
BAYESIAN VS GENERALIZED LIKELIHOOD RATIO DETECTION
OF SOLID SUB-PIXEL TARGETS

James Theiler

Space Remote Sensing and Data Science Group,
Los Alamos National Laboratory, Los Alamos, NM 87545 USA

Email: jt@lanl.gov

ABSTRACT
Numerical experiments compare Bayesian and non-Bayesian
Generalized Likelihood Ratio Test (GLRT) detection algo-
rithms for opaque sub-pixel hyperspectral targets of unknown
abundance. A simplified problem is identified, which allows
the full range of Bayesian priors to be explored. When one
seeks to minimize the false alarm rate at a fixed detection rate,
one finds that GLRT detection outperforms Bayesian detec-
tion for any choice of prior. By contrast, when the criterion is
detection rate at fixed false alarm rate, Bayesian detection is
better. The results hold over a wide range of parameters, and
appear to contradict known optimality results for Bayesian
detectors. The apparent discrepancy is explained, and a case
is made for the practical use of GLRT-based detection statis-
tics.

Index Terms— Algorithm, Spectral imagery, Target de-
tection, Likelihood ratio, Composite hypothesis testing, De-
tection statistic, Bayes, GLRT, Multivariate t distribution

1. BACKGROUND: TARGET DETECTION

For an opaque sub-pixel target with a d-channel reflectance
spectrum given by the vector t, sub-pixel abundance given by
scalar a (the fraction of the pixel covered by the target), and
atop a background spectrum z, the observed mixed spectrum
is given by the replacement target model [1, §11.1.4]:

x = (1− a)z+ at. (1)

Under the null hypothesis, the target is absent, so a = 0 and
x = z. Under the alternative composite hypothesis, the tar-
get is present with a nonzero abundance a. If the target abun-
dance awere known, the alternative hypothesis would be sim-
ple, and the optimal detector would be given by the likelihood
ratio:

L(a,x) =
Ptarget(x)

Pbkg(x)
=

(1− a)−dPbkg

(
x− at
1− a

)
Pbkg(x)

, (2)

where Pbkg(z) is the probability distribution function that
models the variability of the backgound pixels z.

1.1. Detectors vs Detection Statistics

Formally speaking, the likelihood ratio in Eq. (2) is not by it-
self a detector; rather, it is a detection statistic; it is effectively
a family of detectors, with each member of the family an in-
dividual detector specified by a threshold η. Thus, if D(x) is
a detection statistic, then the detector is given by:

D(x) < η indicates no target in pixel x;
D(x) ≥ η indicates target present in pixel x.

(3)

Each detector is a binary function of x, and in general any
binary function can be a detector, but detectors built form de-
tection statistics are especially useful. An adjustable thresh-
old enables measures of confidence to be associated with in-
dividual detections, and furthermore permits the construction
of receiver operating characteristic (ROC) curves.

1.2. ROC Curve-Based Measures of Quality

What ultimately characterizes the quality of a detector is the
number of true detections (target pixels correctly identified as
target pixels) and false alarms (background pixels incorrectly
identified as target pixels).

For a family of detectors characterized by a detection
statistic and an adjustable threshold, a ROC curve can be
produced by plotting detection rate against false alarm rate
for different choices of the threshold.

Specific scalar-valued criteria are useful for comparing
detection statistics, and these typically take one of two forms.
Write DR@FAR=x (with x typically 0.05 or smaller) to in-
dicate the detection rate at the threshold for which the false
alarm rate is x; and write FAR@DR=x (with x typically a
half or larger) to indicate the false alarm rate at the thresh-
old for which the detection rate is x. For applications where
targets are relatively rare (e.g., for sub-pixel targets in im-
agery), the false alarm rates of interest are very low, and also
vary over a large dynamic range (e.g., as the target strength a
varies). For these reasons, the FAR@DR=x criteria are often
more attractive as a research tool in evaluating target detection
algorithms.
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2. DETECTION STATISTICS

2.1. Clairvoyant Detection

If the target abundance is known to be a = ao (put another
way: if the target abundance is restricted to be either a = 0
[target absent] or a = ao [target present]), then the likelihood
ratio provides the optimal detection statistic:

DClairvoyant(x) = L(ao,x) (4)

In most practical applications of interest, the target abun-
dance is unknown. In that case, we have a composite hypoth-
esis testing problem, and there is no single optimum solution.
Several approaches have been taken to develop detectors in
this composite case.

2.2. GLRT Detection

The traditional approach is to employ the generalized likeli-
hood ratio test (GLRT). That is: find â(x) that maximizes the
likelihood in Eq. (2), and use L(â(x),x) as the detector. That
is:

DGLRT(x) = maxaL(a,x) = L(â(x),x). (5)

For the replacement-model likelihood function in Eq. (2), us-
ing the elliptically-contoured multivariate t-distributed back-
groun in Eq. (9), it turns out that it is possible to solve for â(x)
analytically and to thus obtain a closed-form solution for the
detector in Eq. (5) [2, 3].

2.2.1. Restricted GLRT Detection

In the traditional version of the sub-pixel target detection
problem, the abundance a is only known to be in the range
0 ≤ a ≤ 1. For the experiments conducted here, a sim-
plified version of the problem is considered, in which the
target strength (when a target is present) is known to be
an element of a discrete set. In particular, we will take
a ∈ a = {a1, . . . , an}. In this case, we modify Eq. (5) to
consider the maximum over this restricted set; thus

DRGLRT(x) = maxa∈aL(a,x) (6)

is the Restricted GLRT (RGLRT). When the targets really are
restricted to this discrete set, then the RGLRT is generally
expected to be a better detector than the GLRT.

Note that the RGLRT is straightforward (and relatively in-
expensive) to implement. A closed-form solution for Eq. (5)
requires taking a derivative, setting it to zero, solving the re-
sulting equation for â(x), and plugging that expression into
L(â(x),x). By contrast, Eq. (6) is already in closed form.

2.3. Bayesian Detection

The Bayesian approach to target detection (e.g., see [4]) first
posits a prior q(a). Then, instead of taking the peak value of

the likelihood function, we take the weighted average over the
range 0 ≤ a ≤ 1:

DBayes(x) =

∫ 1

0

L(a,x)q(a)da. (7)

A natural choice, given that we do not have a priori infor-
mation about target abundance, is to use the uniform prior:
p(a) = 1. This choice, unfortunately, does not readily lead to
a closed-form solution for DBayes(x).

2.3.1. Discrete/Restricted Bayesian Detection

In parallel with §2.2.1, the Bayesian detector also simpli-
fies when the set of available target strengths is discrete. If
a ∈ a = {a1, . . . , an}, then with corresponding weights
w1, . . . , wn, we can write q(a) =

∑n
i=1 wiδ(a − ai), so that

Eq. (7) simplifies to

DDiscreteBayes(x) =

n∑
i=1

wiL(ai,x), (8)

which, unlike Eq. (7), is in closed form.1 Note that Eq. (8)
can also be used as a closed-form approximation to Eq. (7) by
judicious choice of ai’s and wi’s [6].

2.3.2. Sculpting priors

For many Bayesian data analysis problems, the prior cor-
responds to a subjective probabilistic model of what target
abundances we might expect to see, a priori; that is, prior to
seeing the data. But for target detection, as noted in Lehmann
and Romano [7, §1.6], this interpretation of the prior is often
not useful; instead, they suggest, it “expresses the importance
that the experimenter attaches to the various values of” the
unknown parameter. This opens up the possibility of “sculpt-
ing” the prior, of crafting the function q(a) to optimize a
(possibly specialized, problem-specific) performance crite-
rion. One particularly simple numerical scheme is to design
the prior with a single appropriately chosen delta function [8].

2.4. Power and Admissibility

The power of a detector is its detection rate, and it depends
on the parameter a. The false alarm rate, meanwhile, depends
only on the background distribution; it does not depend on a.
For two detectors with the same false alarm rate, one is said to
be more powerful than the other if its detection rate is higher.
If the detection rate is as high or higher than the other detector
for every value of a, then it is uniformly more powerful. If a
detector is uniformly more powerful than every other detector,
then it is a uniformly most powerful (UMP) detector [9, §6.3].
Unfortunately, many problems of interest, including the one

1We can also deal with a1 → 0, which would enable us to optimize for
arbitrarily weak targets, but this requires special handling [5].
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studied here, do not admit a UMP solution. In that case, our
next best bet is to find admissible detectors. These are detec-
tors for which no other detector is uniformly more powerful.

One of the motivations2,3 for investigating the Bayesian
detector is that Bayesian detectors are known to be admissi-
ble [7, §1.8]. By contrast, GLRT detectors (while often quite
useful in practice) do not have this guarantee; Ref. [13] shows
an example for which the GLRT detector is uniformly worse
than the associated Bayesian detector.

Finally, it is important to emphasize that the concepts of
(and theorems about) power and admissibility formally refer
to individual detectors, not to detection statistics.

3. NUMERICAL EXPERIMENTS AND RESULTS

The experiments described here use the replacement target
model in Eq. (1), where the background is given by the mul-
tivariate t distribution with mean µ and covariance R:

Pbkg(z) = c
[
(ν − 2) + (z− µ)′R−1(z− µ)

]−(d+ν)/2
,
(9)

Here: d is the dimension of the vector x (i.e., number of chan-
nels in the spectral image); µ andR are the mean (vector) and
covariance (matrix) of the distribution; ν characterizes fatness
of the tail; and c is a constant pre-factor.

In practice, µ and R are estimated from the data, but un-
like the estimate of the target strength â (which is done sep-
arately for each pixel), these estimates are based on the full
dataset and for the purposes of the experiments here, are as-
sumed to be accurately estimated. In fact, we will be working
with whitened data, with zero mean and unit covariance.

Note that this is a “two step” process; with µ and R es-
timated in the first step; then fixed as â is estimated for each
pixel in the second step. If the total number of background
pixels were limited, a “one step” procedure (in which µ, R,
and a are simultaneously estimated) might be preferred [14].

Although we have performed experiments over a range of
parameters, the results shown in Figs. 1,2 are based on d = 9,
ν = 5, and target strength |t| = 3. In these experiments,
we consider a discrete set a = {0.3, 0.5} of target strengths.
In this case the Bayesian detector is based on weights w1, w2

with q(a) = w1δ(a−0.3)+w2δ(a−0.5). Since we constrain
w1 + w2 = 1, we only have one free parameter, w1, which
ranges from 0 to 1. Numerical results were based onN = 108

background pixels, and an equal number of target-implanted
pixels for each value of a.

2Another advantage of the Bayesian approach is that it works well with
non-parametric models of Pbkg(x), which can be described as a sum over
simple (typically kernel-like) terms. This is because the integral operator can
be interchanged with the summation operator, leading to a sum of integrals
of the individual terms [10].

3Yet another advantage of the Bayesian approach arises when the back-
ground distribution does not admit an analytical model. In that case,
matched-pair machine learning [11,12] can be used to implement the detector
by first implanting targets of abundances drawn from the prior and then by us-
ing binary classification to distinguish background from background+target.
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Fig. 1: Comparison of GLRT and Bayesian detectors over a
range of values for the first weight in the Bayesian prior. The
difference is plotted, with the direction of the subtraction set
so that values above zero correspond to the Bayesian detec-
tor outperforming the GLRT detector, and for values below
zero, the GLRT detector is better. Observe that the a = 0.3
(red) curves increase with increasing w1, while the a = 0.5
(blue) curves decrease. The larger w1, the more weight on the
clairvoyant a = 0.3 detector, and the better the detector per-
forms at a = 0.3. For the DR@FAR=0.05 criterion, we see
that there is a range (0.811 < w1 < 0.909) over which the
Bayesian detector is better for all values of the unknown tar-
get strength (which, in this simplified problem, corresponds
to just the two values a = 0.3 and a = 0.5). By contrast,
for the FAR@DR=0.5 criterion, there is no value of w1 for
which the Bayesian detector is better at both target strengths.
The bottom panels show the same data as the top panels, but
are zoomed in to more clearly illustrate how the intersection
of the red and blue lines are above the zero line for DR and
below the zero line for FAR.

Fig. 1 compares the standard GLRT with this discrete
Bayesian detector, and finds that for DR@FAR=0.05, there
is a range of weights for which the Bayesian detector outper-
forms the GLRT detector at all (i.e., both) target strengths.
These Bayesian detectors are thus uniformly more powerful
than the GLRT detector. By contrast, for FAR@DR=0.5, we
find that there is no choice of prior for which the Bayesian
detector uniformly outperforms (or even equals) the GLRT
detector. These results are also seen in Fig. 2, which compares
to the restricted RGLRT.

These experiments have been repeated with different pa-
rameter values, and while the same basic results were seen,
some further observations were also made:
1. Using DR@FAR=x for x = 0.005 instead of x = 0.05, it
was still possible to observe a range of w1 values over which
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the Bayesian outperformed the GLRT, but it was a different
range than observed with x = 0.05. Thus, there is no single
choice of Bayesian prior that leads to superior results at all
false alarm rates.
2. A few cases were observed in which the Bayesian out-
performed the GLRT using the FAR@DR=0.5 criterion, but
no cases were found for which it outperformed the RGLRT
detector at both target strengths.
3. With Gaussian background instead of multivariate t, the
range of weights over which Bayesian beat RGLRT, using the
DR@FAR=0.5 measure, was found to be much narrower; in-
deed, to within numerical precision, the best Bayesian and the
RGLRT detectors exhibited equal performance.

4. DISCUSSION AND CONCLUSIONS

To be perfectly clear: what this paper describes is numerical
experiments on simulated data; no theorems are proved, no
actual data are investigated. What is demonstrated, however,
is that statements about the theoretical superiority of Bayesian
target detection (including remarks made by me [13]) do not
apply as broadly as may have been assumed.

An example is provided for which no choice of prior en-
ables the Bayesian detection algorithm to uniformly outper-
form the GLRT, based on the criterion of low false alarm rate
at fixed detection rate. This was initially a surprise, but it can
be understood by more carefully distinguishing individual de-
tectors from detection statistics. The FAR@DR=0.5 criterion
evaluates the performance, not of an individual detector, but
of a full detection statistic; that’s because the DR=0.5 con-
straint leads to a threshold that depends on the value of a.

This explains why GLRT can outperform Bayes on the
FAR@DR=0.5 criterion, but does not explain why GLRT
does outperform Bayes in this situation, and there may be
situations where it does not. Given the practical utility of the
FAR@DR=x performance criteria, this also justifies the use
of the GLRT for target detection applications, and provides
impetus for further research into potentially non-admissible
detection schemes, such as clairvoyant fusion [15].
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