
Embedding Inequality Constraints for Quantum
Annealing Optimization

Tomáš Vyskočil, Scott Pakin, and Hristo N. Djidjev

Los Alamos National Laboratory

Abstract. Quantum annealing is a model for quantum computing that
is aimed at solving hard optimization problems by representing them
as quadratic unconstrained binary optimization (QUBO) problems. Al-
though many NP-hard problems can easily be formulated as binary-
variable problems with a quadratic objective function, such formulations
typically also include constraints, which are not allowed in a QUBO.
Hence, such constraints are usually incorporated in the objective function
as additive penalty terms. While there is substantial previous work on
implementing linear equality constraints, the case of inequality constraints
has not much been studied. In this paper, we propose a new approach
for formulating and embedding inequality constraints as penalties and
describe early implementation results.

1 Introduction

Quantum annealing is a hardware analogue of simulated annealing [11], a well-
known black-box approach for solving optimization problems. (By “black-box” we
mean that no assumptions, e.g., differentiability, can be made of the function to
optimize.) However, quantum annealing takes advantage of quantum effects—in
particular quantum tunneling—to converge with higher probability than simulated
annealing given the same annealing schedule [10]. Quantum annealers have been
designed to look for solutions of a specific type of binary optimization problem
as discussed next.

1.1 Quadratic unconstrained binary optimization

Current quantum annealers, such as the D-Wave 2000Q [8], minimize only
quadratic pseudo-Boolean functions. That is, they heuristically solve a quadratic
unconstrained binary optimization problem (QUBO),

argmin
x

Obj(x)︷ ︸︸ ︷ n∑
i=1

aixi +

n−1∑
i=1

n∑
j=i+1

bi,jxixj

 (1)

for x ∈ Bn (where B indicates the set {0, 1}) given a ∈ Rn and b ∈ Rn×n. We
write “heuristically solve” because, just like simulated annealing, global optimality



is not guaranteed; a quantum annealer takes only a best-effort approach. Finding
the true global minimum is an NP-hard problem [1] so any hardware that can
accelerate solutions—even if only by a polynomial amount—can be useful in
practice for reducing time to solution.

Although Equation (1) may seem restrictive in expressiveness, there are
in fact a large set of problems with a known mapping into that form [13]. A
particular challenge in expressing an optimization problem as a QUBO is that a
QUBO by definition does not allow constraints. However, a constraint can be
expressed in terms of penalties, aixi and bi,jxixj terms that can be included
in Equation (1) and that evaluate to zero when the constraint is honored and
to a positive number when the constraint is violated. For example, one can
constrain x1 = x2 by adding a penalty term of x1 + x2 − 2x1x2 to the QUBO.
In this case, Obj(0, 0) = Obj(1, 1) = 0, but Obj(0, 1) = Obj(1, 0) = 1. A
quantum annealer would therefore favor the x1 = x2 cases when computing
argminx Obj(x). Kochenberger et al. list a handful of other such penalties in
their survey of QUBO problems [12].

1.2 Physical limitations

Equation (1) describes a logical optimization problem. In practice, quantum-
annealing hardware imposes a number of additional limitations on what can be
expressed. Some of the key differences between the logical and physical problems
are as follows:

– The number of variables (n) is limited to the number of qubits (quantum
bits) provided by the quantum processing unit (QPU). In the case of a
D-Wave 2000Q, n ≤ 2048.

– The a and b coefficients have neither infinite range nor infinite precision. In
the case of a D-Wave 2000Q, each ai ∈ [−2.0, 2.0], and each bi,j ∈ [−1.0, 1.0],
with approximately 5–6 bits of precision.

– Only a small subset of the bi,j coefficients are allowed to be nonzero. In the
case of a D-Wave 2000Q, there can be at most six nonzero bi,j coefficients
for a given i due to the hardware’s physical topology.

To elaborate on that final difference, a D-Wave 2000Q employs a particular
physical topology called a Chimera graph [4]. A nonzero ai coefficient can appear
at any vertex in the graph, but a nonzero bi,j coefficient can appear only where
an edge is present in the graph. Figure 1 illustrates a Chimera graph. A Chimera
graph is composed of complete, 8-vertex bipartite graphs (i.e., K4,4) called unit
cells (Figure 1(a)). Each vertex in the first partition connects to its peer to the
north and its peer to the south. Each vertex in the second partition connects to
its peer to the east and its peer to the west. Consequently, a Chimera graph is,
excluding vertices on the boundaries, a degree-six graph, which is quite sparse.

Due to manufacturing and calibration imperfections, some vertices and edges
are inevitably absent from the hardware’s Chimera graph. For instance, Fig-
ure 1(b) presents the physical topology of Ising, a D-Wave system installed at

2



(a) Blow-up of a 2×2 grid of unit
cells

(b) Chimera graph implemented by
LANL’s D-Wave system, Ising

Fig. 1. Illustration of the Chimera-graph topology

Los Alamos National Laboratory (LANL). Ising is missing 11 vertices and 62
edges relative to a complete C12 Chimera graph. (C12 denotes a 12×12 grid of
unit cells.)

1.3 Problem embedding

We revisit the notion of penalty terms introduced in Section 1.1 in light of the
hardware limitations described in Section 1.2. Consider implementing as a QUBO
the constraint (

∑n
i=1 xi) = k for some 0 ≤ k ≤ n and with xi ∈ B. One would

typically accomplish this by adding a “squared error” expression,

M ((
∑n

i=1 xi)− k)
2 (2)

to the quadratic pseudo-Boolean function to be minimized, for a sufficiently large
M . For example, constraining exactly two of three Boolean variables to be 1
implies setting n = 3 and k = 2 and deriving Obj(x) as

M
(
(
∑3

i=1 xi)− 2
)2

=M(x21 + 2x1x2 + 2x1x3 − 4x1

+ x22 + 2x2x3 − 4x2 + x23 − 4x3 + 4)

=M(−3x1 − 3x2 − 3x3 + 2x1x2 + 2x1x3 + 2x2x3 + 4),

recalling that x2i = xi when xi ∈ B. Furthermore, the constant 4 can be removed
from the penalty because constant terms do not affect the solution to Equation (1).

While the “squared error” approach is generally applicable, it suffers from a
severe shortcoming in practice: For n variables, it requires n2 quadratic terms.
In a graph representation, this implies all-to-all connectivity—a feature lacking
in contemporary hardware. A workaround is to minor-embed [5] the problem

3



graph into the hardware graph. This implies replacing individual variables with
multiple variables and chaining them together—constraining them to have the
same value using the x1 = x2 approach presented in Section 1.1. For a complete
graph, minor embedding incurs a substantial (quadratic) cost in the variable
count. Specifically, a Cm Chimera graph can represent problems of no more than
4m+ 1 variables if all (4m+ 1)2 quadratic terms are nonzero [3]. For example,
even with 1141 vertices, the C12 subgraph shown in Figure 1(b) is limited to
n = 49 when applying the Equation (2) constraint.

1.4 Our contribution

In this paper we introduce a novel approach to represent inequality constraints of
the form

∑n
i=1 xi ≤ k using roughly kn variables. Our approach is based on a set

of “gadgets” that map directly to a unit cell and that spatially tile the Chimera
graph in a manner that enforces the desired constraint.

The rest of the paper is structured as follows. In Section 2 we discuss related
efforts to map constraints to QUBOs. Section 3 explains the basics of our approach.
The methods used to implement our approach are detailed in Section 4. We
present in Section 5 some empirical analysis of the efficacy of our techniques on
actual quantum-annealing hardware. Finally, we draw some conclusions from our
work in Section 6.

2 Related Work

Much work has been done in mapping individual computational problems to
QUBOs. Kochenberger et al. survey a set of these dating back to the early
1970s [12]. (Note that Kochenberger et al. use the term unconstrained binary
quadratic programming or UBQP instead of QUBO. The two are synonymous.)
Baharona [1] describes how a large set of problems can be mapped to the
form of an Ising-model Hamiltonian function, which is structurally identical to
Equation (1), but solves for x ∈ {−1,+1}N rather than x ∈ {0, 1}N . A simple
linear transformation converts between the two.

Perhaps the most closely related work to what we are proposing is Bian
et al.’s investigation into mapping constraint satisfaction problems (CSPs) to
a D-Wave system while carefully considering the embedding on the Chimera
graph [2]. One difference is our focus on scalability that allows constraints of any
number of variables to be embedded and that we are able to handle inequalities.
We have also applied an approach similar to the one described in Sections 3 and 4
to equality constraints of the type

∑n
i=1 xi = 1 [15] and later generalized this

approach [14].

3 Optimization based approach

In this section we define the problem we intend to solve and present an outline
of our approach.

4



3.1 Formulating a constraint embedding as an optimization problem

We first overview the properties of the standard penalty-based approach and
then the approach adopted in this paper that uses optimization and extra binary
variables.

Implementation of a constraint as a penalty Although most NP-hard
optimization problems admit simple formulations as optimization problems with
quadratic binary objective functions, such formulations typically contain at
least one constraint and are therefore not in the QUBO form represented by
Equation (1). In order to convert optimization problems containing constraints
into QUBOs, each constraint is usually converted to a penalty that is included
in the objective function as an additive term. We call x = {x1, . . . , xn} feasible
if it satisfies the constraint, and infeasible, otherwise.

Given a minimization problem with objective Obj(x) and an equality con-
straint C(x) = 0, the penalty method transforms the constraint into the quadratic
term Q(x) = (C(x))2 and changes the objective to Obj′(x) = Obj(x) +MQ(x)
for a large positive constant M . When x is feasible, i.e., if C(x) = 0, then
Q(x) = 0 and the penalty term does not change the value of the objective,
i.e., Obj′(x) = Obj(x). But if x is infeasible, then Q(x) ≥ γ and Obj′(x) ≥
Obj(x) +Mγ, where γ is the minimum nonzero value of Q(x). Hence, for the
penalty method, the following properties of the penalty function are essential:

(i) If x is feasible, then Q(x) = 0;
(ii) if x is infeasible, then Q(x) ≥ γ,

and the parameter γ, called gap, should be as large as possible. Having a large
gap is important because it enables using smaller M values, making the resulting
optimization problem more stable numerically and thereby increasing the accuracy
of the solution.

As discussed in the introduction, implementing a linear constraint as a penalty
comes with significant drawbacks. But implementing a linear inequality constraint
such as

n∑
i=1

xi ≤ k (3)

is even harder because the squared-error approach does not apply. One way
to deal with such inequalities is to introduce a new variable z ≥ 0 such that
(
∑n

i=1 xi) + z = k and then to apply to the resulting equality constraint the
penalty method described above. However, z does not necessarily take binary
values in a feasible solution and can be as large as k, so it needs to be represented
in a binary form by introducing dlog ke binary variables with possibly large (≈k)
QUBO coefficients, further complicating the resulting QUBO. Hence, we are
looking in this paper at the problem of finding a scalable and qubit-efficient way
for embedding inequality-type constraints in quantum annealers such as those by
D-Wave Systems.

5



Using ancillary variables One approach, previously examined by multiple
researchers [2, 15], is to include m ancillary variables ti and use the additional
degrees of freedom to establish a larger “gap” between feasible and infeasible
solutions and/or reduce the number of quadratic coefficients needed. Formally, let
t = {t1, . . . , tm}. We want to define a QUBO Q(x, t) that satisfies the following
analogues of properties (i) and (ii) above:

(i′) If x is feasible, then mintQ(x, t) = 0;
(ii′) if x is infeasible, then mintQ(x, t) ≥ γ,

and that also maximizes γ.
Although these conditions look very similar, (ii′) can be implemented as

a linear programming constraint with respect to the real variables ai and bi,j
from Equation (1), while (i′) is not linear and implementing it requires, e.g., the
introduction of additional binary variables, resulting in a much more difficult
problem. Moreover, the total number of constraints is 2n+m as there is a constraint
for each x ∈ Bn and each t ∈ Bm. The resulting mixed-integer programming
(MIP) problem with exponential number of constraints cannot be solved in
reasonable time for more than 3–4 unit cells of the Chimera graph (i.e., n+m is
no more than 30–40). Clearly, this approach cannot be applied to current D-Wave
systems with up to 2048 qubits and especially not to future generations with
much higher numbers of qubits.

3.2 Our two-level approach

The main idea of our proposed method is to develop a scalable and modular design
by using a two-level approach that replaces solving an optimization problem
for the entire Chimera graph with solving several similar types of optimization
problems, each limited to a single unit cell of the Chimera graph.

Specifically, on the higher level, we design specifications for several types of
cell behavior, determined by the properties of the QUBOs defined in these cells,
which we call gadgets. If the gadgets are arranged in a specific pattern to cover
the entire Chimera graph or portions of it, then they produce a QUBO that
implements the constraint of interest.

On the lower level, we show that gadgets with the specified properties can
actually be designed by solving a corresponding optimization problem. In the
next section, we provide details on the implementation of that approach.

4 Implementation

4.1 Gadgets

As mentioned above, gadgets are QUBO quadratic forms defined on a single
Chimera-graph cell. We will arrange these gadgets to cover a rectangular portion
R of the Chimera graph. We define three types of gadgets depending on where
the corresponding cells will be positioned in R:

6



x1 x2 x3 xn

· · ·

xn−1

Fig. 2. Arranging the gadgets to solve
constraint Equation (3) in a k×n region
R.

x1=0 x2=0 x3=1 x6=0x4=1 x5=0

Fig. 3. Optimal tiling for the inequality∑6
i=1 xi ≤ 3.

– Internal gadget, denoted by , for cells (mostly) in the interior of R;
– Problem gadget, denoted by , for cells on the bottom boundary of R, each

of which represents a problem variable from x; and
– Boundary gadget, for cells on the left and top boundaries of region R. De-

pending on the orientation of this gadget, it will be denoted by either or
.

4.2 Arranging the gadgets to cover the Chimera graph

As illustrated by Figure 2, the gadgets cover a rectangular region of the Chimera
graph, with problem gadgets on the bottom, boundary gadgets on the top and
left boundaries, and internal gadgets on the rest. Moreover, problem variables x
are positioned in the problem gadgets, one per gadget. We refer to this QUBO
formulation as Qb(R). In the next subsections we will show that Qb(R) is a
correct implementation of the constraint specified by Equation (3) and estimate
the gap.

4.3 Tiles

In this section we define tiles, which are used to easily identify when an assignment
to the variables of QUBO problems of a specific kind is an optimal one, merely
by examining their types and colors. Specifically, if all the tiles are of “good”
type (as defined below) and the adjacent tiles’ neighboring sides are colored with
the opposite color, then the assignment is an optimal one. Next, we give a more
formal description and analysis.

While a gadget refers to the QUBO formulation of a cell, i.e., to the values given
to the coefficients a and b in the cell, a tile is defined both by the underlining
gadget as well as by the values of the cell’s variables, i.e., by x and t. The
combination of the tile types of all the cells of R is called a tiling of R. In
order to estimate the value of a given variable assignment, i.e., a tiling of R,
we categorize the tiles as good, meaning that the value α of the cell’s QUBO

7



internal tiles

boundary tilesproblem tiles

Fig. 4. The set of good tiles.

is the smallest possible for any cell, and
bad, meaning that the corresponding
QUBO value exceeds that minimum
by at least a parameter γ > 0, which
we call a gap. There are 8 types of
good tiles illustrated in Figure 4. The
colors indicate values of the interface
variables, i.e., variables that are con-
nected by an active (i.e., with nonzero
bias) coupler to a variable in a neigh-
boring cell. (In fact, in order to maximize the gap, such couplers are given the
value −1, the smallest value allowed by the hardware.) Specifically, red corre-
sponds to an interface variable value of 1, and green corresponds to 0. Crucially,
the colors are used to characterize the interactions between neighboring tiles as
described next.

Similarly to the good and bad tile types, we define good interactions when the
colors on both sides of the common border are different, and bad, if they are the
same. If the interaction is good, then the value of the quadratic term corresponding
to the active coupler connecting the tiles will be negative, generating a reward
(i.e., reducing the value of the QUBO, which is beneficial for a minimization
problem), and if it is bad, then that value is positive, generating a penalty
(increasing the value of the QUBO). We require that the difference between a
reward and the smallest penalty for good/bad interactions be γ, the same as the
gap between good and bad tiles.

The tiling of R is called good, if all the tiles and tile interactions are good.
The main property of the construction defined in Section 4.2 is that there exists
a good tiling of R if and only if the values of the problem variables x satisfy the
constraint Equation (3). From this property, it follows that if the constraint is
not satisfied, then there is at least one bad tile or connection, and therefore, the
gap for Qb(R) between variables satisfying and not satisfying Equation (3) is γ.

We will illustrate why this property holds by an example, the formal proof is
similar to the one given in our prior report [14].

Figure 3 shows a good tiling for the constraint
∑6

i=1 xi ≤ 3 implemented
using gadgets as illustrated in Figure 2. Note that all boundary tiles have to
be red in a good tiling, since this is the only tile type available for a boundary
gadget. Furthermore, the colors of the problem tiles encode the variables x; in our
case, for x1 = x2 = x5 = x6 = 0 and for x3 = x4 = 1. We show that the
types of the remaining (internal) tiles are uniquely determined in a good tiling.
Notice that each internal tile consists of four triangles, and we are looking at the
color of the top one. The main property is that that the number of red colored
top triangles decreases by one when we go row by row up from the bottom to the
top, until reaching zero. Specifically, the first row from the bottom, consisting of
problem tiles, has two red triangles , on position 3 and 4, corresponding to the
two +1 x values. The second row has only one good way to be tiled: going from
left to right, we can only tile it by a sequence of tiles, followed by one tile

8



above the leftmost problem red tile, one tile above the other problem red
tile, and ending with a sequence of tiles. As a result, that row has on its

top boundary one fewer red top-triangle than the previous one, since the x3 and
x4 tiles were replaced by one (green top) and one (red top).

Similarly, the remaining red top-triangle tile is eliminated by another
in the next row. In general, if there are l red problem tiles in the bottom row,
in the next i rows there are exactly l− i red top-triangle tiles (all of type) for
1 ≤ i ≤ l, assuming l ≤ k.

The remaining k − l rows can only be tiled by sequences of internal tiles
with green top-triangles. (In our example k − l = 1, but it is clear that one can
put any number of rows consisting of internal tiles on top of each other.) The
red boundary tiles on the last row guarantee that l ≤ k in a good tiling, since
the row below it should have all red-top tiles being eliminated.

4.4 Solving the optimization problems

In the previous section we showed that if tiles with properties as described (i.e. for
each gadget, the QUBO values of good and bad tiles for this gadget have a gap γ)
then the QUBO formulation described in Section 4.2 implements the constraint
Equation (3) with gap γ. In order to show that such tiles do exist, for each
gadget, we need to solve an optimization problem similar to Problem (i′)-(ii′),
but restricted to a single cell. Despite being a mixed-integer programming (MIP)
problem, it is of small size (16 binary variables and 16 constraints), and easily
solvable by modern solvers (in a fraction of a second by Gurobi [9]).

5 Analysis

We implemented the tiling scheme described in Section 3 using Python and
D-Wave Systems’s Ocean libraries [6]. We now present an empirical evaluation of
this implementation.

As our initial test, we evaluate the {k = 3, n = 8} case (i.e., 3 of 8 bits set
to 1), comparing measurements taken on Google/NASA/USRA’s D-Wave 2000Q
quantum annealer with those acquired from a classical simulated-annealing
algorithm (implemented in Ocean). We begin with a comparison of correctness.
Recall that all annealers are probabilistic and that correct output, corresponding
to finding a global minimum, is not guaranteed.

Figure 5 plots a histogram of the results of 1,000,000 anneals. The horizontal
axis corresponds to the count of variables that were measured as 1 when the
anneal completed, and the vertical axis indicates the number of observations of
that count. Ideally, there should be a single bar of height 1,000,000 at position 3
on the x axis. The runs performed using simulated annealing have the correct
mode of 3, observed on 35% of the anneals. Disappointingly, the mode of the
D-Wave measurements is 5, not 3. 42% of the anneals set five variables to 1, while
only 6% set three variables to 1. However, the correctness improved when we

9



0

100,000

200,000

300,000

400,000

500,000

600,000

0 1 2 3 4 5 6 7 8

Ta
lly

Number of variables set to 1

D-Wave D-Wave VFYC Simulated annealing

Fig. 5. Comparison of quantum annealing to simulated annealing for {k = 3, n = 8}

ran the D-Wave in virtual full-yield Chimera (VFYC) mode, which includes a
classical post-processing step that nudges near-optimal solutions towards optimal
solutions. This case performed better than both the raw D-Wave runs and the
simulated-annealing runs, observing the correct mode and seeing 58% of the
anneals setting three variables to 1. We do not yet know why the raw D-Wave
performed so poorly on this test but are currently investigating the issue.

We now turn our attention to execution time. Table 1 lists the time in seconds
required to perform 10,000 anneals, averaged over 10 trials. The annealing time
for a D-Wave 2000Q is user-specified and ranges from 1µs to 2000µs. We retained

Table 1. Execution time for 10,000 anneals,
averaged over 10 trials

Annealer Time (s) (±%)

D-Wave 17.2± 1.7 (9.9%)
D-Wave VFYC 19.1± 2.6 (13.5%)
Simulated annealing 101.5± 1.1 (1.1%)

the default annealing time of 20µs
for our experiments. Simulated an-
nealing was run on a workstation
containing two 3.0GHz Intel Broad-
well processors (E5-2687WV4) and
64GB of DRAM. As Table 1 indi-
cates, the D-Wave is over five times
faster than Ocean’s implementation
of simulated annealing running on
a workstation. However, classical overheads—time to transfer the QUBO 1000
miles/1600 km (and back) over an SSL-encrypted network connection, time for
the job scheduler to schedule the execution, time for the D-Wave to compute the
analog waveforms corresponding to the digital QUBO, etc. [7]—dominate the
time spent in quantum annealing. Specifically, at 10,000 anneals of 20µs apiece,
only 0.2s of the 17.2s or 19.1s listed in the table (just over 1%) are spent in
annealing proper.

10



6 Conclusions

We developed an optimization approach for embedding penalty constraints of
linear inequality type for quantum annealing and applied it to the Chimera
graph topology used by the current D-Wave systems. Our approach enables
inequality constraints of the type shown in Equation (3) to be implemented as a
QUBO of O(nk) variables. Such QUBOs can be embedded into a Chimera graph
without chains (i.e., the QUBO structure is consistent with the Chimera-graph
topology). The time for finding such an embedding is independent of the number
of variables and depends only on the number of qubits in a cell. The experimental
analysis shows that solving the resulting QUBO problem with a classical solver
or with D-Wave plus classical postprocessing is accurate, but solutions with a
purely quantum solver lack sufficient accuracy. In our future research, we plan to
investigate the sources of such inaccuracy and will be looking for ways to increase
the robustness.

We note that the construction from Figure 2 can also be used to solve interval
constraints of the type k1 ≤

∑n
i=1 xi ≤ k2. To see that, notice that the problem

variables are on the bottom boundary of the region. We can therefore create a new
construction by merging the current one from Figure 2 with parameter k set to
k2 and a mirror construction with parameter k set to n−k1 and reusing the same
problem tiles. Clearly, the top half will implement the inequality

∑n
i=1 xi ≤ k2,

and we want the bottom one to implement the inequality k1 ≤
∑n

i=1 xi. To
achieve that, we need to make the lower portion “count” the green (xi = −1)
tiles rather than the red ones, which can be done by a slight modification of the
tiles in the bottom half (treating red color as green and vice versa). As a result,
the bottom half will implement the inequality

∑n
i=1(1− xi) ≤ n− k2 , which is

equivalent to n−
∑n

i=1 xi ≤ n− k2 or
∑n

i=1 xi ≥ k2.

Acknowledgments

Research presented in this article was supported by the Laboratory Directed
Research and Development program of Los Alamos National Laboratory under
project numbers 20180267ER and 20190065DR. This work was also supported by
the U.S. Department of Energy through Los Alamos National Laboratory. Los
Alamos National Laboratory is operated by Triad National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy
(contract no. 89233218CNA000001).

References

1. Francisco Barahona. On the computational complexity of Ising spin glass models.
Journal of Physics A: Mathematical and General, 15(10):3241, 1982.

2. Zhengbing Bian, Fabian Chudak, Robert Israel, Brad Lackey, William G. Macready,
and Aidan Roy. Discrete optimization using quantum annealing on sparse Ising
models. Frontiers in Physics, 2:56:1–56:10, 2014.

11



3. Tomas Boothby, Andrew D. King, and Aidan Roy. Fast clique minor generation in
Chimera qubit connectivity graphs. Quantum Information Processing, 15(1):495–
508, January 2016.

4. Paul I. Bunyk, Emile M. Hoskinson, Mark W. Johnson, Elena Tolkacheva, Fabio
Altomare, Andrew J. Berkley, Richard Harris, Jeremy P. Hilton, Trevor Lanting,
Anthony J. Przybysz, and Jed Whittaker. Architectural considerations in the design
of a superconducting quantum annealing processor. IEEE Transactions on Applied
Superconductivity, 24(4):1–10, August 2014.

5. Vicky Choi. Minor-embedding in adiabatic quantum computation: I. the parameter
setting problem. Quantum Information Processing, 7(5):193–209, October 2008.

6. D-Wave Systems, Inc. D-Wave’s Ocean Software. URL: https://ocean.dwavesys.
com/.

7. D-Wave Systems, Inc. Measuring computation time on D-Wave systems. User
Manual 09-1107A-G, February 2, 2018.

8. Elizabeth Gibney. D-Wave upgrade: How scientists are using the world’s most
controversial quantum computer. Nature, 541(7638):447–448, January 26, 2017.

9. Gurobi Optimization, Inc. Gurobi optimizer reference manual, 2015.
10. Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the transverse

Ising model. Physical Review E, 58:5355–5363, November 1998.
11. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

Science, 220(4598):671–680, May 1983.
12. Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lü, Haibo

Wang, and Yang Wang. The unconstrained binary quadratic programming problem:
A survey. Journal of Combinatorial Optimization, 28(1):58–81, July 2014.

13. Andrew Lucas. Ising formulations of many NP problems. Frontiers in Physics,
2:5:1–5:15, 2014.

14. Tomas Vyskocil and Hristo Djidjev. Optimization approach to constraint embedding
for quantum annealers. Technical Report LA-UR-18-30971, Los Alamos National
Laboratory, 2018.

15. Tomas Vyskocil and Hristo Djidjev. Simple constraint embedding for quantum
annealers. In International Conference on Rebooting Computing (to appear), 2018.

12


