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ABSTRACT

We examine the Mahalanobis-distance based kernel-RX
(KRX) algorithm for anomaly detection, and find that it can
exhibit an unfortunate phenomenon: the anomalousness, for
points far from the training data, can decrease with increasing
distance. We demonstrate this directly for a few special cases,
and provide a more general argument that applies in the large
bandwidth regime.

Index Terms— Anomaly detection, Kernel density esti-
mation, Mahalanobis distance, Kernel-RX

1. INTRODUCTION

For target detection generally, the key challenge is charac-
terization of the background [1, 2]. In the anomaly detec-
tion problem, this challenge is expressed in a “pure” form
that is isolated from the more domain-specific issues of target
physics and target variability [3, 4].

Anomalies are data samples (e.g., pixels in a hyperspec-
tral image) that are unusual with respect to the rest of the data
in a collection [5, 6, 7]. If the non-anomalous data samples
are modeled by a Gaussian distribution with mean µ and co-
variance R, then the Mahalanobis distance [8]

A(r) = (r− µ)TR−1(r− µ) (1)

provides a simple measure of how anomalous the point r is.
This is a measure that monotonically increases for increasing
distance from the centroid µ.

Reed and Yu [9] used Mahalanobis distance to detect
anomalies in multispectral and hyperspectral imagery, based
on a local moving window, though the approach is often used
globally as well, and in either case is popularly referred to as
RX. Cremers et al. [10] proposed a kernelized version of RX,
which Kwon and Nasrabadi [11] adopted for hyperspectral
anomaly detection. Where RX provides elliptical contours of
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anomalousness, kernel-RX (KRX) can accommodate more
convoluted contours.

In a recent paper [12], we identified an aspect of KRX –
an implicit projection in feature space to the in-sample data
plane – that leads in numerical studies to diminished perfor-
mance, particularly at small bandwidths. In this paper, we
explicitly show that KRX exhibits the peculiar property that
for points far from the training data, anomalousness decreases
with increasing distance.

2. KERNELIZATION

The training data has N samples, each d-dimensional: xn ∈
Rd for n = 1, 2, . . . , N . For kernel-based methods, the data
samples are mapped to a feature space F by a function Φ.
That is Φ : X → F , where F has the property that dot prod-
ucts can be expressed as a scalar function of points in the
original data space:

κ(r, s) = Φ(r)TΦ(s) ∈ R. (2)

The “kernel trick” recognizes that by specifying the kernel
function κ(r, s), one need not actually evaluate Φ(r) or Φ(s).
We consider in particular the Gaussian radial basis kernel:

κ(r, s) = exp(−‖r− s‖2/2σ2), (3)

where σ is called the bandwidth.
Define µΦ as the centroid of the sample data in feature

space: µΦ = 1
N

∑N
n=1 Φ(xn). In terms of this centroid, de-

fine a centered feature map Φc(r) = Φ(r) − µΦ. This new
feature map can then be used to define a centered kernel func-
tion:

κc(r, s) = Φc(r)TΦc(s)

= κ(r, s)− 1

N

∑
m

κ(r,xm)

− 1

N

∑
n

κ(xn, s) +
1

N2

∑
n,m

κ(xn,xm). (4)

Note that this equation was written incorrectly in Ref. [12].



2.1. Kernel-RX (KRX)

To begin, define the data matrix in centered feature space:

XΦ = [Φc(x1) · · ·Φc(xN )] , (5)

Let r be the rank of this matrix (observe that r ≤ N − 1 since
the centroid has been subtracted). ExpressXΦ with a singular
value decomposition

XΦ = VΦΛ1/2WT . (6)

Here VΦ is an orthogonal matrix with r columns (so V TΦ VΦ =
I), Λ is a diagonal r × r matrix with positive entries, and W
is an orthogonal N × r matrix (for which WTW = I).

Note that columns of VΦ are eigenvectors of the covari-
ance matrix CΦ = XΦX

T
Φ , and columns of W are eigenvec-

tors of the centered Gram matrix

Kc = XT
ΦXΦ =

 κc(x1,x1) · · · κc(x1,xN )
...

. . .
...

κc(xN ,x1) · · · κc(xN ,xN )

 (7)

Note that this N × N matrix has rank at most N − 1 (since
that is the rank of XΦ); thus it is not strictly invertible.

The KRX idea is to use a Mahalanobis distance in the
feature space as the measure of anomalousness. That is:

AKRX(r) = Φc(r)TC−1
Φ Φc(r), (8)

with the covariance matrix CΦ given by

CΦ =
∑
n

Φc(r)Φc(r)T = XΦX
T
Φ = VΦΛV TΦ (9)

where XΦ was defined in Eq. (5), and decomposed in Eq. (6).
The problem with KRX, as it is expressed in Eq. (8), is that
CΦ is not invertible. The approach taken in [11] is to use the
pseudoinverse. That is,

(VΦΛV TΦ )−1 ← VΦΛ−1V TΦ . (10)

The ambiguous left-hand side is simply replaced with the
well-defined right-hand side. We can use VΦ = XΦWΛ−1/2,
obtained from Eq. (6), to further simplify

C−1
Φ = (XΦWΛ−1/2)Λ−1(Λ−1/2WTXT

Φ )

= XΦWΛ−2WTXT
Φ = XΦK

−2
c XT

Φ , (11)

where Kc is the centered Gram matrix defined in Eq. (7), and
K−2
c refers to the pseudoinverse of K2

c . Thus,

AKRX(r) = Φc(r)TXΦK
−2
c XT

Φ Φc(r)

= zc(r)TK−2
c zc(r), (12)

where zc(r) can be expressed in terms of the centered kernel
that was derived in Eq. (4):

zc(r) = XT
Φ Φc(r) =

 κc(x1, r)
...

κc(xN , r)

 . (13)

If we define the scalar g(r) = 1
N

∑
n κ(xn, r), and the

vector

k(r) =

 κ(x1, r)− g(r)
...

κ(xN , r)− g(r)

 , (14)

and further define

kµ =
1

N

∑
n

k(xn), (15)

then zc(r) = k(r) − kµ, and the anomalousness in Eq. (12)
can be expressed as

AKRX(r) =
(
k(r)− kµ

)T
K−2
c

(
k(r)− kµ

)
, (16)

which corresponds to the Mahalanobis distance in an empiri-
cal kernel space defined by the map r→ k(r).

3. SIMPLE CASE: TWO TRAINING SAMPLES

As an initial example, we consider the special case of a train-
ing data set with two points in Rd. This is the simplest infor-
mative example. In addition to providing a specific scenario
that can be explicitly analyzed, it will also shed some light
on what the phenomenon looks like in the more general (and
complicated) case.

Without loss of generality, we can rotate, translate, and
scale the data so that the two training points are x− = (−1, 0)

and x+ = (+1, 0), and consider only the space R2 contain-
ing the points x− and x+ and the point r = (x, y) at which
anomalousness is measured.

3.1. Centered Gram matrix

The kernel κ(x,x) = 1 when the two arguments are equal,
and κ(x+,x−) = κ(x−,x+) = exp(−2/σ2), and we will
write θ ≡ exp(−2/σ2) for convenience. Then the centered
kernel defined in Eq. (4) is given by:

κc(x−,x+) = κc(x+,x−) = −(1− θ)/2 (17)
κc(x−,x−) = κc(x+,x+) = (1− θ)/2 (18)

Hence

Kc =
1

2
(1− θ)

[
1 −1
−1 1

]
. (19)

Since Kc is not invertible, the KRX formula in Eq. (12) can-
not be applied directly. As derived in Section 2.1, the pseu-
doinverse of K2

c is the appropriate choice for K−2
c , but we

will also consider the inverse of a ridge regularized K2
c .



It is straightforward to show that the pseudoinverse is

K−2
c ← pinv(K2

c ) =
1

2(1− θ)2

[
1 −1
−1 1

]
, (20)

and that the ridge-regularized inverse is given by

K−2
c ← (K2

c + λI)−1 =
1

2[λ+ (1− θ)2]

[
1 −1
−1 1

]
+

1

2λ

[
1 1
1 1

]
(21)

3.2. Anomalousness at r

For a general point r, we can write the scalar

g(r) =
1

2
[κ(x−, r) + κ(x+, r)] (22)

so that the vector k(r) defined in Eq. (14) becomes

k(r) =

[
κ(x−, r)− g(r)
κ(x+, r)− g(r)

]
= ζ(r)

[
1
−1

]
, (23)

where
ζ(r) =

1

2
[κ(x−, r)− κ(x+, r)] . (24)

Since ζ(x−) + ζ(x+) = 0, it is clear that kµ = 0. Fi-
nally, using the expression for k(r) in Eq. (23), substituted
into Eq. (16), we obtain

AKRX(r) = ζ2(r)
[

1 −1
]
×K−2

c ×
[

1
−1

]
=

2ζ2(r)

λ+ (1− θ)2 , (25)

where we have used Eq. (21) for K−2
c and the identities:

[
1 −1

]
×
[

1 −1
−1 1

]
×
[

1
−1

]
= 4, and (26)

[
1 −1

]
×
[

1 1
1 1

]
×
[

1
−1

]
= 0. (27)

Observe that the λ → 0 limit of Eq. (25) is what would be
obtained if the pseudoinverse were used for K−2

c instead of
the ridge-regularized inverse.

For a position r = (x, y), we can write

κ(x±, r) = exp
(
−[(x∓ 1)2 + y2]/2σ2

)
; (28)

thus Eq. (24) becomes

ζ(x, y) =
1

2
exp

(
−[1 + x2 + y2]/2σ2

)
×
[
exp(−2x/2σ2)− exp(2x/2σ2)

]
(29)
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Fig. 1. Plot of AKRX(x, y), as defined in Eq. (30), against
x for bandwidth values σ = 0.5, 1, 2, 5, 10. Anomalousness
initially increases until approximately x = σ + 1/6σ, after
which it decreases, approaching zero as x→∞.

and so

AKRX(x, y) ∝ exp(−(x2 + y2)/σ2) sinh2(x/σ2). (30)

This expression is non-negative (and strictly positive except
at x = 0), and approaches zero as |x| or |y| go to infinity.
Thus, for large |x|, we have that AKRX(x, y) decreases with
increasing distance from the origin. In fact, as Fig. 1 shows,
AKRX(x, y) initially increases with increasing x, providing a
reasonable measure of anomalousness as long as x < σ. But
after that, anomalousness decreases with increasing x.

4. SIMPLE CASE: N POINTS ON A SIMPLEX

Another simple case considersN points in Rd for d ≥ N−1,
that are points on the corners of a regular simplex. For these
points, all pairwise distances are equal, and we will again
write θ = exp(−‖xi − xj‖

2/2σ2) for i 6= j. Note that
N = 2 reverts to the example in the previous section. We
can compute:

κ(xi,xj) = θ + (1− θ)δij

g(xi) =
1

N

∑
n

κ(xn,xi) = θ + (1− θ)/N

ki(xj) = κ(xi,xj)− g(xj) = (1− θ)
[
δij − 1/N

]
.

where ki(r) is the ith component of the vector k(r) defined
in Eq. (14). It follows that the ith component of the vector
kµ is kµi = 1

N

∑
n ki(xn) = 0. With kµ = 0, Eq. (16)

becomes AKRX(r) = k(r)TK−2
c k(r), which is everywhere

non-negative and approaches zero as r → ∞. Thus, more
distant points r are less anomalous. Fig. 2 shows anomalous-
ness initially increasing with distance away from the training
samples, but then decreasing for larger r.

5. LARGE σ REGIME

In this section, we consider a regime in which σ is much larger
than the distances between the training points. Although our
approach will be less formal than in previous sections, it will
also make fewer demands on the layout of the training sam-
ples. What we will find is that AKRX(r) generically takes on



Fig. 2. Anomalousness in R2 for
a simplex of N = 3 points (in-
dicated as black dots) on the unit
circle. Darker shades indicate
higher anomalousness. The band-
width is σ = 10, much larger than
the distance between points, and
the range shown is [−12, 12].

values that tend to be much larger when ‖r‖ = O(σ) than the
asymptotic value as r→∞.

Without loss of generality, we will translate and scale the
training points so that

∑
n xn = 0 and 1

N

∑
n ‖xn‖

2 = 1.

5.1. Magnitude of kµ

Since ‖xi − xj‖ � σ, we can write

κ(xi,xj) = exp(−‖xi − xj‖
2/2σ2)

= 1− ‖xi − xj‖
2/2σ2 +O(1/σ4)

≈ 1− ‖xi‖
2/2σ2 − ‖xj‖

2/2σ2 − xi · xj/σ
2

using the identity ‖xi − xj‖
2 = ‖xi‖

2 + ‖xj‖
2 − 2xi · xj .

We then use both
∑
n xn = 0 and

∑
n ‖xn‖

2 = 1 to write

g(xi) =
1

N

∑
n

κ(xi,xn) ≈ 1− 1/2σ2 − ‖xi‖
2/2σ2.

Let us write kj(xi) as the jth component of k(r) for r = xi:

kj(xi) = κ(xi,xj)− g(xi)

≈ (1− ‖xj‖
2)/2σ2 + 2xi · xj/2σ

2

And finally,

kµj =
1

N

∑
n

kj(xn) ≈ (1− ‖xj‖
2)/2σ2.

Thus, kµ = O(1/σ2).

5.2. Magnitude of k(r) for ‖r‖ ≈ σ

Use ‖r − x‖2 = ‖r‖2 + ‖x‖2 − 2r · x to write

κ(xi, r) = exp(−‖r− xi‖
2/2σ2)

= exp(−‖r‖2/2σ2)× exp(−‖xi‖
2/2σ2)

× exp(−2r · xi/2σ
2)

= exp(−‖r‖2/2σ2)[1− 2r · xi/2σ
2] +O(1/σ2)

So then

g(r) =
1

N

∑
n

κ(xn, r) ≈ exp(−‖r‖2/2σ2)

and

kj(r) = κ(xj , r)− g(r) ≈ exp(−‖r‖2/2σ2)︸ ︷︷ ︸
O(1)

[−2r · xj/2σ
2]︸ ︷︷ ︸

O(1/σ)

.

Thus, for ‖r‖ ≈ σ, we have k(r) = O(1/σ).

5.3. Anomalousness for ‖r‖ ≈ σ and for r→∞

From Eq. (16), we can write

AKRX(r) = ‖K−1
c

[
k(r)− kµ

]
‖2 (31)

∼ ‖K−1
c ‖

2 × ‖k(r)− kµ‖
2 (32)

where the second line is not a formal statement, but expresses
the general magnitudes of the different terms. In particular,

A∞ ∼ ‖K
−1
c ‖

2 × ‖kµ‖
2 = ‖K−1

c ‖
2 ×O(1/σ4).

By contrast, for ‖r‖ = O(σ), we have k(r) = O(1/σ), which
in general dominates kµ = O(1/σ2). In this regime,

AKRX(r) ∼ ‖K−1
c ‖

2 × ‖k(r)‖2 = ‖K−1
c ‖

2 ×O(1/σ2).

By a factor of σ2 � 1, we see that AKRX(r) values tend to
be much larger for r ∼ σ than for r → ∞. While KRX
might behave reasonably for ‖r‖ < σ, this result shows that
for larger r, the anomalousness AKRX(r) tends to decrease as
the distance from r to the training data increases.

6. CONCLUSIONS

We have demonstrated in very specific cases that the kernel-
RX algorithm exhibits an unfortunate property for anomaly
detectors: points that are farther from the normal data are
less anomalous. We have not shown this for arbitrary train-
ing data, but we speculate – based both on these special cases
and on our (albeit anecdotal) experience with numerical com-
putation – that this property is ubiquitous.

This property is not shared by all kernel-based anomaly
detectors: kernel density estimation [13, 14], support vector
data decomposition [15, 16] and kernel principal components
analysis [17, 18] behave more rationally in this respect, and
identify points farther from the training data as more anoma-
lous. This work extends a previous result [12], based on nu-
merical evidence, which traced the source of this problem to
an implicit projection to the in-sample subspace that occurs
in Eq. (10) when the pseudoinverse of CΦ is taken. Mod-
ifying KRX by regularizing the CΦ matrix before inverting
it (note that regularizing K2

c is not enough), leads to a ker-
nelized anomaly detector that avoids this unfortunate prop-
erty [10, 12].

In practice, this is not necessarily a showstopper. If the
bandwidth σ is larger than the largest distance r that will
be considered, then KRX can provide reasonable contours of
anomalousness. Indeed, the σ → ∞ limit for KRX yields
straight RX. But however large σ is, there will be points r for
which anomalousness decreases with increasing distance.
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