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ABSTRACT
For additive signals on Gaussian clutter, the optimal de-

tector is a linear matched filter that is adapted to the known
signal and the covariance of the background. This adaptive
matched filter (AMF) is widely used for gas-phase plume
detection, even though the effect of the plume on the back-
ground is not strictly additive. Here, a derivation of the
matched filter for a strictly absorptive plume produces, even
in the weak plume limit, a quadratic filter. Assuming a
Gaussian background, we derive two expressions, one based
on the locally most powerful (LMP) detector which cor-
responds to the weak plume limit, and one based on the
generalized likelihood ratio test (GLRT). Numerical experi-
ments indicate that, as long as the plume is strong enough to
be detected at all, both the GLRT and the linear matched filter
outperform the LMP detector.

1. INTRODUCTION

There is considerable interest in remote detection of gas-
phase plumes, with particular interest in NO2, which is often
seen as a proxy for more general pollution as well as green-
house gas emission, and SO2, which is often diagnostic of
volcanic activity. The physics of plume absorption is simple,
but it is not linear, and our aim here is to develop closed-form
expressions for detecting plumes in hyperspectral imagery.

This problem also provides an exercise in composite hy-
pothesis testing. For such problems, a direct likelihood ratio
test cannot be employed, because there is a nuisance param-
eter (in this case, plume concentration) whose value is not a
priori known. The usual approach in this situation employs
the Generalized Likelihood Ratio Test (GLRT), which esti-
mates this unknown parameter. An alternative is to consider
the weak plume limit with the Locally Most Powerful (LMP).
We note that more general Bayesian methods [1] (of which
LMP is a special case) or Clairvoyant Fusion [2–4] (for which
GLRT is a special case) can also be considered.
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1.1. Absorptive plume

For an absorptive plume, we have from Beer’s Law that the
radiance observed at some wavelength λ is given by xλ =
zλ exp(−εtλ), where zλ is the radiance that would observed
in the absence of plume, tλ is the absorption coefficient of
the plume gas, and ε is the plume strength. For a sensor with
d wavelengths, we can express this in vector form, with d-
dimensional vectors x and z, whose components are xλ and
zλ, respectively:

x = exp(−εT )z, (1)

where T is a diagonal matrix whose diagonal elements are the
absorption coefficients tλ.

1.2. Linear matched filter

The classic adaptive matched filter (AMF) [5] was origi-
nally applied to radar signal detection, but is widely used
for plume detection. To adapt the AMF to the absorptive
plume problem, two approximations must be made. The first
assumption is that the plume is weak, so that the exponential
is approximately linear; that is: exp(−εT )z ≈ z− εTz.

The second approximation treats the additive term −εTz
as if it were a constant. A naive yet popular approximation
takes Tz ∝ t; this is based on the argument that the back-
ground z varies much more slowly with wavelength than does
the gas spectrum t, and so the approximation is that the back-
ground is flat. A better approximation treats Tz ≈ Tµ, where
µ = 〈 z 〉 is the mean background over the image. In this
absorptive plume context, then, the AMF becomes

DAMF-Tµ(x) = −(Tµ)
′R−1(x− µ). (2)

where R = 〈 (z−µ)(z−µ)′ 〉 is the covariance matrix of the
background variability. A variant of this expression

ε̂AMF =
−(Tµ)′R−1(x− µ)

(Tµ)′R−1Tµ
(3)

has the advantage that it provides a direct estimator of plume
strength; since the denominator is a constant, its performance
as a detector is identical to DAMF-Tµ in Eq. (2).
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2. CLAIRVOYANT DETECTOR

Let us begin with the assumption that the strength of the
plume is known (even as its presence or absence remains an
open question). In practice, this is usually not the case, but
the detector we obtain (called the clairvoyant detector [6])
provides a useful reference point. With ε known, the problem
reduces to a binary hypothesis test, and the optimal solution
is likelihood ratio.

L(ε,x) =
Pplume(x)

Pbkg(x)
(4)

Since Eq. (1) expresses the effect of plume on a background
pixel, we can use the usual formula for change of variables in
probability distributions:

Pplume(x) = Pbkg(z)

∣∣∣∣ dzdx
∣∣∣∣ = Pbkg(exp(εT )x) |exp(εT )|

(5)
where | · | indicates the determinant. Note that

|exp(εT )| =
∏
λ

exp(εtλ) = exp(ε
∑
λ

tλ) = exp(ετ) (6)

where τ =
∑

λ tλ = Trace(T ). So the likelihood ratio be-
comes

L(ε,x) =
Pplume(x)

Pbkg(x)
=
Pbkg(exp(εT )x) exp(ετ)

Pbkg(x)
(7)

For a Gaussian background, we have

Pbkg(x) = (2π)−
d
2 |R|−

1
2 exp

[
− 1

2 (x− µ)′R−1(x− µ)
]
.

(8)
Incorporating this expression in Eq. (7), and taking the loga-
rithm, we obtain the clairvoyant detector:

D(ε,x) = logL(ε,x)
= logPbkg(exp(εT )x) + ετ − logPbkg(x)

= − 1
2 (exp(εT )x− µ)′R−1(exp(εT )x− µ)

+ ετ + 1
2 (x− µ)′R−1(x− µ) (9)

3. QUADRATIC MATCHED FILTER

Because we care about weak plumes, we will derive a locally
most powerful (LMP) detector [6] that is optimal for ε → 0.
In this small ε regime, we can write

exp(εT )x = x+ εTx+O(ε2) (10)

and substituting this into Eq. (9) leads to the “quadratic
matched filter”

DQMF(x) = lim
ε→0

D(ε,x)
ε

= −(Tx)′R−1(x− µ) + τ. (11)

Comparing this with Eq. (2), we see that this looks like a
linear matched filter, but the match is to Tx instead of Tµ.
The additive constant τ does not affect performance at all (its
value can be subsumed into the threshold used for detection),
but we have chosen to include it in the definition.

4. GLRT

The Generalized Likelihood Ratio Test (GLRT) formula-
tion recognizes the dependence of the detector on plume
strength ε. The above LMP formulation considered the small
ε limit; by contrast, the GLRT formulation takes two steps:
first an estimated plume strength ε̂ is computed and then the
likelihood is evaluated at that estimate.

The maximum likelihood estimate for ε is the value that
maximizes Pplume(x); that is:

ε̂ = argmaxε Pbkg (exp(εT )x) exp(ετ) (12)

= argminε (exp(εT )x− µ)
′
R−1 (exp(εT )x− µ)− 2ετ

(13)

Eq. (13) is a transcendental equation, and an exact closed-
form solution is beyond the humble algebraic skills of these
authors. However, since we are interested in small ε, we can
approximate the solution using a Taylor series expansion up
to quadratic terms in ε. In this formulation, Eq. (13) becomes:

ε̂ = argminε
[
(x− µ)′R−1(x− µ)

+ 2ε(Tx)′R−1(x− µ)− 2ετ

+ ε2
(
(Tx)′R−1Tx+ (Tx)′TR−1(x− µ)

)
+O(ε3)

]
(14)

And by neglecting the O(ε3) term, we can solve to obtain

ε̂ =
−(Tx)′R−1(x− µ) + τ

(Tx)′R−1Tx+ (Tx)′TR−1(x− µ)
. (15)

As written, this quantity can be positive or negative. We may
choose to restrict ε̂ ≥ 0 for purely absorptive plumes. In that
case, negative quantities just get reset to zero: ε̂← max[0, ε̂].

It has been suggested [7] that an ad hoc albedo correction
be applied to the AMF estimator of plume strength; here,

ε̂albedo-corrected =
1

r
ε̂AMF =

−(Tµ)′R−1(x− µ)

r(Tµ)′R−1Tµ
(16)

where the scalar factor r is given by r = x′µ/µ′µ. We ob-
serve that Eq. (15) already includes a kind of albedo correc-
tion (with equal powers of x in the numerator and denomina-
tor, it is less “sensitive” to the magnitude of x), even though
it was derived without explicitly imposing this property.

The estimate of plume strength and the likelihood of
plume presence are not the same thing, though it is reason-
able to presume that they are relatively well correlated, and
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they in fact agree for the linear matched filter. So one can
use ε̂ as a plume detector. But the GLRT detector is obtained
by substituting ε̂ into the clairvoyant formula in Eq. (9). This
can be done directly (and the result is a closed-form expres-
sion), but since ε̂ was estimated by neglecting O(ε3) terms,
we make that same approximation here, and obtain

DGLRT(x) =
−(Tx)′R−1(x− µ) + τ√

(Tx)′R−1Tx+ (Tx)′TR−1(x− µ)
. (17)

5. MATCHED PAIR EVALUATION SCHEME

We will measure the quality of detection algorithms by im-
planting a plume into a hyperspectral image. But we will do
this in a formalized way that makes two copies of the hyper-
spectral data [8]. The first copy is untouched, but the second
copy has plume added to every pixel. Thus, if z is the pixel in
the first (plume-free) copy, then the corresponding pixel in the
on-plume copy is x = exp(−εT )z. Mean and covariance will
be estimated just from the off-plume data (in other words, we
are neglecting contamination effects, arguing that in an opera-
tional scenario, the on-plume pixels will be rare). Each detec-
tor is applied to both on-plume and off-plume pixels and from
these a ROC curve can be derived. Three statistics of inter-
est to us are: FAR@DR=0.5, the false alarm rate at threshold
with detection rate of 0.5; DR@FAR=0.5, the detection rate
at threshold with false alarm rate of 0.5; and AUC, the area
under the ROC curve.

The FAR@DR=0.5 is more appropriate for most detection
scenarios (where low false alarm rates are crucial). The
DR@FAR=0.5 provides a kind of counterpoint that might be
relevant for the odd scenario in which detections are crucial
and false alarms can be tolerated. The AUC is widely em-
ployed, and provides a kind of compromise between the first
two. All of these statistics are scalar values between 0 and 1:
for false alarms, smaller values are better; while for detection
rates and AUC, larger values are better.

Table 2(a) corresponds to a weak but detectable1 NO2

plume implanted into a scene from the Ozone Monitoring In-
strument (OMI) [9], while Table 2(b) implants an SO2 plume
in a different OMI image [10]. For the additive detectors, we
find AMF-Tµ is more effective than AMF-t for all the sta-
tistical measures. For minimizing false alarm rate, AMF-Tµ
is best in both cases, even (slightly) better than the Clairvoy-
ant detector for SO2. More consistent with the theory, the
GLRT is the best non-Clairvoyant detector in terms of AUC.
And it is interesting that the plume strength estimator ε, which
was never designed as a plume detector per se, gets the high-
est non-Clairvoyant scores in terms of high detection rate at
FAR=0.5.

Table 3 provides results of an experiment similar to that
of Table 2, but the plumes are implanted on Gaussian data

1We chose ε so that the AMF in Eq. (2) would see a 2.5 sigma effect.

(with the same mean and covariance as the OMI data). Here
the results favor GLRT for both SO2 and NO2 plumes, based
on both the FAR@DR=0.5 and AUC statistics. And in fact
the GLRT is very nearly the best for DR@FAR=0.5 as well,
with the plume strength estimator ε̂ only slightly surpassing
it. For both plumes, and all three statistics, we see that the
Clairvoyant detector is (as theoretically predicted) optimal.

Since the plumes are artificially implanted into the scenes
in exact accord with the Beer’s Law formula in Eq. (1), the
only reason for deviation of theory and practice in Table 2
is the distribution of the background data. This speaks in
favor of more sophisticated models for background distribu-
tion [11], based for example on parametric distributions (such
as the multivariate t-distribution [12]) or nonparametric [13]
or even machine learning approaches [14, 15].

6. CONCLUSION

It is often, albeit informally, asserted that a linear filter works
for plume detection because the exponential in Beer’s law be-
comes linear in the weak plume limit. But a more careful
derivation shows that the linear AMF is not strictly appropri-
ate even in the limit as plume strength goes to zero.

Furthermore, this weak plume limit is itself not quite ap-
propriate if it implies that the plume is so weak that it is unde-
tectable. The locally most powerful (LMP) solution that cor-
responds to the weak plume limit (ε→ 0) is empirically found
to be less effective than the GLRT (indeed, often less effec-
tive than the linear matched filter) when the plume is strong
enough to be detected with a reasonable false alarm rate.
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