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ABSTRACT

Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-
class problem of detecting a single feature against a background of non-feature. In addition to the two-class case,
however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger
number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the
simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous
work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image
processing pipelines optimized for specific image feature extraction tasks.

We describe the improvements made to the GENIE software to allow multiple-feature classification and describe
the application of this system to the automatic simultaneous classification of multiple features from MTI image data.
We show the application of the multiple-feature classification technique to the problem of classifying lava flows on
Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised
multiple-feature classification techniques.
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1. INTRODUCTION

Much interest has been shown in recent years in the development of feature extraction tools which can assist in
the exploitation of the ever-increasing quantities of multi-spectral data that are becoming available. Creation and
development of task-specific feature-detection algorithms is important, yet can be extremely expensive, often requiring
a significant investment of time and effort by highly skilled personnel. At Los Alamos National Laboratory we have
developed an automated system for the generation of feature extraction/classification tools, which we refer to as
GENIE.

Our particular interest is the pixel-by-pixel classification of multi-spectral remotely-sensed images, both to locate
and identify and also to delineate particular features of interest. The large number of features in which we are
interested, together with the variety of instruments which are available, make the hand-coding of suitable feature-
detection algorithms impractical. We therefore employ a supervised learning approach that can generate image
processing pipelines capable of distinguishing features of interest. Until recently our approach has been to only
consider the two-class problem (distinguishing a single class against a background of “other” classes), however, many
applications require the segmentation of an image into a larger number of distinct features or land-cover types. To this
end we have extended GENIE’s capability to allow the simultaneous classification of multiple features/classes from
multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-
algorithm-based system capable of searching for image processing pipelines optimized for specific image feature
extraction tasks.

To demonstrate and evaluate the system we gave it the task of classifying lava flows on Mauna Loa Volcano,
Hawaii, from multispectral data obtained from the Multispectral Thermal Imager (MTI) Satellite. In order to have
some bench-mark against which to compare GENIE’s performance, we gave the same classification tasks to some
standard, commonly-used supervised classification techniques.
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2. BRIEF OVERVIEW OF THE “GENIE” SYSTEM

The details of GENIE’s algorithmic structure have been described previously in the literature,1–7 so, in the interests
of brevity, we provide only a brief overview of our system, and describe the modifications from the previous versions
that have enabled the multiple-feature classification capability.

GENIE employs a classic evolutionary paradigm: a population is maintained of candidate solutions (chromo-
somes), each composed of interchangeable parts (genes), and each assessed and assigned a scalar fitness value,
based on how well it performs the desired task. After fitness determination, the evolutionary operators of selection,
crossover and mutation are applied to the population and the entire process of fitness evaluation, selection, crossover
and mutation is iterated until some stopping condition is satisfied.

2.1. Environment

The environment for each individual in the population consists of data planes, each of these planes corresponding to
a separate spectral channel in the original multi-spectral image, together with a weight plane and a feature plane.
The weight plane identifies those pixels to be used in training – these are all the pixels for which the analyst has
provided a class label. The actual delineation of separate feature/class pixels is given by the feature plane.

2.2. Chromosomes and Genes

Each individual chromosome in the population consists of a fixed-length string of genes . Each gene in GENIE
corresponds to a primitive image processing operation. Therefore the entire chromosome describes an algorithm
consisting of a sequence of primitive image processing operations.

Each gene used in GENIE takes one or more distinct image planes as input, and produces one or more image
planes as output. Input can be taken from any data planes in the training data image cube. Output is written to
any of a small number of scratch planes — temporary workspaces where an image plane can be stored. Genes can
also take input from scratch planes, but only if that scratch plane has been written to by another gene earlier in the
chromosome sequence.

Our “gene pool” is composed of a set of primitive image processing operators which we consider useful. These
include spectral, spatial, logical and thresholding operators.

2.3. Backends

Final classification requires that the algorithm produce a single (discrete) scalar output plane, which identifies, for
every pixel, the class to which it has been assigned. We have found it advantageous to adopt a hybrid approach
which applies a conventional supervised classifier to a (sub)set of scratch and data planes to produce the final output
plane.

To do this, we first select a subset of the scratch and data planes to be answer planes. The conventional supervised
classifier “backend” uses the answer planes as input and produces a final output classification plane; in principle,
we can use any supervised classification technique as the backend, but for the experiments reported here, we used
either Maximum Likelihood, Minimum Euclidean Distance or Minimum Spectral Angle.8–11 By implementing the
conventional multiclass classifiers as backends in GENIE, we were able to extend GENIE to directly perform multiclass
classification. These new backends also extend the options for using GENIE to do binary classification. We also
included some experiments using two-class discrimination, and in this case we used the Fisher linear discriminant12

as the backend.

2.4. Fitness Evaluation

The fitness of a candidate solution is given by the degree of agreement between the final classification output plane
and the training data. It is based on a simple ratio of the total number of incorrectly classified training pixels over
all classes to the total number of training pixels over all classes. If we denote the total error (total number of training
pixels classified incorrectly over all classes) as E, and the total number of training pixels over all classes as N , then
the fitness F of a candidate solution is given by

F = (1.0− (E/N))× 1000 (1)



Figure 1. MTI Spectral Bands

Thus, a fitness of 1000 indicates a perfect classification result, i.e. no training pixels in any class have been
classified incorrectly, and a fitness of 0 indicates an entirely incorrect classification, i.e. no training pixels in any class
have been classified correctly.

3. THE MTI SATELLITE AND ITS DATA

The Multispectral Thermal Imager (MTI)13 is a space-based research and development project sponsored by the U.S.
Department of Energy (DOE). MTI’s primary objective is to demonstrate technologies such as advanced multispectral
and thermal imaging, image processing, and other associated technologies.

The MTI system consists of a single satellite that was launched into a polar, 360-mile-high orbit in February 2000
and carries an advanced multispectral and thermal imaging sensor. During its 3-year mission, the MTI satellite will
periodically record images in 15 spectral bands, ranging from visible to long-wave infrared (three in the visible, five in
the near infra-red, two in the short-wave infra-red, and five in the thermal infra-red). MTI’s spectral bands are care-
fully selected to collect data needed to derive a broad range of information, including surface temperatures, materials,
water quality, and vegetation health. To enhance accuracy, additional bands provide simultaneous information on
atmospheric water vapor, aerosol content, and sub-visual cloud presence. Though the MTI system nominally images
fifteen spectral bands (identified by the letters A – 0), the data is actually reported in terms of sixteen effective
bands, because one spectral band, H, is duplicated to improve its signal to noise ratio. Fig. 1 provides information
regarding the MTI spectral bands.

For further details about the MTI satellite, its mission and its data products, the interested reader is referred to
Refs [13–15].

4. APPLICATION TO LAVA-FLOW CLASSIFICATION ON MAUNA LOA

4.1. Mauna Loa

Mauna Loa is a giant, active basaltic shield volcano which rises over 4 km above sea level, another 5 km above
the north-central Pacific seafloor, and another 8 km above the isostatically depressed seafloor of the Pacific Plate,
for a total volcanic height of 17 km. It is the most voluminous volcano on Earth, with a subareal surface of over
5,000 km2 (half the Island of Hawaii). Mauna Loa is one of the Earth’s most active volcanoes, having erupted
more than 30 times since its first documented historical eruption in 1843. Mauna Loa has been selected as one



of 15 “Decade Volcanoes” by the International Association of Volcanology and Chemistry of the Earth’s Interior
(IAVCEI). This status provides opportunities for increased multidiscplinary and multinational efforts to understand
volcanic processes.16,17

We chose to study the summit region of the Mauna Loa caldera for several reasons. Firstly, most of its surface is
covered by broad lava flows with distinct edges and ranging over a thousand years of age. Here, mixed pixel effects
during classification are minimized. However, there is spectral variation within flows due to several factors which can
confound spectral classification including texture types (aa and pahoehoe), the development and character of glassy
crusts, iron oxidation, silica veneers, and surface spalling. Secondly, a modern geological map has been published
by the USGS18,19 which can serve as validation data for the analysis. The map does not distinguish between many
features apparent in the images but are not considered to be geologically important. The summit of Mauna Loa is
about 4,000 m above sea level and there is a considerable range of elevations within the image (roughly 1500 m).
Since the flows run downhill, many of them cover a large range of elevation and subsequent variation of atmospheric
path length. Furthermore, basalt from the same flows appear at different slopes (mostly azimuthally) resulting in
different illumination and heating of the same material.

MTI imagery, with spectral information ranging from visible to thermal IR wavelengths, and its high spatial
resolution, is a natural choice for detailed mapping of Mauna Loa’s lava flows and other volcanic features. Figure
2 (a) shows a “true color” representation of an MTI image taken of Mauna Loa. This image data was collected
on 9th August 2001. For these experiments we used multispectral MTI data that covered the visible and infra-red
regions. The data used had 16 bands, ranging from approximately 0.5 µm to 10 µm. The bands were coregistered
and georeferenced20 and had a nominal ground sample distance of 20 m.

The training data were provided by an analyst, who used ground truth available in the form of a USGS geological
map of the island of Hawaii, as well as his own judgement, and the expert knowledge of others. Eleven (11) training
classes were provided, based largely on the information provided in the USGS ground truth, but including input
from other knowledgeable sources. Table 1 provides a list of the training classes, together with the appropriate color
designation used in the training and results images shown in Fig. 2 (b) - (e) and Fig. 3 (b) - (e). It should be
noted that for classes k3 and k5, as depicted on the USGS geological map, there were significant textural differences
and subtle spectral differences within the class as defined in the USGS classification. We therefore chose to sub-
divide these classes into two sub-classes each (i.e. k3(a), k3(b), k5(a) and k5(b)). Table 2 provides some additional
information regarding the lava flow classes used in these experiments.19 Note, with reference to the age information
in Table 2, 1 ka = 1000 radiocarbon years before “present” (A.D. 1950), e.g. 1.5 ka is approximately A.D. 450.
Pahoehoe and aa are physically distinct lava textural types derived from solidification under different rheological
and flowage conditions. Individual Hawaiian lava flows generally include areas of both pahoehoe and aa texture,
as well as textures gradational between the two types. Pahoehoe and aa have identical chemical and mineralogical
compositions within individual lava flows and differ in their genesis only by their physical conditions of emplacement.
Pahoehoe is formed by direct freezing in place from flowing liquid; aa reaches its final resting place as a complex
aggregate of individual blocks which have formed by the fracturing of solidifying lava during flowage. Lava may
transform from pahoehoe to aa during flow; the opposite has not been observed. Many Hawaiian basaltic lavas are
initially erupted as pahoehoe, but commonly transform to aa downstream from eruptive events.21 Even though
pahoehoe and aa have essentially identical chemical and mineralogical compositions, they have different spectra due
to multiple scattering and absorption/emission: aa is darker in the reflectance bands and flatter in the thermal.

5. COMPARISON WITH OTHER CLASSIFICATION TECHNIQUES

For our comparisons we essentially conducted three separate classification experiments, using the same data, but
three different supervised classification techniques: (1) GENIE with its multiple-class classification capability for three
different backends (maximum likelihood, minimum Euclidean distance and minimum spectral angle), (2) Conventional
supervised multiple-class classification, using ENVI’s maximum likelihood, minimum distance and spectral angle
mapper and (3) Multiple GENIE two-class classifications, combined to produce a multiple-class classification. We
trained the classifiers on one MTI image and tested the resulting classifiers on two different MTI images. We then
made objective comparisons of the classification results on in-sample (training) and out-of-sample (test) data. The
criterion for making the objective comparisons was the fitness achieved by each classification technique, as described
above in Eq. 1.



Table 1. Class description and color mapping for training data and results images shown in Fig. 2 (b) - (e) and
Fig. 3 (b) - (e).

Class Description Color

Clouds Red
Cloud Shadows Green

Lava Flow, Type k1y Blue
Lava Flow, Type k2 Yellow
Lava Flow, Type k3 (a) Cyan
Lava Flow, Type k3 (b) Magenta
Lava Flow, Type k4 Maroon
Lava Flow, Type k5 (a) Sea Green
Lava Flow, Type k5 (b) Purple

Ejecta Orange
Sulphur/Sulphur Compounds Sienna

Table 2. Age and weathering characteristics of Holocene lava flows of the Kau Basalt, southwest rift zone of Mauna
Loa Vocano, Hawaii

Dominant color of lava surface Weathering character of
Unit Age (ka) Pahoehoe Aa pahoehoe surface

k5 0.0–0.2 Black Dark Brown Unweathered shiny glass surface
k4 0.0–0.2 Black to dark gray Light brown Original glassy surfaces well preserved;

only slight weathering
k3 0.75–1.5 Gray to tan Yellow-tan Some original surfaces;

thin weathering rind
k2 1.5–3.0 Light brown Tan-orange Original surfaces mostly destroyed
k1 3.0–10.0 Brown, orange brown Red-orange Original surfaces destroyed;

and red brown deep weathering rind

The training image was MTI image number 0105721 and, as mentioned previously, was obtained on 9th August
2001. The test (out-of-training-sample) images were MTI image numbers 0031823 and 0107309 and were obtained
on 9th October 2000 and 22nd October 2001, respectively.

5.1. Conventional Supervised Classification

Many implementations of standard supervised classifiers exist. One of the most widely used remote-sensing software
packages is the ENvironment for Visualizing Imagery (ENVI),22 which is built on IDL and is distributed by Re-
search Systems, Inc.23 Supervised classification techniques provided as part of the ENVI package were used in the
comparison experiments with GENIE.

We used the GENIE and ENVI classifiers to clasify every pixel in the input data into one of the training classes,
with no “unclassified” pixels being allowed. For applying the ENVI-supplied classifiers to out-of-training-sample
data, the training data (reference spectra) used in the training was provided.

The following provides a brief description of the ENVI-supplied supervised classification techniques24 used in the
comparison experiments.

5.1.1. (MIN) Minimum Distance

The minimum distance supervised classification technique8,24 computes the mean pixel vector of the “feature” class,
and then assigns new pixels to the “feature” class based on the Euclidean distance from that pixel to the mean. For
the multi-class case, the pixel is assigned to the feature whose mean value is the minimum distance from the pixel.



5.1.2. (MAX) Maximum Likelihood

Maximum likelihood classification is the most common supervised classification method used with remote sensing
data,8 and among the classifiers considered here, the one with the most free parameters. Here each class is modelled
with separate multivariate gaussian distributions. New pixels are assigned to the class that had the highest probability
of generating that pixel.

5.1.3. (SAM) Spectral Angle Mapper

The spectral angle mapper (SAM) technique11 is motivated by the observation that changes in illumination caused
by shadows, slope variation, sun position, light cloud, etc., approximately only alter the magnitude of a pixel’s vector,
rather than the direction. Therefore we can eliminate these effects by normalizing all pixel vectors to unit magnitude
and then looking at the angle between a given pixel and the mean vector for the “feature” class. Pixels are assigned
to the “feature” class if this angle is less than a user-defined threshold. For our experiments this threshold was set
large enough that every pixel had to be assigned to a class, with no pixels left unclassified.

5.2. GENIE Classification

5.2.1. Direct Multiple-Class Classification

GENIE required modification from its two-class incarnation to enable multiclass classification. The fundamental
modification was to add a conventional classifier as a backend. As mentioned earlier, GENIE searches for suitable
algorithms for particular classification tasks. Therefore, GENIE’s output is not a classification result, but a classi-
fication algorithm. Therefore, with respect to performing classification of data, once GENIE has been trained on
a problem, it is then necessary to apply the algorithm found to the data (including the backend parameters found
during training).

5.2.2. Combining Multiple Two-Class Classifications

As well as the direct approach for achieving multiclass classification from GENIE, we also investigated a scheme
in which multiple binary classifications were combined to produce a single multiclass classification. For a K-class
problem, we perform K binary classification tasks, where the k’th task treats the k’th feature as “true” and the
other K − 1 features as “false”. Each of these K classification tasks produces a grayscale result, with a threshold
that provides the best classfication for the two-class problem. We normalize this grayscale by first subtracting
the threshold from all the grayscale values (so that the effective threshold is zero) and then separately histogram-
equalizing the positive and negative values. Finally, we combine these K grayscale images into a single classification
by taking, for each pixel, the value of k that has the largest grayscale value.

6. RESULTS

Table 3 shows the scores for all the classifiers on both the (in-sample) training and (out-of-sample) test data. This
table also shows the average score for each classifier for both (out-of-sample) test data sets.

Fig. 2 (a) shows a true color (Red = band C: 0.62 – 0.68 µm, Green = band B: 0.52 – 0.60 µm, Blue = band
A: 0.45 – 0.52 µm) representation of the training data, MTI Image number 0105721. Fig. 2 (b) shows the training
classes provided for the training data overlaid on top of the true color image shown in Fig. 2 (a). Figure 2 (c) shows
the result of applying the ENVI maximum likelihood classifier to the training data. Figure 2 (d) shows the result of
applying the GENIE multiple-class algorithm using the maximum likelihood backend to the training data. Figure
2 (e) shows the result of applying the combined GENIE 2-class classifiers to the training data.

Fig. 3 shows the classification results for the best ENVI and GENIE classifiers on some out-of-sample (test)
data. Fig. 3 (a) shows a true color representation of the test data, MTI Image number 0031821, (b) shows the
training classes provided to enable a fitness score for the classifiers to be determined, the overlaid on top of the true
color image, (c) shows the result of applying the ENVI spectral angle mapper classifier to the test data, (d) shows
the result of applying the GENIE multiple-class algorithm using the minimum distance backend to the test data,
and (e) shows the result of applying the combined GENIE 2-class classifiers to the test data.

Tables 4 – 7 show confusion matrices for four different classifiers. The columns correspond to true classes and
the rows to the classes that were estimated by the given classifier. A good classifier has the largest elements on the
diagonal. Large off-diagonal elements correspond to important misclassifications. For instance, Table 7 shows that
the ENVI (SAM) classifier failed to identify any of the actual k4 material, mostly labelling it as k5(b).



Table 3. Scores obtained by classification techniques on the (in-sample) training and (out-of-sample) test data

GENIE: Multiple-Class ENVI Multiple-Class GENIE
Max. Min. S.A.M. Max. Min. S.A.M. Combined 2-Class

(In-sample) training data
MTI Image # 0105721 979 905 930 942 723 784 946

(Out-of-sample) test data
MTI Image # 0031823 152 659 378 125 263 389 390
MTI Image # 0107309 45 443 381 31 74 348 465
Average (test data) 99 551 380 78 168 368 428

Table 4. Confusion matrix for result of multiple-classGENIE with maximum likelihood backend applied to training
data

GENIE (Max) Training Class
Classes Clouds Shadows k1y k2 k3(a) k3(b) k4 k5(a) k5(b) Ejecta Sulphur Total

Clouds 3411 15 3 16 272 6 22 0 1 0 1 3747
Shadows 12 668 0 2 44 1 11 53 56 1 0 848
k1y 0 0 494 0 0 0 0 0 0 0 0 494
k2 0 0 0 1908 49 7 13 60 0 0 0 2037
k3(a) 7 0 0 11 25148 68 0 0 0 0 0 25324
k3(b) 1 0 0 19 154 6562 81 2 0 0 0 6819
k4 1 1 0 19 64 121 3572 75 90 0 0 3943
k5(a) 0 0 0 13 0 0 12 4912 44 0 0 4981
k5(b) 0 0 0 0 0 0 13 0 20869 0 0 20882
Ejecta 0 0 0 0 0 0 0 0 0 585 0 585
Sulphur 4 0 0 0 11 0 0 0 0 0 116 131
Total 3436 684 497 1988 25742 6765 3724 5102 21060 586 117 69701

7. DISCUSSION

The first thing one can say regarding the results of these comparison experiments is that the best GENIE algorithm
was able to outperform the best standard ENVI algorithm on the tasks given, for both in sample (training) and
out-of-sample (test) data. The huge drop in performance from training data to out-of-training-sample data for all
the ENVI classifiers seems quite remarkable. However, it is not really surprising given that there are 11 classes and

Table 5. Confusion matrix for result of ENVI maximum likelihood classification of training data

ENVI (Max) Training Class
Classes Clouds Shadows k1y k2 k3(a) k3(b) k4 k5(a) k5(b) Ejecta Sulphur Total

Clouds 3413 11 4 16 194 17 92 14 13 0 0 3774
Shadows 6 631 1 6 31 4 54 79 115 0 0 927
k1y 0 0 492 0 19 0 0 0 0 0 0 511
k2 0 1 0 1900 1322 153 60 132 3 0 0 3571
k3(a) 3 1 0 8 23884 133 51 2 3 0 0 24085
k3(b) 0 2 0 49 237 6370 580 0 0 0 0 7238
k4 0 31 0 3 34 88 2704 64 64 0 0 2988
k5(a) 0 1 0 5 0 0 183 4798 72 0 0 5059
k5(b) 0 0 0 0 0 0 0 11 20768 0 0 20779
Ejecta 0 0 0 0 0 0 0 0 0 586 0 586
Sulphur 14 6 0 1 21 0 0 2 22 0 117 183
Total 3436 684 497 1988 25742 6765 3724 5102 21060 586 117 69701



Table 6. Confusion matrix for result of multiple-class GENIE with minimum distance backend applied to out-of-
training-sample data (MTI image number 0031823)

GENIE (Min) Training Class
Classes Clouds Shadows k1y k2 k3(a) k3(b) k4 k5(a) k5(b) Ejecta Sulphur Total

Clouds 4164 44 0 0 0 0 0 0 0 0 0 4208
Shadows 4 816 0 6 0 0 15 0 0 0 0 841
k1y 0 3 13 0 0 0 0 0 0 0 0 16
k2 0 46 0 146 5 0 1 0 3 0 0 201
k3(a) 0 0 157 0 9283 0 1 0 8 7 0 9456
k3(b) 0 1 86 5 3638 108 5 0 0 0 0 3843
k4 0 0 7 342 4279 2709 146 21 12 3 0 7519
k5(a) 0 31 0 363 17 65 425 952 133 1 0 1987
k5(b) 24 193 0 50 17 0 96 303 10129 3 0 10815
Ejecta 0 0 0 0 4 0 0 0 96 414 0 514
Sulphur 305 0 0 0 0 0 0 0 0 0 7 312
Total 4497 1134 263 912 17243 2882 689 1276 10381 428 7 39712

Table 7. Confusion matrix for ENVI spectral angle mapper applied to out-of-training-sample data (MTI image
number 0031823)

ENVI (SAM) Training Class
Classes Clouds Shadows k1y k2 k3(a) k3(b) k4 k5(a) k5(b) Ejecta Sulphur Total

Clouds 4163 83 0 0 0 0 15 0 0 0 2 4263
Shadows 37 44 0 246 7219 1994 40 0 4 87 0 9671
k1y 0 0 61 0 0 0 0 0 0 0 2 63
k2 0 0 28 9 5215 8 0 0 0 0 0 5260
k3(a) 0 1 38 0 442 1 0 0 0 0 0 482
k3(b) 0 0 134 0 107 0 0 0 0 0 0 241
k4 14 2 1 14 2375 37 0 0 0 0 0 2443
k5(a) 2 1 1 64 72 48 17 0 0 0 0 205
k5(b) 8 987 0 511 45 756 608 1275 10376 3 0 14569
Ejecta 0 16 0 68 1768 38 9 1 1 338 0 2239
Sulphur 273 0 0 0 0 0 0 0 0 0 3 276
Total 4497 1134 263 912 17243 2882 689 1276 10381 428 7 39712

hence a lot of adjustable paramters, and therefore ample opportunity for overfitting. With the maximum likelihood
classifiers, having a larger number of free parameters than the other classifiers, this problem with overfitting becomes
even more apparent and is clearly evident in the results. The classifiers employing the maximum likelihood method
(even for the GENIE classifiers) were the best performing on the training data but were by far the worst on the
out-of-training-sample data. Of all the ENVI classifiers, the spectral angle mapper had the least drop in performance,
but that is not surprising: it should be more robust to overall illumination effects and also has the least number of
free paramters.

8. CONCLUSIONS

We have described how we have further enabled GENIE with the capability to generate classification algorithms
able to simultaneously classify an image into multiple classes. We have also compared the performance of this new
capability with that of standard, commonly-used techniques for doing this multiple-class classification. We have
demonstrated that GENIE thus enabled still outperforms these standard classifiers for both training and out-of-
training sample data. We have also described and demonstrated an alternative method for using GENIE to obtain
multiple-class classifications. This method combines multiple two-class GENIE classifications. This was also able
to outperform the standard classifiers both for in-sample and out-of-sample data, but not to the same extent as the
more direct multiple-class GENIE technique.
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(a) (b)

(c) (d)

Figure 2. Classification results on (in-sample)
training data: (a) MTI “true color” image of Mauna
Loa volcano. Image taken 9th August 2001, (b)
Training data provided to classification algorithms
(11 classes), (c) ENVI maximum likelihood classifi-
cation result, (d) GENIE direct multiple-class clas-
sification result (maximum likelihood backend), (e)
Combined multiple 2-Class GENIE classification re-
sult

(e)



(a) (b)

(c) (d)

Figure 3. Classification results on (out-of-sample)
test data: (a) MTI “true color” image of Mauna Loa
volcano (MTI Image # 00131823). Image taken 9th
October 2000, (b) Analyst-supplied training data,
with which to determine an out-of-sample fitness
score for the classifiers (c) ENVI spectral angle map-
per classification result (d) GENIE direct multiple-
class classification result (minimum distance back-
end), (e) Combined multiple 2-Class GENIE classi-
fication result

(e)


