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ABSTRACT

We explore some variants of “Gaussianization” for characterizing the distribution of background pixels in multi-
spectral and hyperspectral imagery, and then use this characterization to develop algorithms for target detection.
We consider two very different problems – anomalous change detection and gas-phase plume detection – as ways
to explore the applicability of Gaussianization for remote sensing image analysis.

One variant is an extension of the Gaussianization concept to non-Gaussian reference distributions, and
in particular, we show that using the multivariate t as the reference distribution often leads to better target
detection performance. Since we are no longer, strictly speaking, Gauss-ianizing, we call the method iterative
rotation and remarginalization.

In our scheme, the remarginalization is achieved with a parametric transformation function that is built up
from a linear basis of (hard or soft) hinge functions, which provide explicitly differentiable and enforcably mono-
tonic remarginalization functions. An efficient knot-pruning strategy enables rapid training of these functions.

Also, for remote sensing imagery with many spectral channels, we have found it advantageous to pre-whiten
the data with axes aligned to principal components, and then selectively to Gaussianize only the top principal
components, treating the lower-variance directions as “already Gaussian.” This provides a computationally faster
and empirically more effective Gaussianization for spectral imagery.

Keywords: remote sensing, target detection, multispectral imagery, machine learning, density estimation, Gaus-
sianization, remarginalization

In addition, it would be very desirable to develop an improved,
but still easily calculated, PDF model that can describe EC

as well as non-EC distributions. – Steven Adler-Golden1

1. INTRODUCTION

Gaussianization is a recently-developed approach2–6 for estimating the density of a non-Gaussian distribution
from data that is sampled from the distribution. The main idea is to find a transformation that maps the sample
data to an approximately Gaussian distribution. The density, for any given point in the original distribution, is
then given by the determinant of the transformation’s Jacobian at that point, multiplied by the density of the
Gaussian for the transformed data. In particular, if T : Rd → Rd is an invertible transformation function that
maps a point x to a point y, where the x points are drawn from a (typically unknown) distribution px, and the
y points are distributed as a known reference distribution py; then we can write

px(x) = py(y)

∣∣∣∣dydx
∣∣∣∣ = py(T (x))

∣∣∣∣dT (x)

dx

∣∣∣∣ = py(T (x))J (x) (1)

where J = |dT /dx| is the absolute value of the determinant of the d × d Jacobian matrix of the transform T .
Instead of trying to infer px directly from data, the Gaussianization process tries to infer the transform T that
leads to py being Gaussian. With py and T known, then the above formula gives px.

There is, however, no formal reason that py must be Gaussian. In principle, any reference distribution can
work, but it should be one for which py can be readily evaluated, and for which the marginal distribution obtained
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by an arbitrary projection of py can be readily evaluated. The Gaussian fits this bill, but an alternative that we
found effective is the multivariate t distribution. Like the Gaussian, the multivariate t is elliptically-contoured
(EC), and the projection along any axis is a t distribution. The multivariate t is fatter tailed than the Gaussian,
and often provides a better fit to hyperspectral data.7

1.1. Background estimation and target detection

The characterization of the background distribution is a crucial step for many analysis tasks in multispectral
remote sensing imagery, and particularly for the detection of targets in that imagery.8 Given a model for the
background distribution, one can directly use this model for anomaly detection, anomalous change detection,
and a broad range of target detection problems.

1.2. Anomaly and anomalous change detection

In the anomaly detection problem, for example, the aim is to determine, from a collection of samples (usually
pixels*) {x1, . . . ,xN}, which of these samples are the least consistent with the underlying background distribu-
tion; that is, which x’s exhibit the smallest values of pbkg(x). Thus A(x) = 1/pbkg(x) is a natural choice for an
anomaly detection function.

For the anomalous change detection problem, one has two images of the same scene, taken at different times,
under conditions that are inevitably different, and possibly even with different sensors. Given these two images,
the aim is to find pixels that correspond to interesting changes in the scene. That is: find the pixel pairs (i.e.,
the corresponding pixels from the two images) that are mutually unusual (compared to the the other pixel pairs
in the image pair), but without regard to whether the pixels are individually unusual.

The approach we take, first proposed in Ref. 9, can be expressed in terms of three distributions. If xA and

xB are corresponding pixels in images A and B respectively, and if xAB =

[
xA

xB

]
is a vector corresponding to

the pixel pair, then we can write the anomalousness of change as

A(x) =
pAB(xAB)

pA(xA)pB(xB)
(2)

While anomaly and target detection scenarios required the estimation of a single background distribution, the
anomalous change expression in Eq. (2) has three distributions to be learned. In principle, one only needs to learn
pAB , the distribution for the stacked pixels, because pA and pB are just lower-dimensional projections of pAB ,
but we have not found an efficient way to perform that projection (nominally, it would require an integration at
each point of interest). For our work here, we will simply estimate each of these three distributions separately.

We remark that Padrón-Hidalgo et al.6 also employ Gaussianization for change detection, but with an entirely
different approach that seeks pixels in the second image that are anomalous with respect to the distribution
learned from that first image: that is, A(x) = 1/pA(xB). This has the advantage that it only requires the
estimation of a single distribution (instead of three), but the disadvantage that it is insensitive to changes due
to movement of objects in a scene. It furthermore is not robust to inevitable differences in conditions (e.g., due
to calibration, illumination, view-angle, etc) that are pervasive over the scene, and does not even make sense if
different sensors are employed.

1.3. Plume detection

For general target detection problems, where the target has a known spectral signature, we can write ξ(x) as
the effect on the spectrum of the observed pixel of having a target present in a pixel x. The optimal detector in
this case is given by the likelihood ratio:

L(x) =
ptgt(x)

pbkg(x)
=
pbkg(ξ

−1(x))

pbkg(x)

∣∣∣∣dξdx
∣∣∣∣ . (3)

*We will, for the sake of concreteness, often refer to samples as pixels, but the formulations we describe could also take
samples to be pixel patches that include spatial and textural information as well as spectral.
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For an additive target, for example: ξ(x) = x + at, where a is the strength of the target and t is the target
signature. For this case, |dξ/dx| = 1 and L(x) = pbkg(x− at)/pbkg(x).

For the plume detection problem, the aim is to find gas-phase plumes – which can for instance be indicative
of impending volcanic eruptions,10, 11 pollution,12, 13 or greenhouse gas emission14–16 – in a scene observed by
a remote, possibly satellite-based,17, 18 hyperspectral sensor. In contrast to solid targets, the presence of plume
only slightly perturbs the observed spectrum, but although the magnitude of the effect is small, the nature of
the perturbation is quite precisely known, and for images with many spectral channels, even fairly weak plumes
can be detected. In the visible regime, the effect is primarily absorptive, and we can write19

ξ(x) = exp(−aT )x (4)

where T = diag(t) is a diagonal matrix whose diagonal entries correspond to the absorption spectrum t for the
gas, and a is a measure of plume concentration. This leads to

L(a,x) =
ptgt(x)

pbkg(x)
=
pbkg (exp(aT )x) exp(aτ)

pbkg(x)
, (5)

where τ = trace(T ), which is the sum of the components of t. Eq. (5) is the so-called clairvoyant detector;
it has nice optimality properties, but is rarely useful in practice because it depends on the plume strength a
which is generally not known. This is the composite hypothesis testing problem, and a considerable variety of
approaches have been developed to deal with this ambiguity;20–25 here, we will follow Ref. 26 and use a fixed
value a = n/

√
µ′T ′R−1Tµ, which corresponds to n “sigmas” of separation between on-plume and off-plume

pixels (we use n = 3 sigmas). Here µ and R correspond to the mean and covariance of the background pixels.

Various approximations to Eq. (5) can be made; and combining those approximations with closed-form
expressions for the background distribution (specifically, by assuming Gaussian or multivariate t-distributed27

or log-normal28 backgrounds). Here, we relax the assumption that we know the form of pbkg, and use IR&R to
estimate it.

2. IR&R: ITERATIVE ROTATION AND REMARGINALIZATION

Our iterative rotation and remarginalization algorithm follows the standard Gaussianization procedure, but does
not necessarily use a Gaussian. Details of the training algorithm are shown in Algorithm 1. The returned rotation
matrices Rm and scalar squashing functions Hmk comprise a description of the transformation function T .
Specifically,

T (x) = RMHM (RM−1HM−1(· · ·R2H2(R1H1(x)) · · · )) (6)

where Hm : Rd → Rd is a vector-valued function whose components are given by Hmk : Rd → R for k = 1, . . . , d.
It has previously been noted3 that this successive application of linear rotation and nonlinear squashing has the
structure of a neural network, and in our previous work5 we explicitly trained a neural network to learn T (x)
directly. As this can often be done with many fewer than M layers in the trained neural network, some efficiency
is gained by this method. But it is important to recognize that the form of the expression for T (x) in Eq. (6) has
some advantages of its own. Most notably, the determinant of the Jacobian of T (x) can be efficiently computed,*

and this permits the density estimator in Eq. (1) to be efficiently evaluated. Details are shown in Algorithm 2.

2.1. Remarginalization

The remarginalization step corresponds to separate (and independent) one-dimensional Gaussianizations along
each of the d dimensions of the data. At the end of this step, the marginal distributions of the the transformed
points will be Gaussian along each of these dimensions. Although one-dimensional Gaussianization is in principle
fairly straightforward, the Appendix describes an approach for doing this in a way that is relatively efficient and
robust.

*The determinant of the rotation matrices is always one, and because the squashing functions Hm have diagonal
Jacobians, their determinants are just products of their diagonal elements. Combining these with the fact that |AB| =
|A| · |B| for matrices A,B, we can compute the determinant of the Jacobian of T (x) without ever explicitly computing
the Jacobian itself.
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Algorithm 1 Iterative Rotation and Remarginalization (Training)

Require: X = {x1, . . . ,xN}, with xn ∈ Rd

Initialize yn ← xn, for all n = 1, . . . , N
for m = 1, 2, . . . ,M do . Iterate until yn’s are, by some measure, sufficiently Gaussian

Rm ← RandomRotationMatrix
yn ← Rmyn, for all n . Rotate data
for k = 1, . . . , d do . Remarginalize each component k separately

Let zn ← y
(k)
n be kth component of yn, for all n

Hmk ← GetSquashingFunction({z1, . . . , zN})
Let y

(k)
n ← Hmk(zn), for all n . Reset the k’th component of yn

Return: Rm, Hmk for m = 1, . . . ,M and k = 1, . . . , d

function GetSquashingFunction({z1, . . . , zN})
Find monotonic function h so that set {h(z1), . . . , h(zN )}
is distributed as a Gaussian or multivariate t distribution . See Appendix for details
return h

Algorithm 2 Iterative Rotation and Remarginalization (Applying)

Require: X = {x1, . . . ,xN}, with xn ∈ Rd . May be different from X in Algorithm 1
Require: Rm, Hmk for m = 1, . . . ,M and k = 1, . . . , d . Obtained from Algorithm 1

Initialize yn ← xn, for all n = 1, . . . , N . Vector yn corresponds to transformed value of xn

Initialize sn ← 1 for n = 1, . . . , N . Scalar sn corresponds to determinant of Jacobian at xn

for m = 1, 2, . . . ,M do
yn ← Rmyn, for all n . Rotate data
for k = 1, . . . , d do . Remarginalize each component k separately

Let zn ← y
(k)
n be kth component of yn, for all n

Let y
(k)
n ← Hmk(zn), for all n . Reset the k’th component of yn

Update sn ← sn ×
dHmk

dz

∣∣
zn

for all n

Compute ρn = |sn| · G(yn) for all n . with G the Gaussian (or multivariate t) distribution function
Return: ρn for all n . ρn is estimate of density at xn
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2.2. Initial Rotation

If these d dimensions were statistically independent of each other, then the result of this transformation would
not only be Gaussian along the specified dimensions, but would be a d-dimensional multivariate Gaussian. And
we would be done: because py would then be known, Eq. (1) could be used to accurately model the distribution
px of the original untransformed data.

This motivates the use of whitening as a pre-processing stage. Here, the data with mean µ and covariance R
are rescaled

x← R−1/2(x− µ) (7)

so that the resulting data has zero mean and unit covariance matrix. The axes in whitened data are not typically
independent, but they are uncorrelated. Note that matrices do not have unique square roots, and the R−1/2 term
in the above equation is ambiguous as written. The square root that we recommend is the one that aligns the
principal components to the whitened axis. We can achieve this by using as our inverse square root the matrix
R−1/2 := D−1/2UT where D and U are, respectively, the diagonal and unitary components in the singular value
decomposition of the symmetric positive-definite covariance matrix R = UDUT. Here, D−1/2 is computed by
taking the inverse positive square root of each of the diagonal entries.

With this as our whitening operator, the axes of our whitened data will be aligned with the PC directions.
Now, remarginalization along each of the PC directions is very much along the lines of an approach invented by
Adler-Golden1 for anomaly detection in heavy-tailed backgrounds. In that work, the data were not explicitly
remarginalized; but the effect of component-wise remarginalization was achieved by fitting a separate model
to each PC coordinate. A second motivation for using PCs is that many of them are Gaussian already; as
Adler-Golden writes1:

The leading (low-numbered) PCs capture the largest variations in the dataset; they tend to show
non-Gaussian statistics, characterized by heavy tails. In contrast, the trailing (high-numbered) PCs
tend to be noise-dominated and observe Gaussian statistics, with much shorter tails.

That the most non-Gaussian directions tend to be correlated with highest-variance directions had been observed
earlier,29, 30 but Adler-Golden’s algorithm provided a principled way to exploit that observation to obtain
improved anomaly detection performance using all of the PCs.* More recently, Tidhar and Rotman31 took
this approach with a multidimensional histogram-based nonparametric density model for the first several PCs,
and an assumption of Gaussianity for the later PCs. We will also take this approach, iteratively rotating and
remarginalizing only the top PCs.

3. EXPERIMENTS

Since IR&R is a nonparametric approach that is designed to be able to characterize more or less arbitrary
background distributions, we will be using real hyperspectral datasets as training data. To avoid ambiguities
in ground truth, however, the performance of this training process will be evaluated using targets that are
artificially implanted into these images. For the plume detection problems, we’ll take the two-histogram32 or
matched-pair33 approach. This involves making a copy of our hyperspectral data and implanting target in every
pixel of the copy.

Then the detector (that was trained only on the original data) is applied to both the original and the
implanted data. The detection rate (DR) is the fraction of pixels in the implanted data sets for which targets
are detected. We adjust the threshold on the detector so that the detection rate is fixed (we use DR=0.5), and
then compute the false alarm rate (FAR@DR=0.5) as the fraction of pixels in the original image for which the
detector indicated target presence. (Because some of those false alarms might correspond to real targets, the
quantity we compute is a conservative estimate of the true false alarm rate and in any case provides a measure
that can be used to compare different detectors.) The anomalous change detection problem will use a similar

*The subspace RX (SSRX) algorithm30 makes indirect use of this observation, by projecting out the low-numbered
(high variance) PCS and only using the high-numbered PCs.
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Figure 1. False alarm rate (FAR@DR=0.5) as a function of iteration for IR&R applied to the anomalous change detection
problem. Since rotations are random, three different runs are shown. The left panel uses remarginalization to a Gaussian
and the right panel uses a multivariate t distribution with ν = 3.5 degrees of freedom. In both cases, IR&R provided
considerable reduction in the false alarm rate.

strategy, but the “implanted” targets will be provided by existing pixels chosen randomly from elsewhere in the
image.34

For all of the experiments, we cut the image into stripes that are 10 pixels wide, and then train on even-
numbered stripes while testing on odd-numbered stripes; we use stripes instead of just a random partition of
the pixels to reduce pixel adjacency effects between the testing and training sets. From the in-sample and out-
of-sample ROC curves, we produce the FAR@DR=0.5 statistic, corresponding to the false alarm rate at the
threshold that produces a 50% detection rate.

3.1. Anomalous change detection

Our anomalous change detection (ACD) experiment begins with two images from the RIT Blind Test dataset.35, 36

Two hyperspectral images were taken of an area around Cooke City, MT, USA. We do not have ground truth
for the changes between these images, but we evaluate performance using a pixel scrambling scheme,34 which
simulates anomalous changes by randomly moving pixels to new locations. Although the data is hyperspectral,
we reduce the dimension, using canonical correlation analysis, to ten channels for each image. These channels
are linear combinations of the spectral channels that produce the highest correlation between the images; higher
correlation is advantageous because it makes the rare non-correlated pixels (i.e., the anomalous changes) stand
out more.34 This statistic is plotted against iteration number in Fig. 1. Compared to the assumption of a Gaussian
background distribution (corresponding to the 0th iteration), we see striking improvement with Gaussianization.
To some extent, what the algorithm is “learning” is that the distribution is better modeled by a multivariate t.
Indeed, the performance for multivariate t is much better (observe the y-axis values), and iterations of R&R
provide further improvement.

3.2. Plume detection

We begin with data provided by JPL from overflights of the AVIRIS-NG sensor.37 After making a copy of the
image, and implanting a uniform plume of methane gas over the whole image, we transform the data to principle
component coordinates and scale those coordinates so that the resulting data is whitened.

Although the data is high dimensional (with 186 spectral channels), we only apply the rotation and re-
marginalization to the top d = 10 dimensions. What we observe in Fig. 2 is that IR&R has virtually no effect on
plume detection performance. After a hundred iterations toward a Gaussian distribution, we see that the false
alarm rate changes by about a percent. We see that using a multivariate t distribution instead of a Gaussian as
a starting point, we get about a five percent gain in performance. But the effect of the IR&R from those starting
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Figure 2. False alarm rate (FAR@DR=0.5) as a function of iteration for IR&R applied to the plume detection problem.
Since rotations are random, three different runs are shown. The left panels use remarginalization to a Gaussian and the
right panel uses a multivariate t distribution with ν = 3.5 degrees of freedom. The top panels use all d = 186 spectral
channels, while the bottom panels only transform the top d = 10 principal components. Overall, IR&R has very little
effect on the false alarm rate, though working with reduced dimensionality appears to be an advantage.
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Figure 3. False alarm rate (FAR@DR=0.5) as a function of iteration for IR&R applied to the plume detection problem,
using different data. Since rotations are random, three different runs are shown. The left panels use remarginalization to
a Gaussian and the right panel uses a multivariate t distribution with ν = 3.5 degrees of freedom. The top panels use
all d = 50 spectral channels, while the bottom panels only transform the top d = 10 principal components. Here, the
advantage of reduced dimensionality is evident both for Gaussian and multivariate t. Interestingly, the Gaussian IR&R
actually outperforms the multivariate t IR&R, even though the initial multivariate t model was better than the Gaussian.

points is less than a percent. And for the multivariate t starting point, the IR&R makes it worse (but, again, by
a very small amount).

One of the reasons plume detection works so well for hyperspectral imagery is that the gas-phase absorption
spectrum typically involves multiple very narrow lines, whereas the background spectrum of solid materials
tends to show reflectances that vary relatively smoothly with wavelength. Geometrically, we can imagine the
background pixels as a cloud of points in a d-dimensional spectral space (with one axis per spectral channel);
this cloud has some directions with a lot of variation and other directions that are quite “thin” and do not vary
much at all. The high-variance directions, which correspond to lower-numbered principal components (PCs),
describe the main variability in the solid background; the target spectrum (i.e., the absorption spectrum for the
gas species of interest) tends to be orthogonal to these high-variance directions, and in directions with relatively
low variance in the background – this is what enables even small deviations from that background (i.e., weak
plumes) to be detectable.

The test this hypothesis – that the reason IR&R performed so poorly is that the target signature is buried in
the high-numbered (i.e., already Gaussian) PCs – we performed a second experiment. Actually, the experiment
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was the same, but we used different data. We used data from the SHARE 2012 experiment38 designed for solid
sub-pixel targets.39 We treated the spectrum of the solid (green panel) targets as if it were a gas absorption
spectrum and implanted a simulated gas plume with this signature. The results of this experiment are shown in
Fig. 3. Here, we see that modeling the non-Gaussian (and even the non-multivariate t) nature of the background
that is enabled with IR&R leads to substantially better detection performance; indeed, the false alarm rate is
reduced by roughly a factor of ten. For this data, we also observe that the Gaussian IR&R outperforms the
multivariate t IR&R, even though the initial multivariate t model was better than the Gaussian. A potential
explanation for this is that although the higher-variance directions are better modeled by a fat-tailed multivari-
ate t, the low-variance directions may be more Gaussian. A hybrid of Gaussian and multivariate t (very similar
to what Adler-Golden suggested in Ref. [1]) may lead to better performance with fewer iterations.

4. CONCLUSION

That hyperspectral backgrounds are manifestly complicated is not a problem but an opportunity. Given the
success of detection algorithms that employ simple background models – notably,Gaussian or multivariate t
distributions – we can reasonably expect improved performance from detectors that are based on more flexible
background models. To some extent, we have seen that in this study, which looked at two quite different detection
algorithms. For the anomalous change detection problem, the closer modeling of the background provided by the
IR&R algorithm led to lower false alarm rates. For the gas-phase plume detection problem, the results were more
nuanced (which is to say: not as good). We did not improve the performance at all on a real plume spectrum
implanted in a real hyperspectral background. But we did see improvement when that spectrum was modified to
be more aligned with the background spectra. It remains to be seen whether this observation can be leveraged
into a variant algorithm that is more successful with gas-phase plumes.

An observation worth making here is that IR&R aims to model the “whole” distribution, and is specifically
designed to minimize the Kullback-Liebler distance between the model and the underlying distribution. But
what we measure is false alarm rate, and that depends only on the tail of the distribution. This explains why
even in-sample false alarm rate can increase with iterations of IR&R.

Indeed, an argument against this approach is that it violates Vapnik’s dictum40 that one should not solve
a more difficult problem (in this case, density estimation) as an intermediate step in solving a simpler problem
(target detection). In the jargon of machine learning, this is a distinction between generative and discrimina-
tive modeling. Where some methods (such as Refs. [33, 41, 42]) attempt to directly discriminate target from
background, we are here achieving that discrimination only after obtaining a full density model.

On the other hand, IR&R has an appealing property that is not available in, for instance, kernel-based or
neuron-based learning algorithms; and that is that it begins with a Gaussian (or multivariate t) distribution.
There are many algorithms in spectral data analysis, and in spectral target detection in particular, that are
known to work fairly well, even if not necessarily optimally, and that are derived by assuming the background
distribution is Gaussian or multivariate t. With IR&R, we essentially use those methods as our starting point.
We may (as in the case of anomalous change detection) or may not (as in the case of gas-phase plume detection)
improve upon those results, but we know that we can at least achieve them.
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APPENDIX A. REMARGINALIZATION: A BASIS SET FOR MONOTONIC
FUNCTION ESTIMATION USING PAIRS OF HINGE FUNCTIONS

The remarginalization step corresponds to Gaussianizing in one dimension, and this is in principle fairly straight-
forward. Let f(x) be a one-dimensional density function, and then F (x) =

∫ x

−∞ f(z) dz is the corresponding

cumulative density function (CDF). If we write Φ(x) as the CDF for a Gaussian*, then Φ−1F is a monoton-
ically increasing (and therefor invertible) function that Gaussianizes the data. In particular, if the data set
{x1, . . . , xN} is drawn from the original distribution, then the set {Φ−1(F (x1)), . . . ,Φ−1(F (xN ))} exhibits a
Gaussian distribution.

In practice, of course, we do not know f(x); what we have as our input is the dataset {x1, . . . , xN} that is
presumed to be drawn from f(x). There are many ways to estimate f(x) from data , but what we really want
is not f(x), per se, but the function H(x) = Φ−1(F (x)). In this appendix, we will describe our approach for
estimating H(x) from the input dataset. Since H(x) will be constrained to be continuous and monotonic, a
sorted list of input arguments will lead to a sorted list of output values; the effect of H then is to locally “stretch
and squeeze” the input arguments; we will often refer to this remarginalization function as a squashing function.

We will treat the fitting of H(x) as a regression problem. We begin by sorting the input values; without loss
of generality, write {x1, . . . , xN} is the input set, but with the property that x1 ≤ · · · ≤ xN . Now, associate
H(xn) with yn = Φ−1(an) where an = (n− 1

2 )/N uniformly fills the interval [0, 1]. (We could also take yn to be
the n’th value in a sorted list of N numbers that are randomly drawn from the reference distribution.)

We will fit yn ∼ H(xn) by taking H from a parametric class of monotonic functions. Ideally, this class should
exhibit the following properties:

1. H(x) is guaranteed to be monotonic increasing (preferably with slope strictly greater than zero)

2. H(x) is flexible enough to fit arbitrary 1-d distributions

3. H(x) has a functional form that makes it easy (meaning fast) to fit to the data.

4. H(x) is (everywhere, or at least almost everywhere) smooth and differentiable.

5. H(x) is easy to differentiate (we need this because we will be computing Jacobians)

6. H(x) is easy to invert. This is not needed for our target detection application; but it is helpful if we want
to use T −1 to generate new samples from the original px distribution.

7. The identity function (H(x) = x) should be particularly easy to fit, since that’s what we are converging to
as the transformed data become more like the reference distribution.

A.1. Piecewise linear (hard) hinges

Our initial scheme5 used a three-segment piecewise linear function. Here, we have extended that to arbitrary
number of segments, by treating the squashing function as a linear combination of hinge functions. The base
hinge function is given by

h(x) =

{
0 for x ≤ 0
x for x ≥ 0

(8)

This base hinge has a “knot” point at x = 0, but we can write h(x− c) as a hinge function with a knot at x = c.
If we have K distinct knot points: c0 < c1 < · · · < cK−1, then we can write an arbitrary K+1-segment piecewise
linear function as

H(x) = a+ bx+

K−1∑
k=0

wkh(x− ck) (9)

*We can write Φ(x) more broadly as the CDF of the reference distribution; it is typically Gaussian, but in much of
our work, we consider a t distribution instead.
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There are K + 1 distinct regions along the x-axis: x < c0, c0 < x < c1, . . . , cK−1 < x. The slope of H(x) is
constant in each of those regions*, and is given by b, b+w0, b+w0 +w1, . . . , b+w0 + · · ·+wK−1. If we want to
ensure monotonicity, then we need the following K + 1 conditions, corresponding to non-negative slope in each
of tho4 K + 1 regions.

0 ≤ b (10)

0 ≤ b+ w0 (11)

...

0 ≤ b+ w0 + · · ·+ wK−1 (12)

These constraints are convex, and therefore they can be efficiently (though not very conveniently) enforced.
Our implementation uses an equivalent formulation that allows a more convenient enforcement of monotonicity.
Write:

G1(x) = x− h(x− c0) (13)

G2(x) = h(x− c0)− h(x− c1) (14)

...

Gk(x) = h(x− ck−2)− h(x− ck−1) for k = 2, . . . ,K (15)

...

GK+1 = h(x− cK−1) (16)

and then the squashing map has the form

H(x) = g0 +

K+1∑
k=1

gkGk(x). (17)

In this case, each of the basis functions Gk(x) are by construction monotonic, and therefore we can enforce
monotonicity in H(x) simply by requiring gk ≥ 0 for k = 1, . . . ,K + 1. See Fig. 4.

As a further re-parameterization, we construct dk = ck+1 − ck for k = 0, . . . ,K − 2, and consider the list
c0, d0, . . . , dK−2 in place of c0, . . . , cK−1. We do this so that we can impose dk > 0 as a way of ensuring the the
knots satisfy c0 < c1 < · · · < cK−1. This is useful, because some of our fitting algorithms allow the knots to be
free parameters as well as the coefficients.

Note that these two parameterizations ([a, b, c0, . . . , cK−1, w0, . . . , wK−1] and [g0, . . . , gK+1, c0, d0, . . . , dK−2])
are equivalent, with:

g0 = a (18)

g1 = b (19)

g2 = b+ w0 (20)

...

gK+1 = b+ w0 + · · ·+ wK−1 (21)

d0 = c1 − c0 (22)

...

dK−2 = cK−1 − cK−2 (23)

*The slope is not well defined at the knot points themselves; it’s not clear, however, that this is truly a problem. As
long as a slope in the range [b+ w0 + · · ·+ wk−1,b+ w0 + · · ·+ wk] is assigned to the point at x=ck, then I think things
will be fine. We’ll see later how smoothing the hinge function avoids this problem (assuming it is a problem).
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x = c0 x = c1 x = c2

G1(x)
G2(x)

G3(x)

G4(x)

Figure 4. Four basis functions are shown (vertically offset for clarity), corresponding to Eqs. (13-16), for the case with
K = 3 knot points. Linear combinations of these basis function can be used to generate four-segment piecewise linear
functions. And positive linear combinations will yield monotonically increasing piecewise linear functions.

and

a = g0 (24)

b = g1 (25)

c1 = c0 + d0 (26)

...

cK−1 = c0 + d0 + · · ·+ dK−2 (27)

w0 = g2 − g1 (28)

...

wK−1 = gK+1 − gK (29)

Indeed, when we actually evaluate Eq. (17), we do that by first converting the (g, c,d) parameters into
(a, b, c,w) parameters, and evaluating Eq. (9). This avoids duplication in the evaluation of the hinge functions.

For the algorithms that fix the knot locations before fitting the linear coefficients, we put the knots at
midpoints between adjacent values in the data; that way the derivative will be unambiguous, at least for the
training data. (For out of sample data, it will be ambiguous only on a measure zero set of the data.)

A.2. Inverting the squashing function

If T (x) is the transform that converts data from the original distribution into a Gaussian, then the inverse
T −1(x) can take Gaussian data as input and produce samples from the original distribution. One step in this
full inversion is to invert the squashing function H(x). An advantage of this piecewise-linear characterization of
the squashing function is that it is readily inverted. Since the inverse is also a monotonically increasing piecewise
linear function, we can write an explicit expression for the parameters associated with the inverse. So if (g, c,d)
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Figure 5. Hinge and soft hinge functions (left panels), and their derivatives (right panels). The top panels use the log-
exponential formulation in Eq. (34) and Eq. (35); the bottom panels use the square-root-square formulation in Eq. (36)
and Eq. (37).

are the parameters associated with H(x), then the parameters for H−1(x) are given by (g′, c′,d′), where:

g′0 = −g0/g1 (30)

g′k = 1/gk, for k = 1, . . . ,K + 1 (31)

c′0 = g0 + g1c0 (32)

d′k = gk+2dk, for k = 0, . . . ,K − 2 (33)

A.3. Smoothing the squashing function

The piecewise linear functions are flexible (with enough knots, could fit any monotonic function to arbitrary
accuracy) and continuous, but the first derivative is not continuous, and the first derivative an important part of
the density estimation. We can address this problem by replacing the hinge functions with “soft” hinge functions.
Here, a parameter β is introduced, and:

h(β;x) =
1

β
log (1 + exp(βx)) (34)

d

dx
h(β;x) =

exp(βx)

1 + exp(βx)
(35)

In this formulation, we see that 1/β is a kind of “smoothness” distance; for |x| � 1/β – that is, for x far
away from the hinge point, the smoothed hinge function approaches the simple hinge function. For large β,
this smoothness distance is small, the the smoothed hinge function is well approximated by the simple hinge.
See Fig. 5. However, the smoothed hinge is infinitely differentiable over the full domain. Furthermore, we have
(as we did for the simple hinge functions), that differences h(β;x− c0)− h(β;x− c1) are strictly monotonically
increasing functions as long as c0 < c1.
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A.3.1. Alternative soft hinge function based on the square root of the square

The log-exponential formulation in Eq. (34) and Eq. (35) is a standard approach for softening the hinge function*,
and it is indeed a convenient and adjustable approach. We have implemented an alternative softening, however,
based on the square root of a square; specifically:

h(β;x) =
1

2β

[
βx+

√
1 + (βx)2

]
(36)

d

dx
h(β;x) =

1

2

[
1 +

βx√
1 + (βx)2

]
(37)

We have found that this formulation is somewhat faster to evaluate than the expressions in Eq. (34) and Eq. (35).
Furthermore, we do not need to worry about overflow of the exponential with large arguments�

A.4. Hybrid hard and smooth fitting for squashing functions

Since the smooth squashing functions are approximations of the hard hinges, one approach is to use the hard
hinges (which are much cheaper to compute, and much less prone to numerical instability) for fitting the co-
efficients (the g’s) and then using those coefficients with smooth hinges in the final squashing function. [That
doesn’t sound very convincing, but in practice it really works.]

A.5. Fixed knots, and knot pruning

Identifying the best parameters is a problem in nonlinear (and nonconvex) optimization, and can be computa-
tionally expensive, especially since every iteration requires a separate fit for each dimension of the data.

If the knot locations are fixed, however, the remaining free parameters are linear coefficients, and can be
optimized using standard least squares fitting. In our implementation, the knots are chosen so that the number
of samples between each adjacent pair of knots is roughly the same.

We have also implemented a two-step process, in which a relatively larger number of initial knot locations
are identified, a “quick fit” is made using all of the knots, and then knots are pruned out, one at a time, until the
desired number of knots is reached. A new fit is made with these remaining knots. The pruning scheme removes
points according to how much the fit changes if the knot is removed.

Specifically, consider the piecewise linear function that is produced by connecting adjacent knots with line
segments. For each knot (xn, yn), we compute the area between that piecewise linear function and the piecewise
linear function that is obtained if that knot point were removed. To do this, we compute for each knot the value
ŷn corresponding to the y-value at xn that would be obtained if the knot with index n were removed. The area
of the difference between the two is the area of a triangle with height given by the difference between ŷn and yn,
and base given by the distance xn+1 − xn−1. That is (see Fig. 6):

ŷn =
yn+1(xn − xn−1) + yn−1(xn+1 − xn)

xn+1 − xn−1
(38)

An =
1

2
|yn − ŷn| (xn+1 − xn−1) (39)

The algorithm for pruning knots finds the knot with the smallest value of An, removes that knot from the list,
and then recomputes ŷ and A values, continuing to remove knots from the list until the desired number of knots
remain.

The quicker of the “quick fits” takes advantage of the fact that the (x, y) data is monotonic; so from sorted
lists of x and y values, the y associated with each knot can be immediately identified. Indeed, this is a reasonable
fit in its own right, but it is particularly useful as an initial fit both to provide a starting point for the nonlinear
fit, and to provide the quick fit to a larger set of knot points, and from which a pruned set of knot points can be
derived for use in a full least squares fit.

*For example, the function is called “softplus” in the torch package.43

�In practice, this is addressed in the log-exponential by comparing the argument to a threshold, and if it is larger than
the threshold, then using the asymptotic value instead of explicitly evaluating the exponential and then the logarithm.

Proc. SPIE 12335 (2022) 123350C 14



xn xn+1xn-1

yn-1

yn+1

yn

ÿn

Base of triangle

Height of triangle

Figure 6. For each knot at (xn, yn), we assess its importance by the area of the triangle that is created if the knot were
removed. The knot associated with the smallest area (i.e., the knot most co-linear with its neighbors) is removed. We
begin with many more knots than we want, and remove them one at a time until a desired number of knots is reached.

A.6. Fractional squashing

Previously,5 we argued that we could avoid some instabilities in the iterative R&R process by using a “fractional”
squashing. Given data pairs (x1, y1), . . . , (xN , yN ) obtained by separately sorting the x’s and the y’s, the standard
(or “full” or “non-fractional”) fit seeks a function H(x), for instance given by Eq. (17), that minimizes

∑
n ‖yn−

H(xn)‖2. The idea of fractional (or partial) fitting is to minimize a function of the form
∑

n ‖ỹn − H(xn)‖2,
where ỹn = (1− f)xn + fyn.

Here f = 1 corresponds to standard fitting, and if the the aim were to do the best fit in a single step, then f = 1
would be the appropriate choice. But IR&R is iterative, and as long as each iteration nudges the distribution
“towards” the reference (usually Gaussian) distribution, then progress is being made. The convergence towards
the reference distribution depends on which rotations are made at each iteration; by using f < 1, we make
this dependence less strong. Although our early experience with three-segment piecewise linear fits5 suggested
improved performance with f as small as 0.3 to 0.5, more recent experiments with our hinge pair basis suggest
that larger f is better, and in some cases f = 1 appears optimal. In the experiments reported here, we used
f=0.9.
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