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ABSTRACT
We introduce a class of statistics for characterizing the pe-
riphery of a distribution, and show that these statistics are par-
ticularly valuable for problems in target detection. Because so
many detection algorithms are rooted in Gaussian statistics,
we concentrate on ellipsoidal models of high-dimensional
data distributions (that is to say: covariance matrices), but we
recommend several alternatives to the sample covariance ma-
trix that more efficiently model the periphery of a distribution,
and can more effectively detect anomalous data samples.

Index Terms— anomaly detection, outlier, target detec-
tion, probability distribution, robust statistics, Gaussian mix-
ture models, expectation-maximization, leptokurtosis

1. INTRODUCTION

What makes target detection difficult is that the target must be
distinguished from the background clutter, and this requires
that the background be well characterized. More particularly,
when that characterization is a probability distribution, it is
the periphery of the background distribution that must be most
carefully characterized. Targets in the core of the distribution
are impossible to detect; targets far out on the tail of the dis-
tribution are easy to detect. It is the targets on the periphery,
the targets that are difficult but detectable, that are of most
interest to the algorithm developer who wants improved ROC
curves.

The detection of anomalies (and of anomalous changes)
requires that the samples that are anomalous be distinguished
from the samples that are normal [1]. One way this can be
achieved is by identifying two probability distributions: one
for normal data and one for anomalies. The normal data distri-
bution is generally fit to the data, while the anomalies are (of-
ten implicitly) defined with a distribution that is much broader
and flatter than the normal data distribution. If both distribu-
tions were precisely known, then their ratio would provide the
Bayes optimal detector of those anomalies.

While the choice of distribution for modeling the anoma-
lies does require some care, the main technical challenge in
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anomaly detection is the characterization of the normal data
distribution. The more “tightly” fit the distribution is to the
normal data, the more accurately one can detect those data
that do not fit the normal model.

For anomaly detection problems, very low false alarm
rates are desired. Thus the challenge is even greater because
we need to characterize the density in regions where the
data are sparse; that is, on the periphery (or the “tail”) of
the distribution. Yet, traditional density estimation methods
for anomaly detection (e.g., the simplest and most common
approach is to fit a single Gaussian to the dataare dominated
by the high-density core.

In the examples here, our model for characterizing the pe-
riphery of a multivariate distribution will be an ellipsoid; our
aim then, is to estimate a covariance matrix that character-
izes that ellipsoid. We remark that the overall scale of the
covariance is not of particular concern to us; for the single
scalar measure of overall size, we can adjust the parameter
to achieve the desired false alarm rate α. What is of more
concern is the O(p2) parameters, where p is the number of
spectral channels, that characterize the shape of the ellipsoid.

In this work, we will investigate a variety of approaches
for characterizing the periphery of a data distribution: these
include anti-robust statistics (Section 2), anti-shrinkage (Sec-
tion 3), eigenvalue adjustment (Section 4), Gaussian mixture
modeling (Section 5), and support vector machines (Sec-
tion 6). We will introduce a volume versus coverage plot
to evaluate their performance in Section 7, and will finally
conclude in Section 8.

2. IN DEFIANCE OF ROBUST STATISTICS

The goal of robust statistics is to produce characterizations
of data that are insensitive to a few bad data samples. This
is typically achieved by discounting (or de-weighting) those
samples that, because of their long “lever arm” have undue
influence on the estimation. While this can produce better
estimates for some kinds of target detection [2], we will con-
sider a contrary approach that puts extra weight on points that
are far from the centroid.

To estimate mean µ and covariance matrix R, from a set



of m samples x ∈ Rp, Campbell [3] suggests

µ =
m∑

i=1

wixi

/ m∑
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wi,

R =
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w2
i (xi − µ)(xi − µ)T

/ m∑
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w2
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When the weights are all equal (e.g., wi = 1 for all i), then
the standard sample estimators for mean and covariance are
obtained. But one can alter these weights depending on how
far the samples are from the mean. The Mahalanobis distance
is given by

ri =
[
(xi − µ)T R−1(xi − µ)

]T
. (2)

To make the robust estimator less sensitive to outliers, one
discounts the large r samples; for instance [3]:

Robust: w(r) =
{

1 if r ≤ ro

ro/r if r > ro. (3)

In practice this requires an iterative approach, since weights
depend on Mahalanobis distance, Mahalanobis distance de-
pends on µ and R, and µ and R depend on the weights.

But for problems which depend primarily on the periphery
of the distribution, this scheme seems to be getting it exactly
backwards: it discounts just the data that we most need to pay
attention to. Therefore, we considered a weighting scheme
that discounts the small Mahalanobis points:

Anti-robust: w(r) =
{

(r/ro)µ if r ≤ ro

(r/ro)ν if r > ro. (4)

Here, µ = ν = 0 corresponds to the standard sample covari-
ance, while µ = 0, ν = −1 corresponds to the robust esti-
mator suggested by Campbell [3]. An anti-robust estimator
takes µ > 0. Note that the choice of a large ro and a nega-
tive ν imbues the estimator with some robustness to extreme
values of r, even as it emphasizes data on the periphery.

One must also choose a value for the cutoff radius ro. For
a p-dimensional Gaussian, the squared Mahalanobis distance
r2 is chi-squared distributed, with p degrees of freedom. This
is approximately Gaussian with mean p and variance 2p. For
our experiments, we take ro =

√
p + b/

√
2 with b = 2.

In the adaptive version of this scheme, we choose a frac-
tion α � 1 of the points to emphasize, then (at each iteration)
choose ro so that a fraction α of the data points have Maha-
lanobis distance larger than ro.

3. ANTI-SHRINKAGE ESTIMATOR

One difficulty with the anti-robust estimators is that the iter-
ations can be unstable. An alternative is to estimate a robust
covariance matrix and to recognize that the sample covariance
is a positive linear combination of the robust and anti-robust

estimators. In general, “shrinkage” refers to the statistical ap-
proach of modifying an estimator by taking a positive linear
combination with a simpler estimator. Since what we want
is the anti-robust estimator, we will take a non-positive linear
combination of the sample covariance and the robust estima-
tor:

R̂ = αRrobust + (1− α)Rsample (5)

where α < 0 is chosen so to optimize an in-sample measure
of coverage versus volume, as described in Section 7.

4. EIGENVALUE ADJUSTMENT APPROACH

In the spirit of the anomaly detector suggested by Adler-
Golden [4], we use the sample covariance R to align the
covariance matrix, but adjust the magnitudes within that
alignment. Specifically, we write R = EΛE, where E is the
matrix of eigenvectors, and Λ is a diagonal matrix of eigen-
values; and then adjust the values of Λ. (A similar adjustment
was also suggested for estimating local covariances [5].)

Initially, the kth element Λkk is the variance in the ek

direction, where ek is the kth column vector in the matrix
E; i.e., Λkk = (1/n)

∑
i(e

T
k xi)2. In place of variance we

will use inter-percentile difference; let Λkk be the squared dis-
tance between the tth lowest value of eT

k xi and the tth high-
est value, thus enclosing a fraction (n − 2t)/n of the sam-
ples. In our experiments, we took this fraction to be 0.999.
Using these new values Λ̆kk, we estimate the covariance ma-
trix with EΛ̆ET . Here, Λ̆kk > Λkk just because the inter-
percentile distance is larger than the standard deviation; but
the overall magnitude of R doesn’t matter. We find that the
ratio Λ̆kk/Λkk tends to be larger for small values of k, con-
sistent with observations made elsewhere that tails are fatter
in the high variance directions [4, 6].

We remark that in addition to the original sample matrix
decomposition, one can also apply this correction to the de-
composition of other matrices, such as the anti-robust covari-
ances in the previous section.

5. GAUSSIAN MIXTURE MODEL APPROACH

Weighting pixels by Mahalanobis distance makes intuitive
sense, but a a more formal approach explicitly models the
data with a Gaussian mixture model. Write

N (x;µ, R) = (2π)−d/2|R|−1/2 exp
(
−1

2
xT R−1x

)
(6)

as the normal distribution with mean µ and covariance R. We
will consider a two-component mixture model

P (x) = (1− α)N (x;µ, Rlo)︸ ︷︷ ︸
core

+αN (x;µ, Rhi)︸ ︷︷ ︸
periphery

(7)

in which we impose a number of constraints. One, we will
take the same µ for both components; that is, they will be con-
centric. In fact, for simplicity, we will use the sample mean



for µ. Two, we take α � 1 to be fixed at a user-specified
value. We want Rlo � Rhi, but we will not require that
the shapes of these covariances be the same. Subject to these
constraints, we use the usual expectation-maximization algo-
rithm [7] to estimate Rlo and Rhi. One minor modification
was to used a trimmed estimator that, at each iteration, sets
the weights to zero for a tiny fraction ε of the points with
largest Mahalanobis distance with respect to Rhi.

6. SUPPORT VECTOR MACHINE APPROACH

As noted in the Introduction, if both the normal and the
anomaly distributions were known then their ratio would pro-
vide the Bayes optimal anomaly detector. It follows that if
we have samples from both distributions then we can design
a support vector machine (SVM) to approximate the Bayes
optimal detector [8]. In this paper we use a training set that
contains both normal samples and synthetically generated
anomalies to design a quadratic SVM that (approximately)
optimizes a weighted linear combination of false alarm and
missed detection rates. The SVM discriminant function takes
the form1

f(x) = xT Qx + qT x + q0 (8)

and can be converted to a Mahalanobis distance classifier us-
ing

R = Q−1, µ = −1
2
Q−1q . (9)

Instead of computing moments (or Mahalanobis distance
weighted moments), the support vector machine more di-
rectly estimates the decision boundary between the two dis-
tributions. Increasing the weight on false alarms moves the
decision boundary toward the periphery of the data so that
the solution has fewer false alarms, though at the expense of
more missed detections. Furthermore the SVM solution for
Q takes the form

Q =
∑

xi∈data
aixixT

i −
∑

xi∈anomalies
aixixT

i (10)

where all ai ≥ 0. The support vector property of SVM so-
lutions implies that the nonzero coefficients in the first sum
correspond to normal samples that lie near or beyond the de-
cision boundary. Thus the solution is defined explicitly in
terms of the peripheral normal samples.

The SVM approach requires us to generate samples from
the anomaly distribution. The results in this paper we ob-
tained using random samples from a uniform distribution
over a hyper-rectangle that encompasses the normal data.
Although increasing the number of samples promises more
accurate solutions, it also increases the computational de-
mand, and so the number of samples must be chosen to

1This form can be realized by using a quadratic kernel, or by quadratically
extending the original training vectors and using a linear kernel.

balance these two concerns. The results in this paper were
obtained using approximately fives times as many anomalous
samples as normal samples.

7. A MEASURE OF PERFORMANCE FOR
ANOMALY DETECTION

Because anomalies are rare, measuring the performance of an
anomaly detection algorithm can be problematic. Rather than
concentrate on the anomalies, however, we will emphasize
how well the model fits the normal data. In particular, given
an alarm rate α (the rate at which normal samples are pre-
dicted to be anomalous), we will compute the volume V (α)
of the ellipsoid which contains a fraction 1 − α of the data.
We will plot V versus α and our best algorithms will give the
smallest values of V at low α. As we adjust the overall radius
of the ellipsoid whose shape is specified by a given covariance
matrix, we will trace out a curve in the V -versus-α space that
has the flavor of a ROC curve. In fact, the α directly corre-
sponds to false alarm rate. The V corresponds to a kind of
missed detection rate, since the anomalies that are inside the
volume V are the ones that will not be detected.

Fig. 1(b,c) shows two such curves. As the alarm rate de-
creases, the volume necessary for achieving that alarm rate
increases. For the low alarm rates, we see that the periphery-
characterizing estimates outperform the standard and robust
estimates. The robust estimator is best at larger values of α –
that is, it does a better job of characterizing the core of the dis-
tribution – but substantially worse at the low values of α that
we care about. Some algorithms (such as eigenvalue adjust-
ment) do not have much influence at small p but are very ef-
fective for large dimensions, while others (such as the support
vector machine) are difficult to implement at high dimension.

We remark that the MINVOL [10] algorithm seeks the
minimum-volume ellipsoid that covers h out of m points in
a multi-dimensional dataset. This is exactly the condition
we want to optimize, but MINVOL is notoriously expensive.
A faster heuristic was suggested, that computes a covariance
from those h points [11], but this amounts to a robust estima-
tor of the core covariance, and we care about the periphery.

8. DISCUSSION AND CONCLUSIONS

In the ideal case of a multivariate Gaussian distribution, the
contours are concentric ellipsoids, fully characterized by a
mean vector and covariance matrix. Furthermore, the opti-
mal estimator of these parameters are the sample mean and
sample covariance. These statistics give equal weight to all
data samples, whether they are in the core or the periphery of
the distribution. But for deviations from this ideal, it may be
preferable to emphasize data in the periphery of the distribu-
tion. This is done explicitly in the weighting function shown
in Eq. (4), and implicitly when a support vector machine is
used to learn that contour.
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Fig. 1. (a) The mixture-of-Gaussians model is illustrated on the first two coordinates of a hyperspectral AVIRIS (Airborne
Visual/InfraRed Imaging Spectrometer [9]) image of the Florida coastline, from data set f960323t01p02 r04 sc01. Con-
tours corresponding to coverage of 95% and 99.9% of the data are shown for Rlo and Rhi. Although Rlo more effectively (i.e.,
with smaller area) covers the core of the data, we see that Rhi more effectively characterizes the periphery. (b,c) Coverage plots
show how the volume V of the ellipsoid increases as the fraction of uncovered data (the alarm rate) α decreases, using various
algorithms to to estimate the covariance matrix. The middle panel is for the first p = 3 principal components, and the right
panel is all p = 224 spectral channels of the AVIRIS data. Half the points are used to estimate covariance, and the other half
are used to estimate performance, so these are out-of-sample results.

It is widely recognized that hyperspectral data is generally
more fat-tailed than a Gaussian distribution, but it has recently
become apparent that the “fatness” of those tails is different
in different directions [4, 6, 12]. A consequence of this obser-
vation is that the best covariance matrix for characterizing the
core of the data may differ from the best covariance matrix for
characterizing the periphery. The approach we suggest here
follows Vapnik’s dictum [13] – rather that attempt to char-
acterize the full distribution, we seek instead to characterize
only the contour on the periphery.
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