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ABSTRACT

A robust version of Principal Component Analysis (PCA) can
be constructed via a decomposition of a data matrix into low
rank and sparse components, the former representing a low-
dimensional linear model of the data, and the latter repre-
senting sparse deviations from the low-dimensional subspace.
This decomposition has been shown to be highly effective, but
the underlying model is not appropriate when the data are not
modeled well by a single low-dimensional subspace. We con-
struct a new decomposition corresponding to a more general
underlying model consisting of a union of low-dimensional
subspaces, and demonstrate the performance on a video back-
ground removal problem.

Index Terms— Robust Principal Component Analysis,
Low Rank, Group Sparse, Compressive Sensing

1. INTRODUCTION

Matrix completion, which attempts to reconstruct a matrix
with only a small fraction of its entries known [1], is a recent
branch of the field of compressive sensing. (The assumption
that the matrix has a low rank plays a role analogous to that of
sparsity in compressive sensing.) An extension of this prob-
lem seeks to decompose a matrix D of high-dimensional data
into a sum of two components, one having low rank, the other
being sparse. This can be expressed as the optimization

min
L,S

rank(L) + λ‖S‖0, subject to L + S = D, (1)

where ‖ · ‖0 counts the number of nonzero entries, and λ > 0
is a tuning parameter. We can regard L as a low-dimensional
description of the data, while S consists of discrepancies from
that model, which can be interesting in their own right. Appli-
cations considered thus far include automated background re-
moval in video [2], text analysis [3], and image alignment [4].

We can compare (1) to Principal Component Analysis
(PCA), which would compute the matrix L of desired rank
that minimizes ‖D − L‖2, the entry-wise Euclidean norm
of the residual. Because the second term of (1) penalizes
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only the number of discrepancies and not their size, the low-
dimensional model L will not be perturbed by outliers among
the entries of D, and hence will provide a more robust de-
scription of most of the dataset. This connection between
sparse optimization and “robust PCA” was made by Candès
et al. [5], who also provided a tractable, convex approxima-
tion, which they called Principal Component Pursuit, of the
NP-hard problem (1)

min
L,S

‖σ(L)‖1 + N−1/2‖S‖1, subject to L + S = D, (2)

where D is m × n and N = max{m,n}. The first term is
the `1 norm of the vector σ(L) of singular values of L, and is
known as the nuclear norm of L.

This decomposition approach assumes that there is a sin-
gle, low-dimensional model that describes most components
of the elements of the dataset. In this work, we develop a
more general method that is suitable, for instance, for data de-
scribed by a manifold [6], except for a sparse set of possibly-
large discrepancies. We will thus allow our low-dimensional
description to vary across the dataset, while retaining the ro-
bustness given by having a second, sparse component. In the
context of video background removal, this will allow us to
handle the case of a moving camera, making the method suit-
able for a much larger class of surveillance problems.

2. LOCAL PRINCIPAL COMPONENT PURSUIT

The most obvious extension to the nonlinear case is to a union
of low-dimensional subspaces, which is able to approximate
data lying within a nonlinear manifold as a collection of tan-
gent spaces. The geometric intuition motivating our approach
is that if the data lie within a nonlinear manifold, then ev-
ery sample in the manifold may be represented (assuming ad-
equate sampling density) as a sparse linear combination of
neighboring samples spanning an approximation to the local
tangent plane. This idea can be implemented as the problem

min
U,S

‖U‖1 + α‖U‖2,1 + β‖S‖1 such that DU + S = D ,

in which the explicit notion of low rank, and its nuclear-norm
proxy, is replaced by representability of a matrix as a sparse
representation on itself. (The subspace segmentation algo-
rithm of Liu et al. [7], in contrast, combines the concept of



self-representability with a continuation of the explicit low-
rank formulation.) A simple 1-norm notion of sparsity is in-
sufficient here, since it is essential to exclude the identity as
a coefficient matrix, which we avoid by employing the 2, 1-
norm, defined as ‖U‖2,1 =

∑
i

√∑
j u2

ij . This norm en-
courages most rows of U to be zero, but does not discourage
nonzero values among the entries of a nonzero row [8]. Using
this norm also helps take advantage of group-sparsity struc-
ture, such as can arise when points of the dataset are near to
each other.

To better handle noisy data, we replace the constrained
form with a penalized form, and add a total variation penalty
on the sparse deviations (for cases when we expect these de-
viations to form contiguous regions), giving the problem

min
U,S

1
2
‖AU + S −D‖2

2 + α‖U‖1

+ β‖U‖2,1 + γ‖S‖1 + δ‖∇S‖1 , (3)

where the dictionary A is derived from the data D (by mean-
subtraction and scaling), and ∇S is a vector-valued dis-
cretization of the 3-D gradient of S, interpreted as an image
cube.

Eq. (3) can be solved efficiently using the Split Bregman
method [9]. We introduce variables P , Q, and R, which are
auxiliary versions of U , S, and ∇S, respectively. We add
terms relaxing the equality constraints of each quantity and its
auxiliary variable, and in order to enforce equality at conver-
gence, we introduce Bregman variables Bp, Bq, and Br [9]:

min
U,S,P,Q,R

1
2
‖AU + S −D‖2

2 + α‖P‖1 + β‖P‖2,1

+ γ‖Q‖1 + δ‖R‖1 +
λ

2
‖P − U −Bp‖2

2

+
µ

2
‖Q− S −Bq‖2

2 +
ν

2
‖R −∇S −Br‖2

2. (4)

This allows the problem to be split into an alternating mini-
mization of the following subproblems:

min
U

1
2
‖AU − (D − S)‖2

2 +
λ

2
‖U − (P −Bp)‖2

2, (5)

min
S

1
2
‖S − (D −AU)‖2

2 +
µ

2
‖S − (Q−Bq)‖2

2

+
ν

2
‖∇S − (R −Br)‖2

2, (6)

min
P

λ

2
‖P − (U + Bp)‖2

2 + α‖P‖1 + β‖P‖2,1, (7)

min
Q

µ

2
‖Q− (S + Bq)‖2

2 + γ‖Q‖1, and (8)

min
R

ν

2
‖R − (∇S + Br)‖2

2 + δ‖R‖1 . (9)

Subproblems (5) and (6) are simple `2 problems, and can
be solved by standard techniques for solving linear systems

(e.g., conjugate gradient). The other three subproblems can
be solved very cheaply using shrinkage. Subproblems (8)
and (9) use standard shrinkage, also known as soft thresh-
olding:

shrink(T, ζ) = sign(T ) max{0, |T | − ζ}, (10)

where the operations are to be understood entrywise. Sub-
problem (7), which contains both the `1 and `2,1 norms, uses
a generalized shrinkage, defined row-wise by

shrink2,1(T, ζ, η)i =
shrink(T i, ζ)

1 + η/ shrink(‖ shrink(T i, ζ)‖2, η)
,

(11)
with the convention that 1/(1 + η/0) = 0. The algorithm
consists of iteratively solving the main variables and updating
the Bregman variables as follows:

U (k+1) =(AT A + λI)−1
(
AT (D − S(k)) + λ(P (k) −B(k)

p )
)
,

S(k+1) =
(
(1 + µ)I + ν∇T∇

)−1((D −AU (k+1))

+ µ(Q(k) −B(k)
q ) + ν∇T (R(k) −B(k)

r )
)
,

P (k+1) =shrink2,1(U (k+1) + B(k)
p , α/λ, β/λ),

Q(k+1) =shrink(S(k+1) + B(k)
q , γ/µ),

R(k+1) =shrink(∇S(k+1) + B(k)
r , δ/ν),

B(k+1)
p =B(k)

p + U (k+1) − P (k+1),

B(k+1)
q =B(k)

q + S(k+1) −Q(k+1), and

B(k+1)
r =B(k)

r +∇S(k+1) −R(k+1).

3. ADAPTIVE, OUTLIER-REMOVED DICTIONARY

We can regard (3) as approximating D − S with the local
sparse representation AU . Since the dictionary A is simply a
shifted and scaled version of D, we can expect using A − S
as an adaptive dictionary to allow U to be even sparser. This
gives us the modified problem

min
U,S

1
2
‖(A − S)U + S −D‖2

2 + α‖U‖1

+ β‖U‖2,1 + γ‖S‖1 + δ‖∇S‖1 . (12)

This problem can be minimized as before, the only changes
being to the subproblems for U and S:

min
U

1
2
‖(A − S)U − (D − S)‖2

2 +
λ

2
‖U − (P −Bp)‖2

2,

min
S

1
2
‖S(I − U)− (D −AU)‖2

2 +
µ

2
‖V − (Q−Bq)‖2

2

+
ν

2
‖∇S − (R −Br)‖2

2,



with solutions given by the linear systems

((A − S)T (A − S)+λI)U

= (A − S)T (D − S) + λ(P −Bp),

S(I − U)(I − U)T + (µI + ν∇T∇)S

= (D −AU)(I − U)T + µ(Q−Bq) + ν∇T (R −Br).

4. RESULTS

We test our algorithm on the video background removal prob-
lem addressed by Wright et al. [2], using a 288-frame traffic
video sequence from the Lankershim Boulevard Dataset [10,
camera 4, 8:45–9:00 AM]. (This problem provides a conve-
nient comparison between these two general data decomposi-
tion techniques, but while the performance of our method is
subjectively quite good, we do not claim that it is competi-
tive when compared with application-specific algorithms for
this problem.) We use the modified-dictionary form (12) of
the algorithm since it gives better results. (Comparison omit-
ted due to space constraints.) A and D were both constructed
from the data by subtracting the mean from each column and
scaling so that the maximum value was 1.

The first test sequence is a reduced-resolution (240× 320
pixel frames) version of the data, with each frame of the video
being a column of D, giving us a 76800×288 matrix. Because
the traffic camera is is stationary, this dataset is well-modeled
by a single low-dimensional subspace. Our algorithm gives
a decomposition (see Fig. 1) that is visually almost indis-
tinguishable from the result (omitted here due to space con-
straints) obtained by solving (2), using the algorithm of [11].

Our second test sequence is constructed by taking a mov-
ing 240 × 320 pixel cropping window within the original se-
quence to simulate a panning camera. This window moves
slowly to the left, and then back to the original position, at a
rate of 1/4 pixel/frame. In this case the background is poorly
approximated by any single low-dimensional subspace, but
since the background motion is slow with respect to the fore-
ground motion, a locally low-dimensional model provides a
much better approximation. A comparison of a single frame
of the sparse components of different methods applied to this
data is provided in Fig. 2. The local sparse component clearly
has far less residual background than the “global” sparse com-
ponent (and in fact exhibits slightly less than the reference
sparse component).

5. CONCLUSION

We have proposed a new decomposition, together with a Split
Bregman type algorithm, for high-dimensional data, general-
izing the Robust PCA of Candès et al. [5] to certain nonlinear
data. The ability of this generalization to model data that does
not conform to the globally low-dimensional restriction has

been demonstrated on the video background removal prob-
lem. Future work will include development of automatic pa-
rameter selection methods, and application of the decompo-
sition to additional problems in which the relaxed constraints
on the data can be expected to provide an advantage.
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(a) Original data (b) Local low rank (c) Local sparse

Fig. 1. Results for frame 166 from the stationary test video sequence. The decomposition was computed using our algorithm
with parameters α = 1.0 × 10−5, β = 1.0 × 10−2, γ = 3.0 × 10−5, and δ = 1.0 × 10−4.

(a) Original data (b) Global sparse

(c) Local sparse (d) No-TV local sparse

Fig. 2. Results for frame 166 from the slowly-panning test video sequence. The global sparse component (b) is obtained using
decomposition (2), and the local sparse component (c) is generated by our algorithm with parameters α = 4.0 × 10−3, β =
8.0 × 10−2, γ = 5.0 × 10−4, and δ = 3.0 × 10−4. Component (d) is generated in the same was as (c), except that δ = 0, so
that there is no TV regularization. This result demonstrates the performance advantage of our algorithm is primarily due to the
local-linear model, and not the TV regularization.


