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Abstract—The application of resonant acoustic spectroscopy to rock, building materials, and materials with
cracks is hindered by the substantial mechanical losses in these materials and by the overlapping of the individ-
ual resonance responses. The paper describes a method for the determination of the resonance frequencies in
low-Q materials in the presence of a strong overlapping of resonances. The effect of cracks on the values of the
resonance frequencies and Q factors is studied experimentally. © 2003 MAIK “Nauka/Interperiodica”.
Resonant acoustic spectroscopy (RAS) has received
wide acceptance as a method for measuring the elastic-
ity tensors of various samples [1]. A detailed descrip-
tion of RAS methods along with examples of their
application can be found in [1–3]. The high accuracy of
this technique has made it a popular instrument for
solving a wide variety of problems. For example, RAS
is used for analyzing such effects and parameters as dis-
sipation mechanisms in solids [4], phase transitions in
superconducting materials [5], the mobility of disloca-
tions in a crystal lattice [6], the structures of polycrys-
talline bodies [7] and composites [8], the effect of the
treatment of a material on its microstructure [9], and the
elastic moduli of the third order [10]; RAS is also used
for estimating the grain size in a structurally inhomoge-
neous medium [11]. One of the most important areas of
application of RAS is the nondestructive testing of
materials [12–14].

Initially, RAS methods were developed for measur-
ing the properties of crystals, e.g., for the determination
of the specific heat of crystals or the detection of phase
transitions in them. Such samples are almost free of
internal defects, and, hence, the mechanical losses in
them are small. Each resonance observed on these sam-
ples manifests itself as a sharp peak. The position of
each peak in the frequency spectrum of the response
determines a resonance frequency, and the width of the
peak indicates the Q factor. This method of measuring
the resonance frequencies and the Q factors enjoys
wide application [1].

As for the resonant acoustic spectroscopy of com-
posite and structurally inhomogeneous materials, the
main obstacle here is the overlapping of individual res-
onance responses, which hinders the resolution of res-
onances and makes it impossible to obtain the required
accuracy when using this method for nondestructive
testing [15]. Unlike crystals, the composites and struc-
1063-7710/03/4901- $24.00 © 20081
turally inhomogeneous media (such as rock or building
materials) are characterized by great numbers of inter-
nal defects and, hence, by high mechanical losses. As a
result, the resonances do not manifest themselves as
separate peaks, and the measurement of the resonance
frequencies and Q factors by the conventional RAS
technique is rather difficult. In the recent publication
[16] (by one of the authors of this paper), the matched-
filter processing of the experimental data was proposed
as a method to determine the resonance frequencies and
the Q factors in acoustic spectroscopy. In another pub-
lication [17], this method was shown to provide a high
accuracy in measuring the elastic constants, including
the cases when the conventional technique (the identi-
fication of the peaks) fails.

In the present paper, matched-filter processing is
used to determine the resonance frequencies and the Q
factors for materials with high concentrations of inter-
nal defects and to estimate the effect of cracks on the
values of the resonance frequencies and Q factors at
fracture. The first section briefly describes (on the basis
of [16]) the method of the determination of the reso-
nance frequencies and the Q factors of the samples; the
second section describes the experimental setup and the
scheme of measurements; and the third section dis-
cusses the results.

RESOLUTION OF OVERLAPPING RESONANCES

For the methods under consideration, the usual
approach is the minimization of the mean square devi-
ation of the measurement data from some selected
physical model whose parameters are to be determined.
In analyzing the linear response of a mechanical vibra-
tory system with many degrees of freedom (modes), it
is natural to choose a model in the form of the superpo-
sition of individual resonances. Then, the complex
003 MAIK “Nauka/Interperiodica”
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transfer function (TF) being defined as TF(ω) =
Aout(ω)/Ainp(ω), where Ainp(ω) and Aout(ω) are the com-
plex amplitudes of the input and output signals propor-
tional to the force and the displacement, respectively,
should be represented in the form

(1)

Here, M is the number of resonances in the frequency
range under consideration (ωmin < ω < ωmax), p = iω,

G( p, δl, ωl) =  is the response for the lth

resonance, δl is the corresponding loss factor, and ωl is
the corresponding frequency. Function (1) describes the
response of an arbitrary linear vibratory system in the
frequency domain [18]. Let us assume that we know N
values of the transfer function at the frequencies pn =
i(ωmin + 2π∆fn/N ), where 0 ≤ n ≤ N, ∆f = (ωmax –
ωmin)/2π is the frequency range in which the experi-
mental data are given, and ∆f/N is the frequency resolu-
tion of the transfer function. Then, the finite parameters
of model (1), i.e., the number of resonances, their fre-
quencies and amplitudes, and the loss factor, should
provide the minimal mean square deviation of the mea-
sured (or given) values of TFexp( pn) from the results of
calculation by Eq. (1). We set the variations of the
square magnitude of the corresponding difference with
respect to Al equal to zero to obtain a system of linear
equations for the amplitudes of the responses:

(2)

where Ckl = (pj, δk, ωk)G(pj, δl, ωl) and Dk =

(pj, δk, ωk)TF(pj).

To determine the resonance frequencies ωl and the
loss factors δl in model (1), we use the modified meth-
ods of linear prediction in the time domain (see, e.g.,
[19]). To change from the frequency domain of defini-
tion of the transfer function to the time domain (the
pulse response), we use a discrete Fourier transform, so
that the array of equidistant readings in the frequency
domain TF(pn) is put in correspondence with an array of
the readings ζn equidistant in time. The deviation of the

predicted value of ζn from the measured one  is
minimized as follows [19]. We determine a characteris-

tic polynomial H(z) = 1 +  with z = exp((–δ +
iω)/∆f ). The polynomial coefficients represent the solu-
tion to the system of equations

(3)

TF p( ) AlG p δl ωl, ,( ).
l 1=

M

∑=

1

p2 2δl p ωl
2+ +

-----------------------------------

CklAl Dk,=

G*
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hkz
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k 1=
L∑

a jkhk b j+ 0,=
where ajk = ζL – k + j , bj = ζL + j , j = 1, 2, …, N – L, k = 1,
2, …, L, and L ≥ M. The zeros of the polynomial H
[H(zl) = 0, zl = exp((–δl + iωl)/∆f )] coincide with the
poles of expression (1) (see [16, 19]). As a result, the
mean square deviation of the measured data from the
data obtained using model (1) with the corresponding
set of parameters (ωl , δl) and with the amplitudes Al sat-
isfying Eq. (2) proves to be minimal.

In the absence of losses (δl = 0), the autocorrelation

matrix A =  [where  = ajk is determined from
Eqs. (3) and the sign (·)+ denotes Hermitian conjuga-
tion] has the dimension L × L and the rank M. The first
M eigenvalues Λ of this matrix are positive (Λk > 0, k =
1, 2, …, M), and the remaining L – M eigenvalues are
equal to zero: Λk = 0, k = M + 1, M + 2, …, L [19]. The
presence of noise in the experimental data results in that
the matrix A has a full rank. According to [19], the
experimental data can be separated into the desired sig-
nal and the noise component by using the difference in
the eigenvalues Λk: the small values of Λk should be
identified with noise.

The presence of loss (δl ≠ 0) smoothes out the spec-
trum of the eigenvalues of the matrix A. In this case, the
boundary between the desired signal (the contribution
of resonances) and noise is assumed to be the break of
the spectrum of Λk [16]. This allows one to determine
the number M of the “true” resonances in model (1). If
the signal-to-noise ratio (snr) is known or can be deter-
mined independently, the number of resonances can
also be determined from the energy considerations
(each Λk is equal to the power of the corresponding
degree of freedom). Namely, for every (mth) physical
resonance, the following condition should be met:

(4)

The number of resonances M is determined as the max-
imal value of m satisfying inequality (4).

In this study, the number of resonances in the fre-
quency band ∆f is performed through the search for
singularities in the spectrum of the eigenvalues Λk and
the search for the maximal value of m in inequality (4).
Then, after the value of M is determined, equations (3)
and (2) are solved sequentially, and the parameters
involved in model (1) are determined. The result of cal-
culating the transfer function by Eq. (1) is compared
with the experimental data. If discrepancies are
obtained, the whole procedure is repeated with another
value of L, which serves as the initial approximation for
the number of resonances.

The measurement error for the parameters of
model (1) is estimated in the conventional way. The
goal function, which represents the sum of the squared
magnitudes of the difference between the measured
values of the transfer function and the parametric
model (1), is represented as a Taylor series up to the

â
+
â â

snr Λm Λk.
k 1=

L

∑≥×
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second-order terms for the values of Al, ωl, δl corre-
sponding to the minimum of the goal function. In this
case, the variance of each parameter of model (1) is
determined by the ratio of the goal function to the sec-
ond derivative of the goal function with respect to the
corresponding parameter.

The proposed method was used to analyze the
results of two series of measurements performed for
materials with cracks. One series was performed for
polycarbonate samples with the use of a swept signal,
as in the case of the standard methods of resonant
acoustic spectroscopy. The other series was performed
for concrete samples with the use of impulse excitation
of natural vibrations in the samples (impulse resonant
spectroscopy). Note that no nonlinear effects were
observed in the experiments described below.

RESONANT SPECTROSCOPY
OF POLYCARBONATES

The polycarbonate samples had the form of rectan-
gular bricks with the dimensions 13 × 38 × 132 mm3.
Each sample had a 12-mm-deep groove. Under a cyclic
loading, a visible crack was formed at the groove bot-
tom. Sample no. 1 served as reference and was not sub-
jected to loading, while sample no. 2 under the cyclic
loading developed a 6-mm-long crack.

The measuring setup is schematically represented in
Fig. 1. Piezoceramic transducers in the form of 2-mm-
thick disks, 10 mm in diameter, were glued to the end
surfaces of the sample. One of the transducers was
used for the excitation of vibrations in the sample
and the other served as a receiver. The response was
measured by a resonant ultrasound spectroscope
(produced by Dynamic Resonance Systems, see
http://www.ndtest.com/). The setup made it possible
to vary the excitation frequency and to save the data on
the hard disk of a computer. The frequency resolution
(the step in frequency) was 1 Hz in the frequency band
8–30 kHz and provided the possibility of recording the
resonances with a Q factor up to 1000, which far
exceeded the measured values of the Q factor.

Figure 2 presents the measured transfer function for
a defect-free polycarbonate sample and the correspond-
ing transfer function reconstructed by Eq. (1). One can
see that, even for such a sample, the conventional anal-
ysis of the power spectral density (the search for peaks)
does not allow one to determine all resonance frequen-
cies and Q factors. Specifically, resonances marked in
Fig. 2 by the numbers 3, 7, 9, 12–15, 17, 18, 20, 22, and
24 do not manifest themselves as peaks. Moreover, nei-
ther the amplitude nor the phase dependence of the
transfer function on frequency provides the determina-
tion of the resonance positions with the use of only the
local properties of TF(ω).
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
At the same time, the method discussed above pro-
vides the resolution of even noticeably overlapping res-
onance responses. To determine the number of reso-
nances in the measuring frequency band, we performed
the search for singularities (breaks) in the dependence
Λ(m) by using inequality (4). The value of the snr
involved in inequality (4) was estimated as the ratio of
the total spectral density (the sum of squared ampli-
tudes) to the noise power in Fig. 2. The noise amplitude
at every frequency was estimated as the difference
between the measured value and the mean value
obtained from the piecewise-linear smoothing approxi-
mation of the TF. The horizontal dashed line in Fig. 3
shows the noise power normalized to the total power of
the signal. The intersection of this line with the curve
corresponding to the eigenvalue spectrum normalized
to the total power corresponds to the number of reso-
nances in the measuring frequency band. The number
of the resonances was found to be 29 within the fre-
quency band 8–30 kHz. The Q factor of four resonances
out of these 29 proved to be less than seven, which was
much smaller than the mean value of the Q factor being
approximately equal to 50. The appearance of these res-
onances was caused by the finite width of the measur-
ing frequency band ∆f and by the smooth trends arising
in the frequency dependence of the TF. One resonance
was found to have an amplitude comparable with the
noise level and large errors in the measurements of its
frequency and Q factor. Thus, the five resonances spec-
ified above were excluded from the analysis. The
remaining M = 24 resonances are shown in Fig. 2.
Their parameters were used for calculating the TF by
Eq. (1).

It is well known that the presence of cracks mainly
leads to a decrease in the Q factor while the propagation
velocities of elastic waves vary within fractions of per-
cent [20]. Since, initially, the Q factor values are small
even for the defect-free sample, the measurement of the

Fig. 1. Measuring setup: (1) crack, (2) groove, (3) position
of the driving transducer, and (4) position of the receiver.
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Fig. 2. Result of the reconstruction of the transfer function for sample 1 of polycarbonate (thin lines) and the experimental values
of the TF (thick lines). The upper plot shows the phase and the lower plot, the amplitude of the TF.
Q factor variation due to the presence of cracks presents
a difficult problem.

Figure 4 shows the resonance frequencies and the Q
factors of the first ten resonances for polycarbonate
samples 1 and 2. The frequencies were measured to
within 1%, and the accuracy of the Q factor measure-
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Fig. 3. Spectrum of the eigenvalues of the autocorrelation
matrix for sample 1 of polycarbonate; the spectrum is nor-
malized to the total power.
ment was much lower. The maximal measurement
errors were observed for the resonances whose ampli-
tudes were comparable with the noise level (1–3 in
Fig. 2) and in the case of a considerable overlapping of
the responses (9 and 10 in Fig. 2). Of all resonances pre-
sented in Fig. 4, we can separate three, namely, the res-
onances marked by arrows (6–8) in Fig. 2, for which the
measured values of the Q factor are statistically distin-
guishable (the confidence intervals of the data obtained
for samples 1 and 2 do not overlap). The maximal vari-
ations in the resonance frequencies occur for the same
three resonances 6–8 (Fig. 4). For these resonances, the
appearance of the crack is accompanied by a loss
increase. The Q factor decreases in the presence of the
crack by approximately a factor of 2 with respect to the
initial value (Q0 ≈ 100). The maximal changes in the Q
factor are observed for the mode with the maximal ini-
tial Q factor value (mode 6 in Fig. 4).

IMPULSE RESONANT SPECTROSCOPY
OF CONCRETE SAMPLES

The second series of measurements was performed
on two concrete samples. The samples had the form of
rectangular bricks with the dimensions 152.4 × 152.4 ×
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
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Fig. 5. Experimental setup.

transducer
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
533.4 mm3 and had no grooves. Both samples initially
had no defects and were gradually destroyed by a lin-
early increasing load until their fracture. The experi-
mental setup is illustrated in Fig. 5.

The natural vibrations of the sample were excited by
a small hammer. The latter performed a single stroke,
which was controlled by a piezoceramic transducer
mounted on the hammer.

Figure 6 presents examples of signal records after
the stroke for a defect-free concrete brick and for a
brick under the effect of a load causing the formation of
microcracks. One can see that, in the brick with cracks,
the increased losses lead to a faster damping of the
excited vibrations.

The vibration excitation by a hammer stroke along
the sample axis mainly resulted in the excitation of lon-
gitudinal vibrations. In the reconstruction of the TF for
a concrete sample containing no defects, we obtained
the peak corresponding to the lowest mode of longitu-
dinal vibrations of the concrete brick (this mode is
observed against the minimal noise level). As the sam-
ple was gradually destroyed, the peak was split, and the
splitting increased with increasing load (Fig. 7).

Figure 8 shows this splitting as a function of the load
applied to the sample. The breaking force in Fig. 7 is
normalized in such a way that zero corresponds to the
absence of load while unity, to the maximal value of the
force beyond which the sample fracture takes place.
The splitting of the peak is presumably related to the
formation of cracks. The cracks were formed in the
region of the maximal axial tension under the load
(when the force was close to maximal, the cracking
could be detected visually). Without discussing the
mechanism of the splitting (it will be the subject of our
subsequent studies), we note that the appearance of
inhomogeneities inside the sample evidently leads to an
increase in the number of eigenmodes (longitudinal or
flexural), and one of the factors responsible for this
effect is the elimination of the degeneracy related to the
square cross section of the brick. Figure 9 shows the
dependence of the Q factor of longitudinal vibrations
3
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–3
0 10 20

Time, ms
0 10 20

 Signal

Fig. 6. Responses of concrete samples to a hammer stroke: the left plot refers to the defect-free sample and the right plot, to the
sample immediately before fracture.
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(crosses in Fig. 8 and peak 1 in Fig. 7) on the breaking
load. The data presented in Fig. 9 are obtained from the
measurements on sample 1, which were performed
with the highest accuracy. The data shown in Fig. 9 tes-
tify to the rapid decrease in the Q factor, starting from
loads of about 10–20% of the ultimate load.

In the experiment, we observed a brittle fracture of
concrete. It is expedient to compare our results with
other data on the brittle fracture of solids. For example,
polycrystalline rock, including granite, exhibits brittle
fracture [21]. In [22], it was shown that, in granite,
microcracks are formed at the initial stage of fracture,
when the breaking force does not exceed 20% of the
ultimate strength. With further load increase, small
cracks coalesce, and the formation of new cracks slows
down. Small cracks cause a dissipation increase [20].
As one can see from the data shown in Fig. 9, in our
case, the maximal change in the Q factor is also
observed at the initial stage of fracture (presumably, at
the stage of microcrack formation). By contrast, the
maximal splitting of the longitudinal and flexural
modes is observed under loads of 20% or more (pre-
sumably, at the stage corresponding to the microcrack
coalescence and the strongest violation of symmetry in
the sample).

Thus, the method of matched-filter processing
allows one to extend the area of application of resonant
acoustic spectroscopy to the case of materials with low
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3000 5000 F, Hz

Load = 0%

Load ù 95%

1 2

Fig. 7. Splitting of the peak under an increasing load; the
peak corresponds to the longitudinal mode. The dashed
lines show the result of the reconstruction of the frequency
response by Eq. (1). (The peak numbers correspond to those
in Fig. 8.)
Q factors. It becomes possible to perform acoustic mea-
surements of viscoelastic characteristics of structurally
inhomogeneous media the vibrations of which are char-
acterized by Q factors within 10–20. The above results
of the experimental study of fracture processes can be
considered as the first step in this direction.
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