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ABSTRACT 

Independent Component Analysis can be used to analyze cluttered scenes from remote sensing imagery and to detect 
objects. We show examples in the thermal infrared spectral region (8-12 µm) using both passive hyperspectral data and 
active multispectral data. The examples are from actual field data and computer simulations. ICA isolates spectrally 
distinct objects with nearly one-to-one correspondence with the independent component basis functions, making it 
useful for modeling the clutter in typical scenes. We show examples of chemical plume detection in real and simulated 
data. 
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1. INTRODUCTION 

Hyperspectral and multispectral imaging in the infrared region are widely used for landcover classification of natural 
and urban scenes. 1 In the thermal or longwave IR region of the spectrum (approx. 8-12 µm), objects are identified by 
their thermal emission, rather than their reflective properties as in the visible region (0.4-0.7 µm). 2 Independent 
Component Analysis (ICA) offers a comparatively new way to extract spectral features in an unsupervised manner, 
without knowing a priori what the spectra should look like. In some applications, one searches for an object with a 
known spectral signature against an unknown cluttered background. ICA offers a way to model the cluttered 
background so that the desired signature can more easily be discriminated from the clutter. Unsupervised analysis of 
this sort is similar to Blind Source Separation (BSS), for which ICA has proved very successful. 3,4 
 
ICA has previously been applied to hyperspectral and multispectral remote sensing problems in the vis-SWIR spectral 
regions. 5-8 It has also been implemented in chemical analysis and quantification for complex mixtures in analytical 
chemistry applications. 9 We have a particular interest in remote chemical detection using both passive and active (lidar) 
sensors in the thermal IR. In these applications, the chemical has a known spectral signature and overlays the 
background clutter as a plume or cloud in an unknown spatial region of the scene. It is important to model the clutter as 
accurately as possible even though identification of the clutter components is not the primary goal. The plume modifies 
the background by absorption or emission of radiation in selected pixels, producing "on-plume" and "off-plume" regions 
of the scene.  

2. PASSIVE SENSING DATA 

In order to investigate the utility of ICA as a clutter modeling technique, we apply it to an example of data acquired at 
Los Alamos National Laboratory. 10 The sensor looks horizontally at a natural scene with canyons, mesa, mountains, 
and sky at the top (Fig. 1). The atmospheric path varies from ~2 km to ~20 km for the topographical features. At each 
pixel in Fig. 1, the radiance averaged over all wavelengths is plotted. There are 300 X 85 pixels in the data, with 116 
spectral channels from 750 cm-1 to 1248 cm-1. We performed ICA on this data using the FastICA algorithm of 
Hyvärinen et al. 3,4 The resulting IC images are shown in Fig. 2. (Grayscale value corresponds to the "ICA signal." 3) 
Principal component (PC) images are shown in Fig. 3. In the ICA, dimension reduction was first performed by PCA to 
20 variables. Options chosen for the calculation are symmetric decorrelation, nonlinear function g(y)=y exp(-y2), and 
stabilization turned on, 3 although these do not appreciably affect the final result. 



 
Figure 1. Image from a thermal infrared hyperspectral sensor. The mean value over all wavelengths is plotted for each pixel. 
The image size is 300 X 85, and there are 116 spectral channels. 
 

 
Figure 2. Independent component images for the data of Fig.1.  

 
Figure 3. Principal component images for the data of Fig.1, ordered by decreasing eigenvalue. 

Image of PC 1 Image of PC 2 Image of PC 3 Image of PC 4

Image of PC 5 Image of PC 6 Image of PC 7 Image of PC 8

IC 1 IC 2 IC 3 IC 4

IC 5 IC 6 IC 7 IC 8



 

 
Figure 4. (Top) Independent component basis vectors for the data of Fig. 1. The vector magnitudes are listed in the lower left corner. 
(Bottom) Principal component eigenvectors. The x-axis ranges from 750 to 1248 cm-1. 
 
There are some interesting aspects of the IC images that merit comment. A few very distinct elements of the clutter 
appear mostly in one IC image. The sky is restricted to IC 1, a powerline crossing the bottom is in IC 7, the exposed 
rock above a roadcut is in IC 8, and another type of rock is highlighted in IC 2. A small unidentified man-made object is 
IC 5 as just a few pixels. These objects have either distinct spectra or a different overall radiance (due to temperature or 
emissivity). By contrast, PCA generally highlights these objects in multiple PC images (e.g. the powerline is noticeable 
in PC 1, 2, 7 and the sky in most of the PCs).  
 
ICs 4 and 6 are mostly confined to single rows of the image, which is likely traceable to a sensor artifact – a 
miscalibrated pixel or row of pixels on the sensor array, for example. This artifact is also detected by PCA in PC 8 and 
noticeable to some extent in a few other PC images. Overall, however, ICA seems to do a better job of highlighting 
distinct objects in separate components, which one would expect from ICA's use of statistical independence in the data. 
Other examples of airborne data not shown here confirm this. 
 
The basis vectors obtained by ICA that correspond to these images also show differences from PCA, as seen in Fig. 4. 
The spectral shapes of the basis vectors appear to be close to physically reasonable representations of emission spectra 
(or brightness temperature curves) of typical scene elements such as construction materials and vegetation. Most real –
world materials have slowly varying spectra from 750-1300 cm-1 without sharp features. (For gas-phase chemicals, by 
contrast, sharp features are common.) The PCA results are more difficult to interpret, in accordance with Schott's 
remark that "PCA equates variance with information." 1 The PC basis vectors 1-4 are actually somewhat similar to the 
first four ICs, but there are clearly un-physical sharp features and oscillations present in PCs 5-8. PCA provides a 
suitable orthogonal basis set to describe scene clutter, but individual PCs do not have a one-to-one correspondence with 
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actual scene elements. A similar comparison of ICA and PCA basis vectors has been reported for visible-wavelength 
data using cluttered natural scenes. 7  
 
Note that the very fine sharp structure in Fig. 4 in both IC and PC basis vectors is due to atmospheric transmission and 
upwelling. There is a pronounced ozone dip at 1000-1100 cm-1 that is repeated in most of the components. Atmospheric 
compensation (removal of the sharp structure by estimation of the atmospheric composition) 2 may be able to remove 
these features from the IC spectra. Since the sensor looks along a horizontal path and over such a large range of 
horizontal distances, atmospheric compensation would be very difficult. 

SIMULATED PASSIVE SENSING DATA 

We can obtain considerable insight into the behavior of ICA with hyperspectral infrared data by synthesizing data with 
cluttered scenes. By choosing the number of clutter components and their spatial location, we can visually assess the 
performance of the algorithm in identifying the materials present. We simulated a hyperspectral datacube with similar 
spectral characteristics to the field data of Fig. 1. A scene was constructed using 8 typical materials (types of asphalt, 
concrete, brick, roofing shingle, paint, tar paper, wood), for which spectra were taken from a library. They were arrayed 
in patches as shown in Fig. 5 (top). Emission spectra were calculated for a uniform scene temperature. We added 
realistic atmospheric transmission and upwelling to the data, although it does not affect the analysis very much. The 
pixels were then mixed randomly in proportions of 0-60% by adding in radiance spectra of different materials selected 
from the group of 8. In other words, a pixel in the first patch of the scene will have 40-100% of the character of the first 
material in the list, and varying amounts of the other seven materials, with amounts chosen randomly from pixel to 
pixel. The result is a scene with a small number of "pure" pixels and a large number of thoroughly mixed pixels. A 
small amount of Gaussian random noise (<1%) was added to simulate instrumental effects. 2 The synthesized datacube 
has 128 × 250 pixels and 128 wavelengths in the same spectral region as the field data of Fig. 1. 
 
ICA was performed on the simulated data and yielded the IC images shown in Fig. 5 (middle panel). PCA yields the 
images in the lower half of the figure. For the ICA result, the data dimension was first reduced to 8 principal 
components, but the choice is not critical. For Fig. 5, the nonlinear function was chosen as g(y) = y3  in the FastICA 
routine. 3 Within each patch of the scene, some graininess is apparent in the IC signal that reflects the random mixing of 
the pixels by the simulation.  
 
Each IC image seems to be binary, highlighting one of the 8 clutter components while representing all of the others as 
equivalent. (The highlighted patch may be either dark or light, since the sign of the independent components is 
arbitrary.3,4) The IC images are good "detectors" of the individual components of the clutter. For the PCA images, 
however, there is far less selectivity. PCA detects the spatial location of each image patch quite well, but every PC 
image highlights multiple components of the clutter (and usually all of the components). 
 
The FastICA algorithm provides several choices for the nonlinear function g(y) that is used in the approximation of non-
Gaussianity of the data. A full explanation is provided by Hyvärinen et al. 3,4 If we choose g(y) = tanh(y), we obtain a 
result with some interesting differences, seen in Fig. 6. In this case, ICA again does a good job of highlighting the 
components of the clutter, but it highlights them in pairs instead of singly. In each case, the highlighted components are 
given large and small values of the IC signal, while the rest of the scene is assigned a middle value. One particular 
clutter component is repeated in each image. Only 7 ICs are needed to encompass the 8 components, so the eighth IC is 
just noise. This still stands in stark contrast to the PCA result (Fig. 5, bottom panel). We have seen other variations 
depending on the optimization algorithm, highlighting three components in a single IC image. 
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Figure 5. (top) Map of material locations used to construct synthetic scene. The gray scale is simply qualitative and does not refer to 
radiance. (middle) IC images for the synthetic data. The graininess is caused by random mixing at each pixel. The nonlinear function 
used was g(y) = y3. (bottom) PC images of the same data. 

Albedo map



 
Figure 6. IC images similar to Fig. 5 (middle panel), but using the nonlinear function g(y) = tanh(y). Note how the distinct patches in 
the scene are highlighted in pairs with opposite signs. 

3. CHEMICAL PLUME DETECTION WITH ICA 

Both ICA and PCA provide ways to account for the clutter in hyperspectral infrared data. We can make use of these 
basis vectors to detect targets in the clutter that are only weakly present. By weak, we mean that they are either very rare 
in the scene or they only weakly modify the background radiance. A chemical plume is usually of the latter sort. A 
simple way to make use of the ICA basis vectors in target detection is to perform a least-squares fit of the known target 
signature d together with some number of IC basis vectors ai, where the ICs account for the background radiance at 
each pixel as necessary. Collecting d and the ai in the matrix U = [d a1 a2 .....    ai 1] with a column of ones, we find the 
fitted coefficient of the chemical β1 from ordinary least squares applied to the original data vectors x: 

 ( ) 1−
= T Tβ U U U x  

We prepared a simulated datacube just as described above and overlaid a chemical plume on it. The chemical chosen 
(Freon 134) has chemical absorption features throughout the 750-1300 cm-1 region. The amount of chemical and its 
temperature contrast (Tplume – Tground) were adjusted to make the radiance change just barely perceptible. Figure 7 
contains images of the chemical coefficient, β1. At least 6 basis vectors are needed to begin seeing the plume reasonably 
well. With 7 IC basis vectors, the background patches are "nulled out" almost completely and the rectangular plume can 
be seen equally well above all background patches. At an intermediate stage, using only a few ICs in the fit, these 
patches are evident in the result with high contrast, suppressing the plume almost completely. 

 
Figure 7. Detection of a weak chemical plume in the synthetic scene. The known chemical spectrum was fitted to the observed 
spectrum at each pixel simultaneously with IC basis vectors. The number of ICs used in the fit was 1,4,6,7 from left to right. The very 
weak chemical plume is apparent in the last image as a rectangular feature close to the left edge of the scene. Results using PC basis 
vectors were very similar. 
 
A similar chemical detection procedure using PCA to generate basis vectors has been described previously. 11 This is 
effectively equivalent to orthogonal subspace projection. 12 We tried PCA on our simulation and obtained a very similar 



result to Fig. 7. Matched-filter detection 13 also gives similar results, using the full scene to generate the covariance 
matrix for use in the filter. We are currently exploring other ways to make use of the ICA basis to effectively 
characterize the clutter, thereby enabling better weak target detection. 
 
We also performed ICA on strong plumes in the scenario of Fig. 7. We verified that ICA "detects" the plume simply as 
one of the distinct components in the data, i.e. without even using the chemical signature. In some circumstances, the 
chemical plume appears in only one IC image, separated from the background clutter. However, as the strength of the 
plume is reduced, this approach fails. The strong plume case, with an obvious radiance signature, is far less challenging 
than the weak plume case. Very simple techniques such as plotting the ratio of wavelengths, using on-peak and off-peak 
wavelengths, will readily detect a strong plume. 

4. CHEMICAL DETECTION IN LIDAR IMAGERY 

Lidar images are also amenable to ICA. A more complete description of this experimental approach is in previous 
papers. 10,14 The lidar system generates an image of a cluttered scene that is almost the same as a passive infrared sensor, 
except that the image is produced by object reflectance spectra rather than thermal emission spectra. We set up a 
chemical plume release in a natural scene, using a very dense plume in light winds. The very strong chemical plume of 
SF6 gas was detected by absorption of the CO2 laser radiation. ICA gives images as shown in Fig. 8. Since this is an 
example of a strong plume with peak absorption of ~90%, ICA exhibits the plume as simply a distinct component of the 
data. The third IC also shows the vertical release pipe that was used to generate the plume. (Note again that components 
may be either light or dark since sign is arbitrary. 3,4) 

 
Figure 8. IC images of lidar data on a chemical plume. The first IC shows a strong chemical plume rising near center and fading out 
to the left, and the third shows the chemical release stack. Other ICs are associated with landscape features. 
 
We also note that in images without a chemical plume, the ICA signal is associated with scene components in a manner 
quite similar to the K-means clustering approach discussed in our previous paper. 14  

5. DISCUSSION 

The failure to recognize the qualitative differences between strong plume and weak plume detection has caused some 
confusion among researchers.  When the plume is strong, it becomes observable as a major component of the scene.  
Simple unsupervised classification methods can then be used for detection with no need even to know the chemical 
signature of the plume.  For example, applying ICA to a scene with a strong (and relatively large) plume often results in 
a "plume component" -- a single ICA component in which the plume alone is highlighted.  Projection pursuit, a 
technique with some similarities to ICA, has been successfully used to detect a gaseous plume in hyperspectral infrared 
data, but the signal was in the strong-plume regime. 15 In the weak plume case, the plume is too subtle a feature for this 
to work.  The chemical signature of the plume is crucial information in this regime, and is typically used in matched-
filter detection 13 or a multiple regression of the chemical along with some set of basis vectors that account for the 
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background clutter. 11 A plume that is weak and present in only a small number of pixels is a problem similar to 
subpixel target detection for solid objects in a scene. 16 Weak plumes are expected to be associated with radiance 
changes of a few percent or less from on-plume to off-plume pixels.  In this case, ICA is not used to find the plume, but 
to characterize the clutter in an effective manner so that matched filter approaches 13,17 can be used to more effectively 
locate and characterize the plume. 
 
The tendency for ICA to produce coordinates which highlight specific spectral features of the data leads to components 
that act almost like a partition of the data.  ICA is not a clustering algorithm, but this feature that is often exhibited by 
ICA solutions provides an informal sense that ICA directions are "more physical" than, for instance, the directions 
produced by PCA.  This is not a mathematical statement, but it motivates the use of ICA in physical retrievals from 
remote sensing imagery. 
 
ICA in its ordinary form is not necessarily well suited to unmixing of hyperspectral data, as others have commented. 18 
The ICA basis vectors will not necessarily match the pure components. 8 We found this to be true in our simulations. 
However, if one wishes to use the ICA basis vectors to detect weak targets in a scene (such as a chemical plume), the 
basis vectors are useful even if not perfectly matched to the scene components. Whether they are more useful than PCA 
components remains to be seen. Variants of ICA that have been described by others 5,8 may be useful in thermal IR 
imagery where independence of the data is not completely satisfied. 

6. CONCLUSIONS 

The limited examples displayed in this paper demonstrate that ICA is able to extract spectrally distinct features from 
cluttered scenes produced by passive and active sensors. Similar results have been reported for sensors operating in the 
reflective regions of the spectrum. 5-9 Our results show utility in the thermal IR region. Images of the ICA output for the 
extracted components show qualitative differences from PCA in the sense that individual objects are highlighted 
separately, at least in some cases. There are many more materials present in the data of Fig. 1 that were not separated 
successfully, so there are limits on this methodology. Instrument artifacts (e.g. bad pixels or faulty radiance calibration) 
are also revealed in the independent component images, which could be a problem or an opportunity to at least detect 
them.  
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