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ABSTRACT 
 
 
Biological studies suggest that neurons in the mammalian retina accomplish a dynamic segmentation of the visual input.  
When activated by large, high contrast spots, retinal spike trains exhibit high frequency oscillations in the upper gamma 
band, between 60 to 120 Hz.  Despite random phase variations over time, the oscillations recorded from regions re-
sponding to the same spot remain phase locked with zero lag whereas the phases recorded from regions activated by 
separate spots rapidly become uncorrelated.  Here, a model of the mammalian retina is used to explore the segmentation 
of high contrast, gray-scale images containing several well-separated objects.  Frequency spectra were computed from 
lumped spike trains containing 2×2 clusters of neighboring retinal output neurons.  Cross-correlation functions were 
computed between all cell clusters exhibiting significant peaks in the upper gamma band.  For each pair of oscillatory 
cell clusters, the cross-correlation between the lumped spike trains was used to estimate a functional connectivity, given 
by the peak amplitude in the upper gamma band of the associated frequency spectra.  There was a good correspondence 
between the largest eigenvalues/eigenvectors of the resulting sparse functional connectivity matrix and the individual 
objects making up the original image, yielding an overall segmentation comparable to that generated by a standard wa-
tershed algorithm. 
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1. INTRODUCTION 
 
Ganglion cells — the output neurons of the retina — represent local stimulus properties, such as contrast, as changes in 
their firing rates.  In addition, ganglion cells may encode global stimulus properties, such as connectedness, via coherent 
oscillations.  Large stimuli can evoke high frequency oscillatory potentials (HFOPs) in mammalian retinas at frequen-
cies between 60-120 Hz1-6 and similar oscillations have been recorded in cold-blooded vertebrates at lower frequencies7, 

8.  HFOPs are also present in electroretinograms (ERGs) of humans9, 10 and other primates11, 12.  The phylogenetic con-
servation of HFOPs across vertebrate retinas suggests they may be important for visual function. 
 In those retinal preparations where the phase-locking behavior of retinal oscillations has been directly investi-
gated, primarily in the frog7 and cat4, HFOPs have been shown to be stimulus-specific.  Oscillations arising from re-
gions activated by the same contiguous patch of illumination are phase locked with approximately zero lag, even though 
the phase itself varies randomly over time relative to the stimulus onset.  The oscillations evoked by spatially separate 
patches, however, do not remain phase locked and thus the signals arising from such regions rapidly become uncorre-
lated.    
 Based on initial results from a linear model of the inner retina, we proposed that negative feedback from axon-
bearing amacrine cells—inhibitory inter-neurons—produces oscillatory responses that might underlie HFOPs13.  Ac-
cording to this hypothesis, the dendrites of axon-bearing amacrine cells are excited by neighboring ganglion cells via 
electrical synapses, or gap junctions, whereas their axons provide feedback inhibition to more distant ganglion cells.  
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This connectivity is consistent with patterns of ganglion cell tracer coupling in the cat and primate retinas14-16, as well as 
with electron microscopy of gap junction contacts between ganglion and amacrine cells15 and with the distribution of 
synaptic contacts made by wide-field amacrine cells17, 18.   
 Subsequent modeling studies confirmed that axon-mediated feedback from spiking amacrine cells could pro-
duce physiologically realistic HFOPs consistent with the temporal dynamics and center-surround organization of cat 
retinal ganglion cells19.  In these more realistic models, an integrate-and-fire process was used to describe the behavior 
of spiking neurons and a stochastic process to describe the effects of transmitter release from non-spiking neurons.  
Ganglion cells were modeled as cat alpha (Y) ganglion cells, based on physiological evidence that alpha ganglion cells 
fire synchronously20, 21.  The axon-mediated HFOPs observed in these studies were robust to changes in individual pa-
rameters and did not depend critically on the numerical precision of the integration routine19.     
 Recently, we used the same integrate-and-fire model of the inner retina to characterize the stimulus-specificity 
of HFOPs produced by axon-mediated feedback22.  The phase locking of retinal HFOPs produced by axon-mediated 
feedback did not depend critically on the distance between the recorded cells but on whether there existed a continu-
ously stimulated path between them (i.e. whether the corresponding points in the image belonged to a single, contiguous 
patch).  Phase locking fell off abruptly as the end-to-end distance, or gap, between two narrow bar stimuli was in-
creased, illustrating the pivotal role of nearest-neighbor electrical synapses in synchronizing HFOPs within contigu-
ously activated regions.  HFOPs were much less stimulus-specific for over-lapping objects separated by a long, low 
contrast border, such as commonly occurs in natural scenes.  Nonetheless, our results indicated that retinal oscillations 
could provide a dynamic label for segmenting visual inputs into distinct regions, or patches, particularly for those por-
tions of the scene consisting of high contrast, well-separated objects.  However, in the above studies, the dynamic seg-
mentation produced by the retinal model was only assessed implicitly by measuring firing correlations between a few 
carefully selected locations.  Here, we employ a scene wide analysis that simultaneously takes into account firing corre-
lations between all cell pairs, thus yielding an explicit segmentation of the visual input based on retinal oscillations.   
 The algorithm we used for dynamically segmenting gray scale images based on oscillatory retinal output was 
constructed as follows.  Starting with the output of the retinal model, correlations were measured between all image 
locations possessing significant local oscillatory power.  For this analysis, separate image locations were defined by 
non-overlapping 2×2 windows of neighboring ganglion cells.  Individual correlation functions were Fourier transformed 
and the peak amplitude in the upper gamma band was used to estimate an effective connectivity between corresponding 
image locations.  The effective connectivity between all pairs of output pixels was used to define a functional connec-
tivity matrix.  This matrix was sparse, both because the image used in our example consisted of only a few distinct ob-
jects and because matrix elements less than approximately half the maximum value were set identically to zero.  To 
extract the segmentation information implicit in the functional connectivity matrix, the eigenvalues and eigenvectors 
were extracted.  In our example, the eigenvectors associated with the largest eigenvalues corresponded closely to the 
individual objects in the scene.   
 The remainder of the paper is organized as follows.  First, we present an overview of the retinal model and our 
analysis procedures, including the extraction of spectral information from lumped spike train data, the calculation of 
cross-correlation functions and the eigenvalue analysis of the resulting functional connectivity matrix.  Second, we pre-
sent the main results of our analysis for a particular image.  Finally, we discuss the general implications of our results 
for the further development of biologically inspired image processing methods.  
 
 

2. METHODS 
 

2.1. Model Overview 
 
The model retina consisted of five parallel, interconnected, 2-D grids, one for each cell type (fig. 1).  The model bipolar 
cells produced excitatory postsynaptic potentials (EPSPs) in both ganglion cells and amacrine cells according to a ran-
dom process23.  EPSPs were balanced by inhibitory post-synaptic potentials, or IPSPs, from three different amacrine cell 
types encompassing three different spatial scales: 1) small amacrine cells whose dendritic fields were the same size as 
those of the bipolar cells, 2) large amacrine cells whose dendritic fields were the same size as those of the ganglion 
cells, and 3) axon-bearing amacrine cells, whose dendritic fields were the same size as those of the bipolar cells but 
whose axonal connections spread out over a large retinal area.  Of the three amacrine cell types in the model, only the 



axon-bearing amacrine cells fired spikes.  All 
three amacrine cell types made feedforward 
synapses onto ganglion cells, feedback synapses 
onto bipolar cells, as well as serial synapses 
among themselves. 

2.2. Simulation 
 
All cell types were modeled as single compart-
ment, RC circuit elements obeying a first order 
differential equation of the following form: 
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where {V(k)} is a 2-D array denoting the normal-
ized membrane potentials of all cells of type k, 
1≤k≤5, τ(k) are the time constants, b(k) are bias 
currents, {L(k)} are 2-D arrays representing light 
stimulation ({L(k)}=0, k≠1), {W(k,k′)} gives the 
connection strengths, implemented as Gaussian 
functions of the Euclidian distance between 
presynaptic, k΄, and postsynaptic, k, cell types, 
and the functions f(k,k′) give the associated input-
output relations.  The weight matrices, {W(k,k′)}, 
and the input-output relations, f(k,k′), are de-
scribed in greater detail below.  The output of 

the axon-mediated inhibition was delayed by 2 msec, except for the axonal connections onto the axon-bearing amacrine 
cells, which was delayed for 1 msec.  This difference in conduction delays resulted from limitations imposed by the 
original implementation of the simulator.  Subsequent studies, using a more advanced simulator, confirmed that similar 
results to those reported here are obtained when a physiologically realistic model of axon conduction delays is em-
ployed19.  All other synaptic interactions were delayed by one time step, equal to 1 msec, representing a typical rise-
time for PSPs.  Equations were integrated using a direct Euler method.  Separate control studies confirmed that the 
model exhibited similar behavior regardless of the integration step size as long as the finite PSP rise time was modeled 
explicitly19.   

Fig. 1.  Cell types and major connections in the retinal model illustrated at
three spatial scales.  The model consisted of a 128×128 array of identical
local processing modules consisting of five cells types: bipolar (BP) cells,
small (SA), large (LA) and poly-axonal (PA) amacrine cells, and alpha
ganglion (GC) cells.  In each local module, there were 4 BPs, 4 SAs, 4
PAs, 1 LA and 1 GC (only one cell of each type is depicted).  Local Con-
nections: The BPs excited all four 3rd order cell types, but their input to the
PAs was very weak (not all connections depicted).  Amacrine cells made
three kinds of local inhibitory connections: Feed forward inhibition of the
GCs, feedback inhibition of the BPs, and serial inhibition among them-
selves.  The PAs were coupled by gap junctions to the GCs, the LAs, and
to each other.  Long-Range Connections: The PAs gave rise to long axons
that inhibited all cell types in the surrounding area, but most strongly con-
tacted the GCs and other PAs.  Explanation of symbols: Excitation (trian-
gles), inhibition (circles), gap junctions (resistors).  

 The input-output function for gap junctions was given by the identity: 
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where the dependence on the presynaptic potential has been absorbed into the definition of τ(k).   
 The input-output function for graded stochastic synapses, which did not require action potential spikes to pro-
duce PSPs, was constructed by comparing, on each time step, a random number with a Fermi-function: 
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where α sets the gain (equal to 4), r is a uniform random deviate equally likely to take any real value between 0 and 1, 
and θ is a step function, θ(x) = 1, x > 0; θ(x) = 0, x ≤ 0. 
 Finally, the input-output relation used to describe the conventional synapses made by the spiking axon-bearing 
amacrine cells was: 
 ( ) ( ))()(),( kkkk VVf ′′′ =

tt
θ . (4) 



 A modified integrate-and-fire mechanism was used to model spike generation.  A positive pulse (amplitude = 
10.0) was delivered to the cell on the time step after the membrane potential crossed threshold, followed by a negative 
pulse (amplitude = -10.0) after a delay of 1 msec.  It was necessary to explicitly model action potentials as these could 
affect neighboring cells via gap junctions.  The bias current, b, was incremented by -0.5 following each spike, and then 
decayed back to the resting value with the time constant of the cell, representing a relative refractory period.   
 Synaptic weights were modeled as separable Gaussian functions, with the total weight given by the product of 
two terms representing the dependence on either the horizontal (columns) or vertical separation (rows) between pre- and 
post-synaptic elements.  The horizontal weight factor, {W(k,k′)}i(k),j(k′), was determined by a Gaussian function of the fol-
lowing form: 
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which gives the synaptic weight between the presynaptic location j(k′) (the jth column in the array of cells of type k΄) to 
the postsynaptic location i(k)

 (the ith column in the array of cells of type k), α is a normalization factor which ensured 
that the total integrated synaptic input equaled W(k,k′), σ(k,k′) is the Gaussian radius of the interaction, and the quantity 
||i(k)−j(k′)|| denotes the horizontal distance between the pre- and post-synaptic columns, taking into account the wrap 
around boundary conditions employed to mitigate edge effects.  An analogous weight factor describes the dependence 
on the row separation.   
 The spatial extent of synaptic interactions depended on the input and output radii of the post- and pre-synaptic 
cell types, respectively.  Specifically, equation 5 was augmented by a cutoff condition that prevented synaptic interac-
tions beyond a specified distance, determined by the radius of influence of the presynaptic outputs and the postsynaptic 
inputs, corresponding to the axonal and dendritic fields, respectively.  A synaptic connection was only possible if the 
output radius of the presynaptic cell overlapped the input radius of the postsynaptic cell.  Except for the long distance 
connections made by the axon-bearing amacrine cells, the input and output radii were equal, reflecting the fact that in 
the retina the same processes are often both pre- and post-synaptic.  For the large amacrine cells and the ganglion cells, 

the radius of influence extended out to the centers of the 
nearest neighboring cells of the same type.  The radii of 
the bipolar, small, and axon-bearing amacrine cells 
(non-axonal connections only) extended only halfway to 
the nearest cell of the same type.  Explicit values for 
model parameters are listed in tables 1 and 2. 

TABLE 1 
CELLULAR PARAMETERS 

 τ b n×n d σ 

BP 10.0 −0.0 64×64 0.25 0.25 

SA 25.0 −0.5 64×64 0.25 0.25 

LA 20.0 −0.25 32×32 1.0 0.5 

PA 5.0 −0.025 64×64 0.25/9.0a 0.25/3.0a

GC 5.0 −0.025 32×32 1.0 0.5 
 
Table 1.  Explanation of symbols: τ: time constant (msec); b: 
bias; n×n: array size; d: cutoff radius, σ: Gaussian radius (see 
eq. 5).  aInner radius/outer radius.   

2.3. Spike Train Analysis 
 Spike trains 4.936 seconds in duration (the first 
64 msec of simulated activity was not analyzed to avoid 
startup artifacts) were obtained either from single gan-
glion cells or from clusters of 4 neighboring ganglion 
cells arranged as non-overlapping 2×2 arrays.  The sin-
gle or multi-unit spike trains were analyzed as follows.  
Mean firing rate: Mean firing rates were determined by 
counting the number of spikes and normalizing by the 
length of the recording interval and by the number of 
cells included in the spike record.  A binary firing rate 
mask was constructed by defining a threshold, equal to 3 
standard deviations above the mean firing rate obtained 
by averaging over all spike trains across the entire im-
age.  Gamma-band activity: Spike trains were Fourier 
transformed and the peak spectral amplitude in the upper 
gamma band, 60-120 Hz, was determined.  A binary 
gamma-band activity mask was constructed by defining 
a threshold, equal to 3 standard deviations above the 
mean gamma-band activity obtained by averaging over 



all spike trains.  Gamma-band activity 
was only evaluated for the multi-unit 
spike trains. 
 For all image locations exceed-
ing the gamma-band activity threshold, 
cross-correlation histograms (CCHs) were 
computed between all pairs of multi-unit 
spike trains and the result expressed as a 
fraction of the baseline correlation ampli-
tude due to chance.  Typically, correla-
tions between spike trains drawn from 
different stimulus trials (shift predictors) 
are subtracted to eliminate the contribu-
tion from stimulus coordination24.  How-
ever, this manipulation was not necessary 
for the long, stationary spike trains ana-
lyzed here.  CCHs were plotted as a func-
tion of the delay after averaging over all 
events occurring during the analyzed por-
tion of the response (64-5,000 msec).  For 
each delay value, this average was com-
pensated for edge effects arising from the 
finite length of the two spike trains (lag 
corrected).  All rate and correlation meas-
ures used a bin width of 1 msec.   
 To obtain a functional connec-
tivity matrix, the individual CCHs were 
Fourier analyzed and the peak spectral 
amplitude in the upper gamma-band was 
determined.  Whenever the gamma-band 
oscillations at two image locations were 
strongly phase locked, there was pro-
nounced periodic structure their CCH and 

thus a pronounced peak in the corresponding frequency spectra in the upper gamma band.  On the other hand, for image 
locations whose oscillations were not phase locked, the CCH was essentially flat and the peak spectral amplitude in the 
upper gamma band was negligible.  The peak spectral amplitude in the CCH, computed between all image locations 
exhibiting significant gamma band oscillations, therefore provided a measure of the effective or functional connectivity 
between any pair of output pixels. 

TABLE 2 
SYNAPTIC WEIGHTS 

 L BP SA LA PA GC 

BP 3.0a * -0.375b 3.0b −3.0b/−15.0c * 

SA * 3.0b * -3.0b  0.0b/−15.0c * 

LA * 3.0b * 0.25a −3.0a/−15.0c * 

PA * 0.75b −0.75b 0.25a 0.25a/−45.0c 0.25a

GC * 9.0b −4.5b −4.5b 0.25a/−270.0c * 
 
Table 2.  Each term represents the total integrated weight (the quantity W(i,i′) in 
eq. 5) from all synapses arising from the corresponding presynaptic type (col-
umns) to each cell of the corresponding postsynaptic type (rows).  The first col-
umn, labeled L, denotes connections made by the external stimulus.  Asterisks (*) 
indicate the absence of a corresponding connection.  Synapse type indicated by 
superscript: agap junction, bgraded synapse, cconventional synapse. dMaximum 
coupling efficiency (ratio of post- to pre-synaptic depolarization) for this gap 
junction synapse: DC=11.3%, Action Potential=2.7%. 

2.4. Eigenvalue Analysis 
 
 The effective connectivity matrix, each element of which was given by the peak spectral amplitude in the CCH 
computed between the corresponding 2×2 clusters of ganglion cells, was analyzed to determined its largest eigenvalues 
and corresponding eigenvectors.  The effective connectivity between pairs of output pixels was set identically to zero if 
the local oscillatory power at either or both image locations did not exceed the gamma-band activity threshold.  For the 
example image analyzed below, the fraction of output pixels exceeding the local gamma band activity threshold was 
relatively small, so that the resulting functional connectivity matrix was sparse.  An additional mask was used to reduce 
the effective connectivity matrix to only those elements that exceeded a threshold value, set here to 0.425 times the 
maximum spectral amplitude across all matrix elements.  Although the first mask, based on local gamma-band activity, 
was made redundant by this second mask, the first mask was nonetheless important for computational efficiency be-
cause it allowed us to avoid evaluating the CCH between all pairs of output pixels.  Sparse matrix analysis methods 
(Matlab) were used to extract only the 100 largest eigenvalues and corresponding eigenvectors.   
 



3. RESULTS 
 
To explore the dynamic segmentation of gray scale images, we simulated retinal responses to a scene containing several 
well separated objects, in this case an overhead view of airplanes parked on a runway (fig. 2, top).  The picture was 
taken in a spectral band in which the foreground/background contrast was very high.  Ignoring for the moment signals 
encoded by gamma-band oscillations, the output of the retinal model could be assessed by counting the number of 
spikes from each output neuron, or ganglion cell, over approximately five seconds of simulated activity (fig. 2, bottom 
left).  This analysis window is longer than typical behavioral time scales, but allowed us to better examine the underly-
ing code in the absence of substantial single trial variability.  The convergence from input pixels to ganglion cells in the 
model was 4:1, accounting for the reduced spatial resolution of the retinal output compared to the input image (128×128 
vs. 256×256 pixels, respectively).  Due to the contrast enhancement produced by lateral interactions between retinal 
neurons, faint image features are accentuated in the processed output, resulting in an amplification of fine details despite 
the reduced spatial resolution.  Contrast enhancement via lateral inhibition has long been recognized to be an important 
aspect of retinal processing25, 26. 
 While alpha ganglion cells in the cat retina are known to convey information about local contrast in their mean 
firing rates27, the same cells may simultaneously convey additional information in the form of high frequency, or upper 
gamma-band, modulations.  We therefore compared the image reconstructed from the mean spike rate alone with that 
reconstructed from the gamma band oscillations about the mean firing rate.  To magnify the contribution from coherent 
activity with zero phase lag, the output spike trains were combined into 2×2 arrays of neighboring ganglion cells in 
which non-phase-locked high frequency components would tend to cancel out.  The combined spike trains from the 2×2 
clusters of neighboring ganglion cells were Fourier analyzed and the results presented as a filtered image in which the 
intensity of each pixel was proportional to the peak spectral amplitude in the upper gamma band, between 40 and 120 
Hz (fig. 2, bottom right).  For comparison, the information conveyed by the mean firing rate is shown at the same reso-
lution, so that both images were 64×64 pixels.  Comparing the image reconstructed from a pure rate code with that re-
constructed from the local gamma-band activity, it is apparent that coherent oscillations exaggerate large image features 
at the expense of fine spatial detail.   
 To read out the dynamic segmentation implicit in the degree of phase locking between different image regions, 
we performed the following analysis.  We began by masking all 2×2 clusters of neighboring ganglion cells (output pix-
els) whose oscillations exceeded a threshold level, defined as three standard deviations above the mean peak spectral 
amplitude in the upper gamma-band across all output pixels in the image.  CCHs were then computed between every 
pair of output pixels whose local oscillatory amplitude exceeded this threshold.  Finally, each pairwise CCH was Fou-
rier transformed and the peak spectral amplitude in the upper gamma band used to define an effective functional con-
nectivity.  The resulting functional connectivity matrix thus represented the degree of phase locking between all pairs of 
output pixels exhibiting significant local oscillations.  When one of both members of a given pair of output pixels did 
not exhibit significant local gamma-band oscillations, the corresponding functional connectivity was set identically to 
zero, as were the elements along the diagonal.  In addition, all elements of the functional connectivity matrix below 0.45 
times the amplitude of the largest element were also set to zero.  Thus, the resulting functional connectivity matrix was 
sparse, allowing a computationally efficient extraction of the eigenvalues and eigenvectors (Matlab).   
 The eigenvectors associated with the nine largest eigenvalues of the functional connectivity matrix were very 
consistent with the nine airplanes in the original image (fig. 4, Top).  This result is reasonable, since in the limiting case 
in which a finite functional connectivity only exists between pairs of output pixels belonging to the same airplane, the 
corresponding functional connectivity matrix would be of block diagonal form.  An examination of the eigenvalue dis-
tribution reveals a sharp fall off beyond the first nine values (fig. 4, Bottom).  A cutoff equal to ½ the amplitude of the 
largest eigenvalue would have been sufficient to automatically segment the original image into its primary components.  
It may be possible, in general, to compute an optimal cutoff from an appropriate analysis of the eigenvalue distribution, 
but we have not explored this issue in detail.   
 Finally, we consider the segmentation of the same image obtained using a watershed algorithm28-30 imple-
mented at a single scale appropriate to the objects in the image (fig. 5).  For the most part, the watershed algorithm did 
an adequate job of segmenting the nine airplanes.  However, the watershed algorithm also detected one spurious seg-
ment, presumably due to the fact that after smoothing, there was sufficient contrast between the segmented region and 
the adjacent area that it retained its own "identity", whereas the rest of the runway tarmac was smoothed enough to be-
come "homogenized" into one segment.   



Original Image (256×256) 

Retinal Output (128×128) 
Mean Rate 

(64×64) 

Gamma Band 
(64×64) 

Fig. 2.  Retinal filtering.  Top: Original image. Bottom Left: Rate-coded retinal output (1:4 resolution).  Pixel intensity proportional
to the mean firing rate.  Each output pixel represents one ganglion cell.  The mean firing rate enhances fine image details.  Bottom
Right: Information encoded by the mean firing rate vs. information encoded by gamma-band oscillations (1:16 resolution).  Local
gamma-band activity measured as the peak spectral amplitude between 40-160Hz.  Each pixel represents the combined output from a
2×2 array of neighboring ganglion cells.  Gamma-band activity enhances large image features at the expense of fine spatial details. 
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Fig. 3.  Dynamic segmentation.  Cross-correlation histo-
grams (CCHs) were computed between spike-trains re-
corded from indicated image regions.  Only gamma-band
oscillations arising from regions belonging to the same
object are phase locked.   

 
4. DISCUSSION 

 
 High frequency oscillatory potentials (HFOPs) are 
ubiquitous in the vertebrate retina.  One clue to their function 
is the strong stimulus-specificity exhibited by HFOPs re-
corded simultaneously at separate retinal locations.  Here, we 
have used a computer model to explore the segmentation in-
formation implicit in the degree of phase locking between 
HFOPs evoked by either the same, or by separate, objects.  It 
has been previously shown that the HFOPs produced by the 
retinal model, which is based on axon-mediated feed circuits 
back consistent with retinal anatomy, are of the same general 
frequency, amplitude, and duration—as measured by the per-
sistence of side-peaks in the CCH—as HFOPs recorded ex-
perimentally.  Moreover, given the high level of synaptic 
noise in the model, the principal characteristics of phase lock-
ing behavior reported here should reflect general dynamical 
properties of the axon-mediated feedback circuit rather than 
precise details of the implementation.   
 The present results affirm our previous observations 
that model generated HFOPs recorded at separate retinal loca-
tions remain phase locked whenever there is a continuous path 
of stimulated cells between them.  This finding suggests that 
the one topological parameter encoded by phase locked 
HFOPs is connectedness.  In principle, topological informa-
tion encoded by the degree of phase locking between retinal 
HFOPs could be read out by downstream neurons.  For exam-
ple, HFOPs arising from simply connected regions of the vis-
ual space would add in phase, and thus might produce larger 
responses than HFOPs arising from non-connected regions, 
which would add with random phase.  Sensitivity to synchro-
nous input has been demonstrated in visual cortical neurons31, 
suggesting that retinal HFOPs might contribute to the detec-
tion of contiguous features.  Retinal HFOPs may also influ-
ence the development of intra-cortical connections via spike-
timing-dependent-plasticity (STDP)32.  By causing regions 
responding to the same object to oscillate in phase, retinal 
HFOPs may contribute to the development of appropriate fea-
ture detectors in the visual cortex. 
 The main novel finding reported here is that the seg-
mentation information encoded implicitly by the degree of 
phase locking between separate retinal locations can be ex-
plicitly extracted by standard methods for obtaining the eigen-
values and eigenvectors of large, sparse matrices.  By using 
real, as opposed to computer-generated images, we have fur-
ther demonstrated that the segmentation information implicit 
in retinal oscillations is not confounded by fine image details.  
Indeed, HFOPs are not sensitive to fine spatial structure, but 
rather require big, simply connected, high contrast patches of 
illumination in order to be strongly activated.   
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Fig. 4.  Eigenvalue analysis of the functional connectivity matrix.  Top: Eigenvectors corresponding to the 9 largest eigenvalues of
the functional connectivity matrix.  Elements of the functional connectivity matrix determined by the peak spectral amplitude in
the CCH, computed between every pair of image locations exhibiting significant gamma-band oscillations.  Individual eigenvec-
tors, enumerated from largest to smallest, were consistent with the primary objects in the original image.  Bottom: Eigenvalue
distribution.  A bar graph of the largest 20 eigenvalues exhibits a sharp discontinuity between the 9th and 10th eigenvalues.  A
threshold equal to ½ the amplitude of the largest eigenvalue would have automatically segmented the image into 9 primary ob-
jects.  Inset: Distribution of the first 100 eigenvalues. 



 Admittedly, the image we analyzed here did 
not pose a particularly difficult segmentation prob-
lem, consisting as it did of only a few, well-separated 
objects.  Our previous investigations suggest that if a 
more complex scene had been employed, especially 
one containing multiple overlapping objects separated 
by long, low-contrast borders, the segmentation pro-
duced by the retinal model would have been signifi-
cantly worse.  The main heuristics the retina uses for 
accomplishing a dynamic segmentation are size and 
contiguity.  In situations where these simple heuristics 
are insufficient to distinguish between the individual 
objects in the scene, the segmentation accomplished 
by the retina is likely to be correspondingly poor.  In 
higher mammals, it is undoubtedly the job of the vis-
ual cortex to segment a more general class of images 
than can be adequately processed at the level of the 
retina.  Nonetheless, the initial segmentation accom-
plished by the retina may facilitate subsequent corti-
cal processing.    
 From a more general point of view, the pre-
sent results illustrate the application of biological 
processing strategies to conventional problems in 
automated image analysis.  Although our present 
findings are based entirely on retinal circuitry, similar 
phenomena are observed throughout the visual cor-
tex33.  While the performance of a relatively simple 

structure, such as the retina, may be only marginally superior to that of conventional image processing technology on a 
particular task, such as segmentation, it is very likely that models of more complex biological circuits, such as the visual 
cortex, will exhibit capabilities that far exceed what is currently attainable by engineered systems.  Moreover, such bio-
logically based algorithms are naturally parallel, in the sense that the segmentation information is computed in a distrib-
uted fashion “simultaneously” across the network, although the extraction of eigenvalues/eigenvectors may be inher-
ently serial.  

 
Fig. 5.  Watershed Algorithm.  A watershed algorithm produced a
comparable segmentation of the original image, although a spurious
feature on the tarmac was also extracted.   
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