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ABSTRACT

When a matched filter is used for detecting a weak target in a cluttered background (such as a gaseous plume
in a hyperspectral image), it is important that the background clutter be well-characterized. A statistical
characterization can be obtained from the off-plume pixels of a hyperspectral image, but if on-plume pixels
are inadvertently included, then that background characterization will be contaminated. In broad area search
scenarios, where detection is the central aim, it is by definition unknown which pixels in the scene are off-
plume, so some contamination is inevitable. In general, the contaminated background degrades the ability of
the matched-filter to detect that signal. This could be a practical problem in plume detection. A linear analysis
suggests that the effect is limited, and actually vanishes in some cases. In this study, we take into account the
Beer’s Law nonlinearity of plume absorption, and we investigate the effect of that nonlinearity on the signal
contamination.
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1. INTRODUCTION

Hyperspectral images, by providing a high-resolution spectrum at each pixel, enable the detection of weak signals1

– whether they are thin gaseous plumes or small subpixel targets – even in cluttered scenes. This sensitivity
arises from the large number of spectral channels, and the potential for appropriate combinations of these spectral
channels to simultaneously enhance the signal and suppress the background. Suppressing the background is key,
but that suppression requires that the background be sufficiently well characterized in the first place. For the
adaptive matched filter,2 this characterization is in terms of the covariance of the background clutter, which is
generally estimated from background data (i.e., off-plume pixels, or “secondary vectors”). But it is not always
known a priori whether a given pixel or vector really is in the background, or whether it includes the desired
signal. Since it may not be possible to avoid this contamination of the background, it is important to understand
its effect, particularly on the performance of algorithms for detecting the signal of interest. This problem has
been investigated by a number of authors,3–5 but usually in the domain where the signal is linearly superimposed
on the background. In this paper, we will investigate the effects of nonlinearity on the covariance contamination
problem.

1.1. Derivation of main plume formula

A downward-looking sensor operating in the long-wavelength infrared (LWIR) can detect a plume by analyzing
how the radiance emitted and absorbed by the plume contrasts with the radiation emitted from the ground. For
a sensor that operates at shorter wavelengths, the radiation is predominantly reflected solar, and the effect of
the plume is predominantly absorptive. In this section, we will derive an expression that covers both cases, but
in our examples we will concentrate on the purely absorptive case.

Following the derivations in Young6 and in Foy et al.,7 we note that the off-plume contributions to the
observed radiance include thermal emission from atmosphere and instrument∗ (Lpath) and radiance from the
ground (Lgnd) attenuated by atmospheric absorption (τ atm). That is,

Loff-plume = Lpath + Lgndτ atm, (1)

Email: {jt,bfoy,afraser}@lanl.gov
∗Instrumental and other sources of noise are included in this term as well.
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Figure 1. Absorption spectrum α for NO2 as a func-
tion of wavelength, λ, over a range that includes the
first forty AVIRIS channels; for the remaining chan-
nels, NO2 does not absorb (α = 0). The full range of
the AVIRIS spectral channels is from 0.4µ to 2.5µ.

where each variable nominally depends on the wavelength λ of the radiation, and varies from pixel to pixel in
the scene. (In practice, however, Lpath and τ atm do not generally vary with position over a single image.) The
on-plume radiance is augmented by direct thermal emission from the plume (Lplume), and reduced by absorption
of the ground radiance due to the plume (given by transmissivity τ plume). So the total radiance is given by

L = Lpath + Lplumeτ atm + Lgndτ atmτ plume. (2)

The thermal emission from the plume is a product of its emissivity εplume = 1 − τ plume and its blackbody
radiation B(T plume). That is, Lplume = B(T plume)(1− τ plume), and it leads to

L =
[
Lpath + Lgndτ atm

]
−
[
Lgnd −B(T plume)

]
τ atm(1− τ plume). (3)

Beer’s Law8 says that the transmission of light through a diffuse material decreases exponentially with the
amount of material. That is,

τ plume = exp(−ncα) (4)

where α is the absorption spectrum† for the material (e.g., see Fig. 1), and nc is the column density; for plumes,
column density is generally expressed in units of parts-per-million-meters (ppm-m). This leads to

L = Lpath + Lgndτ atm −
[
Lgnd −B(T plume)

]
τ atm(1− exp(−ncα)), (5)

which expresses the observed radiance L, in terms of the ground clutter, atmosphere, and plume properties.

1.2. Variants of the plume formula

It will be convenient to encode the effect of the Beer’s Law nonlinearity in the following definition:

γ ≡
1− exp(−ncα)

nc
(6)

Here, γ is a kind of distorted absorption curve; in the weak (small nc) limit, we have γ = α. This enables us to
rewrite the total radiance in Eq. (5) as

L = Lpath + Lgndτ atm − nc
[
Lgnd −B(T plume)

]
τ atmγ. (7)

This expression appears to be linear in nc, but that’s because the nonlinearity is hidden in Eq. (6). Still, if
one is seeking a plume of a strength that is known a priori, let’s say no, then one can define a fixed signature
γ = [1− exp(−noα)]/no and use a linear detector against Eq. (7).

†Unfortunately, the prevailing convention is to express α in units for which log10 τ
plume = −ncα. This introduces

an extra factor of loge 10 ≈ 2.3026 that is built into the units of the absorption α, but otherwise does not affect our
discussion.
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At visible wavelengths, Lpath and B(T plume) effectively vanish. There is no emission from the plume, but it
is still absorptive, and in this absorptive-only situation, the expression in Eq. (5) reduces to

L = Lgndτ atm exp(−ncα) (8)

= Lgndτ atm (1− ncγ) . (9)

This simplified expression also neglects atmospheric scattering and sensor noise, which are present at shorter
wavelengths, but these are usually dominated by ground clutter variability.

2. LINEAR ALGEBRA

For the purposes of mathematical abstraction, we can write the linearized plume equation in terms of an additive
signal on a cluttered background. In particular, we can write

r = z− εb (10)

where the vector r ∈ Rd is the observed radiance‡; each component of the vector corresponds to a measurement at
a given wavelength. Similarly, z ∈ Rd is the vector-valued contribution to the radiance that is due to background
clutter. The scalar ε corresponds to the strength of the signal of interest (i.e., the plume), and the vector b ∈ Rd

is the spectral signature of the signal.

We can associate the terms in Eq. (10) with the linearized physical plume equation given in Eq. (7):

r ↔ L (11)

z ↔ Lpath + Lgndτ atm (12)

ε ↔ nc (13)

b ↔
[
Lgnd −B(T plume)

]
τ atmγ (14)

The first three associations are straightforward, but the signature b in Eq. (14) is more complicated. We will
consider two simplifications: a linear signal model in which b is assumed to be a known, constant vector; and
an absorptive plume model, in which b depends on the background z.

For the linear signal model, we choose a constant b which approximates
[
Lgnd −B(T plume)

]
τ atmγ over the

scene. A natural choice is the mean: b =
〈[

Lgnd −B(T plume)
]
τ atmγ

〉
, although in practice simpler approxima-

tions are often used; one common choice is b = τ atmα. In the absorptive-only situation, we relate Eq. (10) and
Eq. (9), by modifying two associations:

z ↔ Lgndτ atm (15)

b ↔ Lgndτ atmγ (16)

In the interests of maintaining a formal linear algebraic formulation, we define a “signature matrix” Γ, derived
from the chemical absorption αλ, which is a diagonal matrix whose diagonal elements are given by

Γλλ = γλ =
1− exp(−εαλ)

ε
. (17)

where γλ are the components of the vector γ defined in Eq. (6). We will also write

Γo = lim
ε→0

Γ; (18)

in particular, Γo,λλ = αλ. Now, we can write r in matrix-vector notation:

r = z− εΓz (19)

Comparison with Eq. (10) identifies Γz as the plume signature; unlike the linear signal model, however, this is
a variable signature that depends on the (unknown) background z.

One naive way to address the variability of the Γz term is to treat it like the linear signal model, and use
b = 〈Γz〉 = Γµ. That leads to the matched filter q given by q = K−1Γµ. This for example was done in Ref. 5,
though without any formal justification.

‡We treat r as radiance, but at visible wavelengths, much of the formalism could be applied to reflectance as well.
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2.1. Linear filter

Having translated the plume detection problem to a linear algebra problem enables us to employ the formalism
of matched filters. A linear filter is a vector q ∈ Rd that is applied to a pixel vector r to produce a scalar qT r

whose value indicates the presence (and/or strength) of the plume at that pixel. A good filter will emphasize
the signal while suppressing the background; that is,

qT r = qT z
︸︷︷︸

clutter

− εqTb
︸ ︷︷ ︸

signal

(20)

and the aim is to choose q so that qT z is small but qTb is large.

2.2. Adaptive matched filter

The adaptive matched filter can be derived by optimizing the signal-to-clutter ratio (SCR). The magnitude of
the signal is |εqTb|2; and the magnitude of the clutter is the variance of qT z, which can be expressed in terms
of the mean and covariance of the background clutter z. First, compute the average µo = 〈z〉, and covariance
matrix

Ko =
〈
(z− µo)(z− µo)

T
〉
. (21)

The variance of the matched filter image over the plume-free scene is

Var(qT z) =
〈
|qT (z− µo)|

2
〉
=
〈
qT (z− µo)(z− µo)

Tq
〉
= qT

〈
(z− µo)(z− µo)

T
〉

q

= qTKoq, (22)

and the signal-to-clutter is given by

SCR =
|εqTb|2

Var(qT z)
=

ε2qTbbTq

qTKoq
. (23)

To optimize the SCR, we will introduce a change of variable:

w = K1/2
o q. (24)

Then q = K
−1/2
o w, and

SCR =
ε2|wTK

−1/2
o b|2

wTw
. (25)

Since the denominator depends only on the magnitude of w, optimizing the numerator is achieved when w ∝

K
−1/2
o b. It follows that

q = K−1/2
o w ∝ K−1/2

o (K−1/2
o b) = K−1

o b (26)

is the matched filter that optimizes the SCR. In fact, since SCR is invariant to the magnitude of q, any scalar
multiple of K−1

o b is also optimal. Since it is “adaptive” to the covariance Ko of the background, this is called
the adaptive matched filter (AMF).2

If the background distribution is Gaussian, then the AMF can also be derived from a direct likelihood ratio
test; when the plume strength ε is not known a priori, a generalized likelihood ratio test gives essentially§ the
same filter.9, 10

Scharf 11 further shows that this linear matched filter is the optimal (“uniformly most powerful”) detector
when the background is Gaussian. For non-Gaussian distributions (such as elliptically-contoured distributions,12

also known as spherically-invariant random processes13–15), the optimal detector is typically nonlinear16, 17;
however, if restricted to linear detectors, even for non-Gaussian distributions, the best linear detector is often
very nearly equal to the adaptive matched filter.18

§In the original derivation by Kelly,9 there is a small O(1/N) correction; for hyperspectral data, it has little influence.
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3. EFFECT OF PLUME CONTAMINATION: THE LINEAR CASE

If the plume is present in the scene from which the background statistics (mean µ and covariance K) are
computed, then the estimates of those statistics will be biased, and this will affect the performance of the
matched filter. In particular, we will have

µ ≡ 〈r〉 = 〈z〉 − 〈εb〉 = µo − 〈ε〉b, (27)

and
K ≡

〈
(r− µ)(r− µ)T

〉
. (28)

But from Eq. (10) and Eq. (27),

r− µ = z− εb− (µo − 〈ε〉b) = (z− µo)− (ε− 〈ε〉)b, (29)

so

K =
〈
(z− µo − (ε− 〈ε〉)b) (z− µo − (ε− 〈ε〉)b)

T
〉

(30)

=
〈
(z− µo)(z− µo)

T
〉

−
〈
(ε− 〈ε〉)

[
b(z− µo)

T + (z− µo)b
T
]〉

+
〈
(ε− 〈ε〉)2

〉
bbT . (31)

We define a measure of how plume strength varies over the entire image:

ε2 ≡
〈
(ε− 〈ε〉)2

〉
. (32)

Note, for instance, that a plume with uniform strength over the entire scene has ε2 = 0; even if it is a strong
plume, it is virtually invisible. Following Ref. 5, we will also define an expression for the correlation, over the
scene, of plume strength and background spectrum.

ζ =

〈(
ε− 〈ε〉

ε

)

(z− µo)

〉

. (33)

From the definitions in Eqs. (21,32,33), we can write

K = Ko − εbζT − εζbT + ε2bbT . (34)

In general we expect ζ to be small since there is no a priori reason to expect the plume strength to be
correlated with the background spectrum. On the other hand, for typical plumes in typical scenes, we expect
some “residual” nonzero correlation. But one obtains qualitatively different behavior for the contaminated
covariance, depending on whether or not ζ is strictly zero.

3.1. Remark on the ζ = 0 case

When ζ = 0, we haveK = Ko+ε
2bbT , so the covariance is contaminated. But this contamination has absolutely

no effect on the matched filter, even for large ε. That is because the matched filter vectors qo = K−1
o b and

q = K−1b = (Ko + ε2bbT )−1b are parallel. This can be seen by noting that Koqo = Kq = b and that

Koq = (K − ε2bbT )q = Kq− ε2b(bTq) =
[
1− ε2(bTq)

]
b = θb. (35)

where θ = 1−ε2(bTq) is a scalar. Multiply both sides by K−1
o , and we get q = K−1

o (θb) = θ(K−1
o b) = θqo, and

so q and qo are parallel. It follows that the signal-to-clutter for the contaminated and uncontaminated matched
filters will be the same.¶

¶There is occasional confusion over the fact that the scalar θ in the above equations can alter the signal level by a
considerable amount, even when ε is small; but that scalar alters the clutter by the same amount, so there is no effect on
SCR or on ROC-curve performance.
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3.2. Nonzero ζ in the linear regime

For nonzero ζ, the effect of covariance contamination is to degrade the performance of the matched filter. Since
ζ is generally small, the degradation is fairly minor. In particular, we showed in Ref. 5 that

SCR =
ε2bK−1

o b

1 + ε2
[

(bK−1
o b)(ζTK−1

o ζ)− (bK−1
o ζ)2

] . (36)

That is, SCR increases monotonically with plume strength, eventually saturating at a value that is inversely
proportional to the magnitude of ζ. Note also, that the manifestation of nonzero ζ is in terms of the dimensionless

quantities ζTK−1
o ζ and (bK−1

o ζ)2/
[

(bK−1
o b)(ζTK−1

o ζ)
]

.

4. SIMULATED PLUME

The experiments that follow are based on simulated plumes imposed on real data. We start with 224-channel
hyperspectral data from the AVIRIS sensor19, 20 (see Fig. 2(a)). This is what we use for our background z

(equivalently: Lgndτ atm). To generate a hysperspectral dataset with a plume, we first generate a plume profile,
shown in in Fig. 2(b), which is maximally concentrated at a point toward the upper right of the image, and then
diffuses away from that concentration while at the same time being blown toward the bottom of the image.‖

Then, using the gas absorption spectrum21 for NO2 (shown in Fig. 1) for α, we make two different plume
datasets:

Beer’s Law: rλ = zλ exp(−εαλ) Beer’s Law vector: r = z− εΓz (37)

Linearized: rλ = zλ − εαλ 〈zλ〉 Linearized vector: r = z− εb (38)

with b = Γoµo. We do both nonlinear and linear plume simulations because we want to distinguish which
aspects of the matched filter performance are due to nonlinearity, and which (by contrast) are also observed in
the linear regime.

We also consider a matched-pair plume simulation (see Fig. 3(b)); here the scene is duplicated, and one
duplicate has the original data and the other has plume imposed at a uniform plume concentration. Although
this is less realistic looking than the plume shown in Fig. 2(b), it provides for a more controlled experiment. An
important feature of this construction is that the correlation defined in Eq. (33) is strictly zero: ζ = 0. Another
important (and arguably unrealistic) feature is that the area of the plume in this simulation is half the area of
the whole scene.

Table 1 shows various parameters that characterize the two plume simulations.

5. EXPERIMENTS

The first and most straightforward experiment is to observe and measure the signal-to-clutter ratio (SCR) for
various matched filters as a function of plume concentration. In particular, we want to compare the matched
filter qo = K−1

o b obtained from the uncontaminated covariance matrix Ko, against the matched filter q = K−1b

obtained from the contaminated K.

The way we estimate signal-to-clutter in these experiments is with the mean value of the matched-filter signal
over the on-plume pixel, that value squared, divided by the variance of the off-plume pixels.

SCR =

〈
qT (r− µo)

〉2

on-plume

Var(qT (r− µo))off-plume
(39)

For most of these experiments, we plot this estimate of SCR on the y-axis. On the x-axis, we plot the plume
strength ε associated with the strongest plume pixel in the plume. Each point on the curve corresponds to a

‖When we refer to the overall plume strength as a single value, ε, we are referring to the strongest part of the plume
in the image.

LA-UR-06-1996 Submitted to: Proc. SPIE 6233 (2006)



(a) (b) (c)

Figure 2. (a) 128×128 chip of an AVIRIS scene – this is a broadband image obtained by summing all 224 of the spectral
channels. (b) Profile of the plume that is artificially imposed on the hyperspectral data in panel (a). (c) The plume mask
distinguishes on-plume (white) from off-plume (black) pixels. The gray area specifies pixels which are not categorized as
either on-plume or off-plume; these are pixels on the outer fringe of the plume, and corresponds to pixels where the plume
column density is less then ten percent of the maximum column density in the plume.

(a) ζ 6= 0 (b) ζ = 0

Figure 3. (a) Adaptive matched filter image of the scene shows the plume as darker pixels. The plume strength here is
35 ppm-m at maximum; its average over the on-plume pixels is approximately 10 ppm-m. (b) Adaptive matched filter
image of a matched-pair plume; the artificial plume has a uniform concentration 10 ppm-m, and extends over the right
half of the image. This right half is a pixel-by-pixel copy of the left half of the image, but with the effect of the plume
imposed.
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Table 1. Properties of the two simulated plumes. Measures of plume strength are relative to the strength ε of the plume
at its strongest point. Here, 〈ε〉plume is the average strength of the plume over the on-plume pixels, while 〈ε〉image is the
average strength over the whole image. The plume variance ε is defined in Eq. (32). The plume correlation ζ is defined
in Eq. (33), but the values shown in the table are expressions that include scaling by the covariance matrix to produce
dimensionless values.

Measures of plume strengh Measures of plume correlation

ε 〈ε〉plume 〈ε〉image ε ζTK−1ζ
ζTK−1b

√

(ζTK−1ζ)(bTK−1b)

Shaped Plume, Fig. 3(a) 1 0.2857 0.0384 0.1052 0.1198 0.0488
Matched-pair, Fig. 3(b) 1 1.0000 0.5000 0.5000 0.0000 ——

(a) ζ 6= 0 (b) ζ = 0

10
0

10
1

10
2

10
3

10
410

−1

10
0

10
1

10
2

10
3

10
4

10
5

Plume concentration (ppm−m)

S
C

R

10
0

10
1

10
2

10
3

10
410

−1

10
0

10
1

10
2

10
3

10
4

10
5

Plume concentration (ppm−m)

S
C

R

Figure 4. SCR as a function of plume concentration, for the plumes shown in Fig. 3. Dashed line is for the linear plume
simulation; solid line is for Beer’s Law nonlinearity. Circles (o) indicate uncontaminated covariance matrix; pluses (+)
are for contaminated covariance matrix. In both cases the same signature b = 〈z〉α was used, with 〈z〉 in both cases
uncontaminated. Note that even for the uncontaminated nonlinear plume (solid with circles), the SCR is nonmonotonic –
a stronger plume is not necessarily more visible. (b) In the matched-pair case, with ζ = 0, we find that the linear plume
is utterly unaffected by contamination.

different experiment, in which a plume of a given strength is simulated over the scene, the matched-filter is
applied, and the SCR is estimated.

In Fig. 4 we compare the performance of these two matched filters on both linear and nonlinear Beer’s Law
plumes. Not surprisingly, the linear and nonlinear behavior is nearly identical for low plume strengths, but
as the plume gets stronger, we find that the linear plumes are more readily detected than the more realistic
nonlinear plumes. Also (and again, not surprisingly), the uncontaminated matched filter generally outperforms
the contaminated filter. The one exception is the linear matched-pair plume; here, we have ζ = 0 and, as noted
in Section 3.1, the contaminated and uncontaminated matched filters are parallel and have identical performance.
For the more realistically shaped (ζ 6= 0) but still linearized plume, we see that the SCR does saturate with
increasing plume strength, but (unlike the nonlinear plumes) it never decreases with increasing plume strength.
A notable feature of the nonlinear plumes is that as the plume strength goes beyond a certain level, the SCR
actually starts decreasing with increasing plume strength. The plume is so strong that it starts to become
invisible again!

Fig. 5 illustrates the effect of a slightly more realistic contamination model. Here the contamination of the
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(a) ζ 6= 0 (b) ζ = 0
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Figure 5. SCR as a function of plume concentration, for the plume shown in Fig. 2. Solid plus (+) corresponds to
the curves in Fig. 4, in which contamination is applied only the the covariance K. The solid cross (×) corresponds to
contamination on both the covariance K and the signature b = 〈z〉α.

plume affects not only the estimate of covariance, but it affects the estimate of the plume signature as well. These
plots show that the effect of the two kinds of contamination is generally quite similar. The effect is much larger
in the matched-pair plume, but in that case, the plume is such a large part of the scene, that the contamination
really is substantial.

In Fig. 6, we show what the matched-filter images look like for both the uncontaminated and the contaminated
matched filters. The uncontaminated matched filter has high SCR and produces an image in which the plume
is strongly detected. However, even for the uncontaminated filter, the effect of nonlinearity is evident in that
the central (and strongest part) of the plume is actually less dark than the plume toward the outer edges. This
subtle effect is hugely magnified for the contaminated filter image in Fig. 6(b); here the outer wispy edges of the
plume are well-detected, but the central part is not.

Using γ = [1 − exp(−εα)]/ε in place of α, the effect of nonlinearity can be ameliorated. The effect of this
nonlinearity, for the completely uncontaminated case, is seen in Fig. 7. Here, SCR as a function of plume strength
is plotted for the standard matched filter qo = K−1

o bo, where bo = 〈z〉α, and for a modified matched filter, which
still uses the uncontaminated covariance, but for which the signature is adapted to the nonlinearity: q = K−1

o b,
where b = 〈z〉γ. The modified plume signature gives better performance, but the effect is small. However, when
using the contaminated covariance, also seen in Fig. 7, the benefits of using the modified signature are far more
substantial, and they are evident at much weaker plume strengths.

Fig. 7 illustrates that better detection can be achieved if the signature is adapted to the expected strength
of the plume. Here, using γ, as defined in Eq. (6) in place of α, one can alleviate some of the effects of Beer’s
Law nonlinearity. Making this change requires knowing (or estimating) the plume strength beforehand.
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(a) (b)

Figure 6. Effect of covariance contamination in the case of extreme plume concentration (104 ppm-m). Shown are
matched-filter images, for (a) uncontaminated covariance matrix and signature, and (b) contaminated covariance matrix
and signature. In both plumes, the strongest parts of the plume show supressed detection, compared to weaker parts of
the plume – this is a subtle effect for the uncontaminated matched filter in (a), and a dramatic effect for the contaminated
matched filter in (b); in the latter case, it is only the wispy envelope of the plume that is strongly detected.

(a) ζ 6= 0 (b) ζ = 0
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Figure 7. SCR as a function of plume concentration, comparing the use of α (solid lines) with γ = [1 − exp(−εα)]/ε
(dash-dotted lines), using the average plume strength for ε. The top curves are based on the matched filter from the
uncontaminated covariance; for these curves, we see that γ (squares (¤)) gives better performance than α (circles (o)),
but the difference is small, even for very strong plumes. The bottom curves are based on the contaminated covariance;
here, again, γ (crosses (×)) outperforms α (pluses (+)); but in this case, the difference is far more substantial, and is
evident at much lower plume strengths.
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Figure 8. Same as Fig. 7(c,d), but with contamination in both the covariance K and in the estimated mean spectrum 〈z〉.
SCR is plotted as a function of plume concentration, comparing the use of α (solid pluses (+)) with γ = [1− exp(−εα)]/ε
(dash-dotted crosses (×)). (a) For the smaller plume, the nonlinear correction γ again provided a substantial advantage.
(b) For the matched-pair simulation, where the contamination is much greater, we see an anomalous result; the nonlinear
correction γ does not improve the detection.

6. CONCLUSIONS

Although the magnitude of the matched filter can exhibit extreme sensitivity due to even weak contamination
of the covariance matrix with the signal of interest, the actual effect on detectability, at least for weak plumes, is
usually small. In particular, the linear analysis5 indicates that the effect depends only on the residual correlation
ζ between the plume strength and the background spectrum. The effect of a nonzero ζ is to supress the signal-to-
clutter ratio; however, as the signal gets stronger (and as a consequence, the contamination also gets stronger),
the resultant SCR still increases. If ζ strictly vanishes, then the contamination has no effect whatever.

Here, we have explored the case of strong plumes, where the effect of the plume is not a simple linear
addition but, because of Beer’s Law, has a nonlinear effect on the background. In this regime, the effect of the
contamination is compounded with an effect due to signal mismatch, with the result that nonmonotonic variation
of SCR with signal strength can be observed. That is, as the signal becomes stronger, it becomes less visible.

This reversal in visibility as a function of plume strength can be understood in terms of deviations of γ from
α as the plume strength increases. The effect is fairly subtle for the uncontaminated matched filter (shown
qualitatively in Fig. 6(a), and quantitatively in the upper curves of Fig. 7). But the effect appears greatly
magnified for the contaminated matched filter. Here, the nonmonotonicity of SCR with plume strength is both
a larger effect, and one that is evident at weaker plume strengths, than is seen for the uncontaminated matched
filter. Fig. 6(b) shows an extemely concentrated plume (104 ppm-m) that is nearly invisible; and the lower curves
of Fig. 7 show a marked nonmonotonicity.

In high-dimensional spaces, the adaptive matched filter is a very sensitive instrument, capable of detecting
trace quantities of gaseous chemicals in large scenes. That sensitivity, however, can be a weakness, when it is
applied to very strong plumes. In one case from the literature,22 the matched filter failed to detect a plume
that was so strong it dominated the third principal component. We speculate that this was cased by the
contamination of the covariance by the existence of the plume in the scene, combined with the nonlinearity of
Beer’s Law absorption.
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