX expression is

given by
xTR−1x ≈ xTQTQx = ‖Qx‖2. (14)

And the important point here is that Qx = D−1/2GT
K · · ·GT

2G
T
1 x is an operation that requires O(K + d) opera-

tions. Computing the squared norm is another d operations, so the full RX calculation is O(K + d) operations
per pixel, for a total of O(N(K + d)) for the full image cube. We find from experience (e.g., in Ref. [43]) that
taking K to be factor of a few times d is often adequate for obtaining a good approximation to R. That leads
to computation of Mahalanobis distance over the full image in O(Nd) time.
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Algorithm 1 Find Givens rotations that make up the Sparse Matrix Transform (SMT)

Require: Sample covariance matrix R (will be overwritten)
Require: Number of rotations K

Initialize F so that Fij = R2
ij/(RiiRjj) . Magnitude of off-diagonal elements

for k = 1, . . . ,K do
Let (i, j) = argmaxijFij . Nominally takes O(d2), but can be made O(d)

Let θ = 1
2atan(−2Rij , Rii −Rjj) . Angle of rotation

Let Gk = Θ(i, j, θ) . Satisfies Gk = argminG‖diag(GTRG)‖
Update R← GT

kRGk . R is becoming progressively more diagonal
Update F so that Fij = R2

ij/(RiiRjj) . Note only two rows and two columns need updating
end for
Return Givens matrices G1, . . . , GK

Return Diagonal matrix D = diag(R)

AMF K = 32 K = 320 K = 2000 K = 4000 ACE

Figure 3. Detection maps for AMF (far left panel) and for ACE based on true Mahalanobis distance (far right panel),
and for ACE based on approximate Mahalanobis distance using SMT for various values of K. This is a 320 × 400 tile
from a larger image, obtained from the OMI data archive. The square just below the center of the image is a 20 × 20
implanted NO2 plume.

K = 0 K = 32 K = 320 K = 2000 K = 4000 RX

Figure 4. Mahalanobis distance images for the same tiles seen in Fig. 3. Far left panel is RX estimated only using the
diagonal elements of the covariance matrix. Far right panel is “true” RX.

Proc. SPIE 10644 (2018) p. 1064405-8



Detector Sigmas
AMF 2.963
ACE/SMT K = 0 2.045
ACE/SMT K = 2 2.284
ACE/SMT K = 4 2.368
ACE/SMT K = 8 2.566

Detector Sigmas
ACE/SMT K = 16 2.783
ACE/SMT K = 32 2.934
ACE/SMT K = 64 3.226
ACE/SMT K = 160 3.659
ACE/SMT K = 320 3.679

Detector Sigmas
ACE/SMT K = 640 2.723
ACE/SMT K = 2000 3.192
ACE/SMT K = 4000 3.314
ACE/SMT K = 16000 3.343
ACE 3.336

Table 3. Detectability of implanted target, in “sigmas,” defined as the average of the pixels in the implanted target
(20×20 pixels) minus the average of the pixels over the whole scene (320×1444 pixels), divided by the standard deviation
of the pixels over the whole scene. As K increases, the detectability approaches that of the full ACE detector.

3.3.1. Adequacy of approximation

We performed some experiments using publicly available data obtained from NASA’s OMI mission.1 Two
hyperspectral images were identified, one with an NO2 plume,50 and one with an SO2 plume.51 The data were
spectrally resampled to match the wavelengths in the TACOS sensor.

In Fig. 1, we compare various Mahalanobis distance estimators, and observe that the SMT estimator provides
the best approximation for the least computational effort. Fig. 3 and Fig. 4 provide illustrative images of detection
maps, from a data cube that contains an implanted plume.

Table 3 shows that the performance of ACE/SMT (the ACE detector using an SMT-approximated RX as
the denominator instead of the true RX) approaches that of ACE as K increases. This is not a comprehensive
evaluation of performance, and details will vary depending on where in the scene we implant the target. As it
turns out, for this example, the “optimal” SMT detector has K = 320, but that value is idiosyncratic. It is not
even clear that ACE is the optimal detector (there is a whole family of detectors, the EC-GLRT family, which
provides a continuum along which AMF and ACE are the two endpoints).

3.3.2. Computational efficiency

Table 4 describes the computational expense, directly in seconds of wall clock time on our onboard processor, for
two approaches to creating the RX and AMF images for a single gas species. The standard/nominal approach
requires over five hours to obtain images of size N = 2000×320 pixels from data with d = 320 spectral channels.
The largest bottlenecks are the covariance matrix computation and the Mahalanobis distance computation. In
the optimized/approximate approach, we substantially reduce both of the bottleneck times, and obtain a pair
of images in less than half an hour. This is for a single chemical species; since we only need to compute the
Mahalanobis once, we can add multiple species at a cost of six and a half minutes each.

4. CONCLUSION

In adapting gas-phase chemical detection algorithms to a Cubesat platform, two innovations are suggested. The
first is to limit the bandwidth requirements by downlinking only the matched filter images for each gas of interest,
and to augment that with a single Mahalanobis distance map, thereby enabling a large suite of possible detection
algorithms to be employed after the fact. The second is to make the Mahalanobis distance computation more
efficient by employing an approximation based on the sparse matrix transform.

By also downlinking a sample of pixels, some of which are chosen from points with high matched filter values
(or high ACE values), and some of which are chosen more randomly from the background, we may be able to
perform more extensive processing, to for instance achieve quantification as well as detection, as is currently
done with instruments such as OMI,52, 53 which have the twin luxuries of downlinking the entire hyperspectral
image cube, and performing all the processing on ground-based computers.
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(a) Standard
Execution time H:MM:SS

Operation N = 320× 2000 N = 320× 320 Big-O
Mean vector (µ) calculation 0:01:26 0:00:14 O(Nd)
Covariance matrix (R) calculation 3:27:20 0:33:10 O(Nd2)
Cholesky decomposition of R 0:00:07 0:00:07 O(d3)
Covariance matrix inversion 0:00:04 0:00:04 O(d3)
Mahalanobis distance (No SMT) 1:54:40 0:18:21 O(Nd2)
AMF calculation (per chemical) 0:06:30 0:01:02 O(Nd)
Total Time (one chemical) 5:30:07 0:52:59

(b) Optimized
K = 2000, N∗ = N/100

Operation N = 320× 2000 N = 320× 320 Big-O
Mean vector (µ) calculation 0:01:26 0:00:14 O(Nd)
Covariance matrix (R) calculation 0:02:04 0:00:20 O(N∗d

2)
SMT Decomposition† of R 0:00:41 0:00:41 O(Kd2)
Mahalanobis distance (SMT) 0:13:57 0:02:14 O(NK) +O(Nd)
Cholesky decomposition of R 0:00:07 0:00:07 O(d3)
Covariance matrix inversion 0:00:04 0:00:04 O(d3)
AMF calculation (per chemical) 0:06:30 0:01:02 O(Nd)
Total Time (one chemical) 0:24:50 0:04:42

Table 4. Timing studies for the onboard processor, using (a) the standard algorithm, and (b) with the proposed speed-ups
for computation of the covariance matrix and the Mahalanobis distance image. †We remark that the SMT decomposition
can be computed with a straightforward algorithm9 that requires O(Kd2) effort; more sophisticated approaches48 can
reduce that to O(Kd) +O(d2), but with more bookkeeping. Since the SMT decomposition algorithm is not a bottleneck
operation, we have implemented the straightforward algorithm.
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