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Abstract. Let P be a planar polyhedral surface consisting of n trian-
gular faces, each assigned with a positive weight. The weight of a path
p on P is defined as the weighted sum of the Euclidean lengths of the
portions of p in each face multiplied by the corresponding face weights.
We show that, for every ε ∈ (0, 1), there exists a data structure, termed
distance oracle, computable in time O(nε−2 log3(n/ε) log2(1/ε)) and of
size O(nε−3/2 log2(n/ε) log(1/ε)), such that (1+ε)–approximate distance
queries in P can be answered in time O(ε−1 log(1/ε) + log logn). As in
previous work (Aleksandrov, Maheshwari, and Sack (J. ACM 2005) and
others), the big–O notation hides constants depending logarithmically
on the ratio of the largest and smallest face weights and reciprocally
on the sine of the smallest angle of P . The tradeoff between space and
query time of our distance oracle is a significant improvement in terms
of n over the previous best tradeoff obtained by a distance oracle of
Aleksandrov, Djidjev, Guo, Maheshwari, Nussbaum, and Sack (Discrete
Comput. Geom. 2010), which requires space roughly quadratic in n for
a comparable query time.

1 Introduction

We design an efficient algorithm and a data structure to answer approximate
distance queries between points on a weighted planar polyhedral surface. The
problems of computing shortest paths arise in numerous application areas and
have consistently been among the most active research topics in theoretical com-
puter science.

In many applications, multiple shortest paths have to be computed for the
same domain between different pairs of points without knowing the sequence of
pairs in advance. In this version of the problem, an appropriate data structure
can be computed in a preprocessing phase of the algorithm, and a query algorithm
may utilize the data structure in order to efficiently answer shortest-path or
distance queries.

Algorithms for the shortest-path query problem have been developed for
planar graphs [6,4,11] and, in general, for graphs with small separators [5]. Algo-
rithms with better space/query-time tradeoffs and faster query times are possible
if approximate distances and shortest paths are acceptable. A stretch–α distance
oracle is a data structure that allows computing a distance estimate that does



not exceed α times the weight of a shortest path [14]. For planar graphs, Tho-
rup [13] and Klein [8] construct, for any ε > 0, a (1 + ε)–stretch oracle of size
O(n log(n)/ε) in O(n log3(n)/ε2) time that answers distance queries in O(1/ε)
time. Their work has been extended to graphs with bounded genus [7] and to
minor-free graphs [1].

Modeling a real-world problem as a shortest-path problem often requires the
use of non-Euclidean distances. Such types of distances have been intensively
studied in recent years and they are the focus of this work. We consider the
weighted region distance introduced by Mitchell and Papadimitriou [10], where
the geometric region is divided into triangles or tetrahedra each assigned an in-
dividual weight. The weight or length of a path p is then defined as the weighted
sum of the portions of p in each triangle (tetrahedron) multiplied by the cor-
responding weight. Such distance measures are appropriate, for instance, when
computing a route through a terrain with certain terrain properties such as ter-
rain type (e.g. water, sand, or rock), slope, and obstacles, encoded as weights.
Another potential application is seismology, where seismic waves follow shortest
paths, and the speed of a wave in each layer depends on the type and density of
the rock.

Compared to the Euclidean case, computing a shortest path in a weighted
region is a more involved problem. While in the interior of each triangle each
connected portion of a shortest path is a straight-line segment; when cross-
ing a boundary between two triangles the path locally satisfies Snell’s Law
w− sin(ϕ−) = w+ sin(ϕ+), where w− and w+ are the weights of the triangles be-
fore and after the boundary and ϕ− and ϕ+ are the corresponding acute angles
between the portions of the paths in the corresponding triangles and the normal
to the boundary, respectively. It is believed that an exact algorithm for finding
a shortest path between two arbitrary points does not exist for arbitrary values
of n.

Accordingly, several algorithms for finding approximate shortest paths have
been developed. Mitchell and Papadimitriou [10] first studied the problem and
developed an algorithm for computing a (1 + ε)–approximate shortest path be-
tween a pair of nodes in O(n8 log(n/ε)) time and using O(n4) space. Their result
was subsequently improved in several papers, culminating in the algorithm by
Aleksandrov, Maheshwari, and Sack [3] with O( n√

ε
log(n/ε) log(1/ε)) time and

O(n) space. The big-O notation hides further dependencies on the maximum
and minimum weight ratio and on the angles of the triangulation.

In this paper we study the problem of constructing a distance oracle for
answering shortest-path queries between pairs of points on a weighted polyhedral
surface. This query version of the shortest-path problem was studied previously
by Aleksandrov, Djidjev, Guo, Maheshwari, Nussbaum, and Sack [2]. They prove
the following.

Theorem 1 (Aleksandrov et al. [2, Theorem 7]). Let P be a weighted
polyhedral surface of genus g consisting of n triangular faces. Let ε ∈ (0, 1) and
q ∈ (ε−1/2 log2(1/ε), ε−1/2(g+ 1)2/3n1/3). There exists a data structure for (1 +



ε)–approximate point-to-point distance queries with space O( (g+1)n2

ε3/2q
log4(1/ε)),

preprocessing time O( (g+1)n2

ε3/2q
log(n/ε) log4(1/ε)), and query time O(q).

The approach of [2] is the following. First, the domain is discretized (see
also [3] and Section 2.2) by defining a set of suitably spaced points (called
Steiner points) on the bisectors of each triangle. Second, a graph is defined
with nodes being the Steiner points and edges being added between any pair
of nodes whose corresponding Steiner points belong to bisectors of the same or
an adjacent triangle. The weight on the edges is equal to the locally computed
distance between the corresponding Steiner points. The resulting graph Gε has
O((n/

√
ε) log(1/ε)) nodes and O((n/ε) log2(1/ε)) edges.

It is shown that any shortest path in the region between two Steiner points
can be approximated by a path in Gε between the same points with weight at
most 1 + ε times larger.

In this paper we combine the discretization methodology of Aleksandrov et
al. [2,3] with novel algorithms for preprocessing Gε and querying the resulting
data structure. We prove the following result.

Theorem 2. Let P be a planar polyhedral surface consisting of n triangular
faces with a positive weight assigned to each of them. Let ε ∈ (0, 1). There exists
a data structure to answer (1 + ε)–approximate point-to-point distance queries
in P with O(nε−3/2 log2(n/ε) log2(1/ε)) space, O(nε−2 log3(n/ε) log2(1/ε)) pre-
processing time, and O(ε−1 log(1/ε) + log log n) query time.

The constants in the big-O bounds depend on the geometry of P in the same
way as in [3] and [2]. The performance gain (compared to Aleksandrov et al. [2])
has three main reasons: i) we only approximate distances in Gε (without any
consequences to the quality of the final approximation), ii) we use ε–covers on
shortest-path separators (as defined in [13], using the scaled version to improve
the query time), and iii) we work on an implicit representation of a planar
version of Gε to keep the dependency on n almost linear and the dependency
on 1/ε quadratic in the preprocessing time, less than quadratic in the space
requirements, and linear in the query time.

2 Preliminaries

2.1 Definitions

For the sake of brevity, we assume some familiarity with previous work by Alek-
sandrov et al. [3,2]. We only include (extracted from [2]) the most important
definitions. Let P be a planar polyhedral surface in 3–dimensional Euclidean
space consisting of n triangular faces f1, . . . , fn. Each face fi has an associated
positive weight wi, representing the cost of traveling a unit Euclidean distance
inside fi. The cost of traveling along an edge is the minimum of the weights
of the triangles incident to that edge. Edges are assumed to be part of the tri-
angle they inherit their weight from. The cost of a path π in P is defined as



||π|| =
n∑
i=1

wi |πi|, where |πi| denotes the Euclidean length of the portion πi of

π in fi. Path lengths in graphs are denoted by len(·), distances are denoted
by d(·, ·).

2.2 Domain Discretization

The approach of [3] is, given a node s of P and a parameter ε, to first discretize
the polyhedral surface P to obtain a graph Gε. The shortest-path lengths from
s in Gε are (1 + ε)–approximations for the corresponding distances in P [3,
Theorem 3.2]. The discretization of P is constructed as follows.

For each triangle, we compute the bisectors for all its angles. Let v denote
a node of P , let α denote one of its angles, and let ` denote the corresponding
bisector. On `, we add Steiner points p0, . . . pk as follows. p0 is at distance r(v) :=
ε wmin(v)

7wmax(v)δ(v), where δ(v) is the minimum Euclidean distance from v to the
set of edges incident to triangles around v but not incident to v, and wmin(v)
and wmax(v) are the minimum and the maximum weight of triangles incident
to v, respectively. The remaining Steiner points pi are chosen as a geometric
progression such that |pi−1pi| = sin(α/2)

√
ε/2 |vpi−1| for i = 1, . . . , k. Using

these Steiner points, we can compute (1 + ε/2)–approximate distances between
any two nodes on the boundary of a triangle.

The number of Steiner points on bisector ` of angle α at node v is at most
C(`)ε−1/2 log2(2/ε), where C(`) < 1.61

sinα log2(2 |`| /r(v)) [3, Lemma 2.3]. Follow-
ing [3,12,2], we assume that C(`) is bounded by a constant.

We construct a graph Gε on Θ(nε−1/2 log(1/ε)) nodes, wherein each node
corresponds to either an original node v or to a Steiner point. The edges of Gε are
chosen such that nodes corresponding to Steiner points on neighboring bisectors
are connected. Two bisectors are called neighbors if the corresponding triangles
share at least one edge. Each bisector has nine neighboring bisectors3 (three
within its own triangle and two in each of the adjacent triangles); consequently,
the number of edges in Gε is Θ(nε−1 log2(1/ε)). The edges have weights defined
as the distance in P restricted to the two triangles the corresponding bisectors
lie in.

For each shortest path p in P , let π = π(p) denote the approximating path
in Gε constructed by the algorithm from [3]. We also use the inverse mapping
defined by π−1(π) = p. By [3], p and π have the same source and target. We
also use the following property that follows from the construction in [3].

Lemma 1. Let p1 and p2 be two non-intersecting shortest paths in P . Then no
pair of segments of the paths π(p1) and π(p2) intersect.

3 Here we use the version of Aleksandrov et al. [2, Section 3.1], wherein each bisector
is defined to be a neighbor of all the nine bisectors in adjacent triangles, as opposed
to the six bisectors sharing an edge as in [3]. Note that a bisector is a neighbor of
itself.



2.3 Approximate Distance Oracles for Planar Graphs

Our preprocessing and query algorithms build on techniques that have been used
previously to construct approximate distance oracles for planar graphs [9,13].

The first technique is to approximately represent shortest paths that intersect
a shortest path [9, Lemma 4]. Let Q be a shortest path of length O(δ) in a
graph G. For any ε > 0 there exists a set of nodes Cε(Q) ⊆ V (Q) (or simply
C(Q) if ε is clear from the context) termed cover of size O(1/ε) such that for
those pairs of nodes (u, v) at distance δ ≤ d(u, v) ≤ 2δ for which all the shortest
paths between u and v intersect Q, there is a node q termed portal in the cover
q ∈ Cε(Q) such that

d(u, v) ≤ d(u, q) + d(q, v) ≤ (1 + ε)d(u, v). (1)

The distance oracle involves storing with each node v the portals that cover
v with respect to several shortest paths (and the distances associated with these
portals).

The second technique is to recursively separate a planar graph by shortest
paths. Given a triangulated planar graph on N nodes and a rooted spanning
tree, Thorup [13] demonstrates how to find a triangle such that the paths from
the root of the tree to the corners of the triangle separate the graph into at least
two disconnected subgraphs of size at most 2N/3. The recursive application of
this separator theorem yields components that are separated from each other by
a constant number of shortest paths.

Note that we cannot directly use the algorithms from [13] due to two main
differences between Gε and the graphs considered in [13]: i) our graph is not
planar and ii) our weights are not integral but real. Furthermore, a direct adap-
tation of the algorithms in [13] would result in a rather high dependency on ε,
which is considered undesirable in this line of work [3]. We adapt Thorup’s algo-
rithms for our scenario with main improvements with respect to the parameter ε,
both in the preprocessing and query times.

3 Discretization, Pseudo-Planarization, and Separator
Decomposition

3.1 Discretizing the weights

We replace the original weights of Gε by integral weights in {0, 1, . . . , N}, in
order to apply the techniques in [13] on Gε. We determine the value of N and
the mapping from the weights of Gε to {0, 1, . . . , N}.

For any δ > 0 consider the mapping iq defined by the formula iq(w) = d wεq e,

where q = εδ
n log2(1/ε)

. Define N = N(δ, q, ε) = iq(δ) = d δεq e = O
(
n log2(1/ε)

ε2

)
.

Let w(e) denote the weight of any edge e of Gε. We have the following.

Lemma 2. Let G′ε be the graph with the same nodes and edges as Gε and weight
on each edge e set to iq(w(e)). Then, for each shortest path p in G′ε with weight



at most δ between a pair s, t of nodes, there is a path between s and t in G′ε
whose weight in Gε is within an additive factor of O(εδ) of the weight of p. The
largest edge weight of G′ε does not exceed N .

3.2 Pseudo-planarization

One of the main ingredients in Thorup’s distance oracle is a shortest-path sepa-
rator that consists of three shortest paths separating a planar graph into at least
two subgraphs of weight at most a third of the size of the original graph. In our
case, Gε is not planar. A set of three shortest paths generally does not separate
the graph into two edge-disjoint components as each edge of Gε is intersected (in
a geometric sense) by roughly 1/

√
ε edges. In our construction, we concurrently

compute separators and pseudo-planarize the graph. Whenever edges geometri-
cally intersect with a shortest-path separator, we split the edge and we add a
node to represent this intersection on the separator path.

Note that we cannot use the separator construction algorithm from [13] di-
rectly, since our graph is neither planar nor triangulated. The surface P , however,
is triangulated, and we use that triangulation for the purpose of the separator
construction. We also cannot “planarize” Gε by adding a node for every intersec-
tion of two line segments, since the dependency on ε would increase. While the
polynomial dependency on n is of primary importance, in this line of work [3,
Table 1], the low dependency on ε−1 is also considered relevant.

Construction of Ĝε We initialize Ĝε as Gε. For each triangle bisector `, we sort
the nodes on ` by their distance from the corresponding node of P and for each
node on ` we store its position. We need these positions to count the number of
nodes on the left (right) of a separator path.

Let r be the node in Gε corresponding to an arbitrary node of a triangle
in P . We compute a single-source shortest path tree in Gε rooted at r. Let T
denote that tree and for any node u ∈ V (Gε), let T (u) denote the path from r
to u in T . We start with an arbitrary triangle A in P (as opposed to [13], where
triangles correspond to faces of the plane graph). Let x, y, z denote the nodes
that correspond to the nodes of A, respectively. We remove all edges incident to
nodes or intersected by edges of S(A) = T (x)∪ T (y)∪ T (z), as well as all edges
intersected by any edge of the triangle A. We say that S(A) defines a balanced
separator if no component of the resulting graph contains more than two thirds of
the nodes of the original graph. If S(A) defines a balanced separator, we recurse
on each subgraph. Otherwise, we “flip” one node (wlog we flip z) to obtain a
neighboring triangle A′ such that T (x)∪ T (y)∪ T (z′) is a separator with better
balance. Once we have found a good separator (corresponding to a triangle in
P ; let x′′, y′′, z′′ denote the nodes corresponding to its endpoints), we compute,
for each edge e ∈ T (x′′) ∪ T (y′′) ∪ T (z′′), all the geometric intersections with
edges e′ ∈ E(Gε). For each intersection a node is added to V (Ĝε) and for each
such edge e′ we add its two parts e′1, e

′
2, each weighted by its length, as edges

to E(Ĝε). After this step, the union of paths T̂ (x′′) ∪ T̂ (y′′) ∪ T̂ (z′′) actually



separates Ĝε into subgraphs. We contract the separator into a new root and
continue this procedure recursively in each component as in [13].

Note that Ĝε is constructed with respect to a set of shortest-path separators.
Even though the graph Ĝε is not planar, these paths recursively separate Ĝε into
subgraphs in a balanced way (note that Ĝε is planar in the immediate vicinity
of these paths).

The number of edges of Ĝε can be estimated as follows. After the correspond-
ing ε-covers and distances are computed, S is contracted to a new node rS , which
is suppressed [13]. Suppression means that, while rS and all its adjacent edges
are considered for constructing recursive separators, they are not considered for
computing distances/shortest paths. When a separator S of the original graph is
constructed, the separator property we use afterwards is that any path between
a pair of nodes from different components of Gε \S must contain a node from S.
Then all new edges are also suppressed. Hence, when recursively constructing
separators for the components of Gε \ S, we do not have to add new nodes and
edges for intersections between separator edges and suppressed (new) edges. As
a result, each edge of Gε can be divided into two new edges at most once and
hence

∣∣∣E(Ĝε)
∣∣∣ ≤ 2 |E(Gε)|.

Lemma 3. The graph Ĝε and the shortest-path separators can be computed in
time O(|V | log2 |V | + |E| log |V |), where |V | = O((n/

√
ε) log(1/ε)) and |E| =

O(nε−1 log2(1/ε)). Given two points s and t in Ĝε, one can find in O(1) time a
separator from the shortest-path separator decomposition separating s and t.

4 Preprocessing Algorithm

We describe the preprocessing algorithm for our approximate distance oracle. We
first give a brief overview, next we provide pseudocode, and finally we analyze
the algorithm. The algorithm consists of three phases.

1. Discretization: the algorithm discretizes the surface and the weights
2. Pseudo-planarization: the algorithm finds shortest-path separators Q and

adds nodes in order to make Q separating (Section 3.2)
3. Data-structure construction: the algorithm computes links to portals on the

separator paths Q for increasing scales

Its pseudocode is listed as Preprocess in the following.

Preprocess (P, ε, δ)
let Gε be the graph obtained by the surface discretization in [2,3] and
the weight discretization described in Section 3.1 with maximum weight N
compute Ĝε as described in the previous section
compute Nearest Common Ancestor data structure for separator tree
for each separator path Q

partition Q into maximal pieces of length ≤ δ
enumerate the subpaths Qδj



for each subpath Qδj compute an ε–cover (equally spaced points) C(Qδj)
enumerate the nodes in all the C(Qδj)
for r ∈ {0, . . . 4}

let Cj denote the covers for all subpaths Qδj with j mod 5 ≡ r
for i ∈ {1, 2, . . . O(1/ε)}

let Ni be the set of all nodes i in all the covers in Cj
compute multiple-source shortest-path tree with all nodes
in Ni as sources of weighted depth 2δ

Lemma 4 ([9, Lemma 4]). For any path u − v of length [δ, 2δ] in Ĝε that
intersects a shortest-path separator Qδj there is an alternative path u− q − v for
a portal q ∈ C(Qδj) such that len(u− q − v) ≤ (1 + ε)len(u− v).

Lemma 5. For a triangulated surface P with n triangles, given ε > 0 and δ > 0,
algorithm Preprocess (P, ε, δ) computes an (1+ε)–approximate distance oracle
for distances of length ` ∈ [δ, 2δ] in P in time O(nε−2 log2(n/ε) log2(1/ε)). The
space requirement is O(nε−3/2 log(n/ε) log(1/ε)).

Proof. Each Steiner point stores ε–covers of size O(ε−1) per level. There are
O(log(n/ε) log(1/ε)) levels. The space per scale is thusO(nε−3/2 log(n/ε) log(1/ε)).

Computing the covers requires O(ε−1) shortest-path-tree constructions per
level. The time per scale is bounded by O(nε−2 log2(n/ε) log2(1/ε)). ut

5 Answering Approximate Shortest-Path Queries

5.1 Overview of the method

In order to answer approximate distance queries for an arbitrary pair of query
points s and t from P , we use an algorithm for answering distance queries in
Ĝε. Let, for any point p in P that is not in Gε, the neighborhood N (p) of p be
defined as the set of nodes of Gε contained in the triangle(s) containing p and
all adjacent (i.e. sharing an edge) triangles. If p is a node in Gε, then we define
N (p) = {p}. Then, the approximate distance between s and t can be computed
as

d̃(s, t) = min
ps∈N (s),pt∈N (t)

{dP (s, ps) + dĜε(ps, pt) + dP (pt, t)}. (2)

Since points s and ps are in the same or in neighboring triangles, dP (s, ps)
can be computed using an explicit formula based on Snell’s law. The same ap-
plies for computing dP (pt, t). For computing dĜε(ps, pt), we use the separator
decomposition constructed in Lemma 3. Let Q be a shortest-path separator sep-
arating ps and pt. Then any path between ps and pt in Ĝε must contain a node
in Q and we therefore have dĜε(ps, pt) = min

q∈Q
{dĜε(ps, q) + dĜε(q, pt)}.

Unless stated otherwise, we assume in this section that dĜε(s, t) ∈ [δ, 2δ],
and that Q is a shortest-path separator in Ĝε of length O(δ) separating s and t,



as outlined in the preprocessing algorithm. Under those assumptions, |C(Q)| =
O(1/ε) and one can use Lemma 4 to approximate each distance on the right-
hand side of the previous equality, thereby having to look at only 1/ε nodes in
C(Q) per distance computation instead at all the nodes in Q, resulting in an
1+ε approximation of dĜε(ps, pt). Hence, instead of (2), we can use the equality

d̂(s, t) = min
ps∈N (s),pt∈N (t)

min
q∈C(Q)

dP (s, ps)+dĜε(ps, q)+dĜε(q, pt)+dP (pt, t). (3)

The number of pairs (ps, pt) is |N (s)| · |N (t)| = Θ(ε−1 log2(1/ε)) and the size
of |C(Q)| is at most 1/ε. Hence the total time for answering the approximate
distance query based on formula (3) is O(ε−2 log2(1/ε)).

In the following we describe a more efficient divide-and-conquer approach for
computing the minimum of formula (3) that avoids looking at all pairs ps, pt of
nodes in the neighborhoods N (s) and N (t) and leads to a query time complexity
roughly proportional to Õ(ε−1), ignoring logarithmic factors.

5.2 Divide-and-conquer approach

We reduce the problem of computing the minimum from (3) to the problem of
finding the distances from all points of C(Q) to s and t. We reduce the prob-
lem(s) of finding all distances from (to) C(Q) to a single problem, rather than
a sequence of |C(Q)| problems.4 Once we have those distances, the algorithm
requires an additional O(|C(Q)|) = O(1/ε) time to compute d̂(s, t). We describe
the computation of the distances to t as the ones for s are similar.

The idea is the following. There are |C(Q)| nodes from which we want to
compute shortest paths distances and each path could possible go through each
of the nodes in N (t). For large |C(Q)| and |N (t)| many paths intersect each
other. It is well-known that in a planar graph, a pair of shortest intersecting
paths to the same target can always be replaced by a pair of shortest non-
intersecting paths with the same sources and target as the original, as exploited
in [6,5]. We could use that property to significantly reduce the search space when
computing the shortest paths from C(Q). Unfortunately, our graph Ĝε is not
planar. We need to prove a similar property for Ĝε. First we establish several
properties of paths in P and Ĝε that follow from the definition of Ĝε.

Lemma 6. Let p1 and p2 be two intersecting shortest paths in P with the same
target t. There exists a path p∗2 in P with the same source and target as p2 that
does not intersect p1 and such that len(p∗2) = len(p2).

Lemma 7. Let π1 and π2 be two intersecting paths in Ĝε with the same target
node t. There exists a path π∗2 with the same source and target as π2 that does
not intersect π1 and such that len(π∗2) ≤ (1 + ε)len(π2).

4 This is why we compute portals to paths at different scales. By operating at one scale
δ, we can use a single set of portals C per path, wherein we can efficiently search the
best Steiner points for a pair of query points.



The next lemma is instrumental in our divide-and-conquer approach.

Lemma 8. Let Q be a shortest-path separator, let q′, q′′ and q be nodes of C(Q)
such that q is between q′ and q′′ on Q . Let π′ and π′′ be two nonintersecting
shortest paths in Gε from q′ and q′′ to point t of P and let N ′(t) be the subset
of N (t) that is inside or on the boundary of the cycle determined by Q, π′, and
π′′.

If π′ and π′′ contain a node from N (t), then there is a path π in Gε from q
to t containing a node from N ′(t) such that len(π) ≤ (1 + ε)len(πopt), where πopt
is the shortest path from q to t in Gε.

Proof. If πopt intersects neither π′ nor π′′, then we set π = πopt. Else, suppose
that the first path that πopt intersects is π′ and let (u′, v′) be the edge of π′

that intersects an edge (u, v) from πopt with v′ between u′ and t on π′ and v
between u and t on π. By Lemma 7, there exists a path π from q to t that does
not intersect π′ and such that len(π) ≤ (1 + ε)len(πopt). Moreover, by the proof
of Lemma 7, π coincides with π′ in the portion of π′ between v′ and t and with
πopt in the portion between q and u. Since, by assumption, π′ and π′′ are not
intersecting, then π does not intersect π′′. ut

The next lemma summarizes the previous results of this section and gives a
fast algorithm for answering approximate distance queries in P .

Lemma 9. Let s, t be two points on P and let Q be a separator path separating
s from t and let C(Q) denote the ε–cover of Q of size 1/ε. One can find in O(1/ε)
time a pair of points (ps, pt) ∈ N (s)×N (t) and q ∈ C(Q) such that

d̂(s, t) = dP (s, ps)+dĜε(ps, q)+dĜε(q, pt)+dP (pt, t) ≤ (1+O(ε log(ε−1)))δĜε(s, t).

Proof. To answer the query, we first compute, for each q ∈ C(Q), the distance
d̂(q, s) from q to s, then the distance d̂(q, t) from q to t, and finally compute

min
q∈C(Q)

{d̂(s, q) + d̂(q, t)} in O(|C(Q)|) = O(1/ε) time. Hence we only need to

describe how to compute d̂(s, q) in O(1/ε) time.
Let q′ and q′′ be the two outermost cover points of Q. Construct the shortest

paths from s to q′ and q′′. These two paths and q form a cycle c through s. Let
N (s; q′, q′′) denote the subset ofN (s) that is inside c. Let node qm ∈ C(Q) divide
C(Q) into to roughly equal subsets with respect to the order on Q. By Lemma 8,
there exists a shortest path from qm to s that contains a point from N (s; q′, q′′)
that is within 1 + ε factor of the length of the shortest path between qm and s.
Hence the length of such a shortest path can be found in O(|N (s; q′, q′′)|) time.
That path divides N (s; q′, q′′) into two subsets, N (s; q′, qm) and N (s; qm, q′′).

By the same method, we find the length of a shortest path from a middle
node between q′ and qm to s and a shortest path from a middle node between
qm and q′′ to s. The total time to find both these lengths is O(|N (s; q′, q′′)|). In
the next step we find four more shortest-path lengths (approximate distances)
from nodes from C(Q) to s in time O(|N (s; q′, q′′)|). The time of this algorithm
is O(ε−1) and the approximation ratio is 1 +O(ε log( 1

ε )).



In order to achieve stretch 1 + ε in the final algorithm, rather than 1 +O(ε),
we need to know an explicit bound on the stretch from Lemma 9, instead of an
estimation in terms of big-O asymptotics. The proof of the lemma does not yield
the constant, but it does give us that the stretch is not exceeding (1 + ε)log( 1√

ε
).

For any specific value of ε, we can estimate the stretch by that formula and use
it for computing the parameters for the preprocessing algorithm. On the other
hand, by Lemma 9, we know that there exists a constant k independent of ε
such that the stretch is bounded by 1 + kε log(ε−1).

Lemma 10. Given two points s and t in P and ε ∈ (0, 1), one can find in O(ε−1)
time a path π in Ĝε between s and t such that len(π) ≤ (1 + kε log( 1

ε ))d(s, t) for
some constant k.

Proof. By Lemma 3, one can find in O(log log n) time a separator path Q of
length O(q) separating s and t in Ĝε. By Lemma 4, there is a set of C(Q) of
O(1/ε) attachment points for Q that can be used to approximate any distance
in [δ, 2δ] to a point in Q with 1 + ε approximation factor.

Let π be a path between s and t in the approximation graph Ĝε such that
len(π) ≤ (1+ε)d(s, t). As Q separates s and t, there exists a node q ∈ Q such that
len(π) = d(s, q) + d(q, t). By Lemma 4, there exists a node q′ ∈ C(Q) such that
d(s, q′) ≤ (1 + ε)d(s, q) and d(t, q′) ≤ (1 + ε)d(t, q). Hence, there is a path π′ in
Ĝε from s to t that contains a node from C(Q) such that len(π′) ≤ (1+ε)2d(s, t).
By Lemma 10, one can find in O(1/ε) time a path π′′ in Ĝε that contains a node
in C(Q) and is within a 1 + O(ε log(ε−1)) factor of the distance between s and
t in Ĝε. Hence,

len(π′′) ≤ (1 +O(ε log(ε−1)))δĜε(s, t) ≤ (1 +O(ε log(ε−1)))len(π′)

≤ (1 +O(ε log(ε−1)))(1 + ε)2d(s, t) = (1 +O(ε log(ε−1)))d(s, t). ut

Now we are ready to prove the main result of this paper, Theorem 2. Recall
that so far in this section we have assumed that Q is a shortest-path separator in
Ĝε of length O(δ) separating s and t, and d(s, t) ∈ [δ, 2δ]. We need to compute
such δ in our algorithm and to choose an appropriate value for the approximation
factor in Lemma 10 so that the computed path is within a 1 + ε approximation
factor of the shortest path, as opposed to a 1 +O(ε log( 1

ε )) factor.

5.3 Proof of Theorem 2

Proof (of Theorem 2). In order to find an O(1) approximation for d(s, t) we do
a query using Lemma 10 with ε = 1/2 (strictly speaking, we preprocess another
distance oracle for ε = 1/2 and query it here) and do a binary search on the
values of δ in {1, 2, 4, . . . , 2dlog(nN)e}. We find in O(log log(nN)) = O(log log n)
time the minimum value δ0 for δ for which the path from Lemma 10 has length
l1/2 < ∞. By Lemma 10, d(s, t) ≤ l1/2 ≤ (1 + k/2)d(s, t). By the minimum
property of δ, l1/2 > 2δ0/2 = δ0 and hence δ0 < l1/2 < 2δ0. By combining this
with the previous inequality we get δ0/(1 + k/2) < d(s, t) < 2δ0.



Next, we do a binary search on the values of δ in {2i1 , 2i1+1, . . . , 2i2} for i1 =
blog(δ0/(1 + k/2))c and i2 = blog(2δ0)c and ε determined by ε ≤ ε/(k log( 1

ε )).
Such ε can be determined in O(log(ε−1)) time and the search takes O(1) time.
By Lemma 10, the returned distance l satisfies

l ≤ (1 + kε log(
1
ε

))d(s, t) ≤ (1 + kε/(k log(
1
ε

)) log(
1
ε

))d(s, t) = (1 + ε)d(s, t).

In order to determine the running time, we use that ε = Θ(ε log(1/ε)) and
hence

ε = Θ(ε/ log(1/ε)) = O(ε/ log(1/ε))

as ε = o(ε2). By replacing that estimation for ε in the complexity bounds in
Lemmas 5 and 10, we get the claimed complexity bounds. ut
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