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Abstract—One of the most useful measures of cluster quality
is the modularity of the partition, which measures the difference
between the number of the edges joining vertices from the same
cluster and the expected number of such edges in a random
graph. In this paper we show that the problem of finding a
partition maximizing the modularity of a given graph G can be
reduced to a minimum weighted cut problem on a complete
graph with the same vertices as G. We then show that the
resulting minimum cut problem can be efficiently solved by
adapting existing graph partitioning techniques. Our algorithm
finds clusterings of a comparable quality and is much faster than
the existing clustering algorithms.

I. INTRODUCTION

One way to analyze and understand the information con-
tained in the huge amount of data available on the WWW and
the relationships between the individual items is to organize
them into ”communities,” maximal groups of related items.
Nowadays networks that need to be analyzed have large sizes
with millions of vertices and edges, so traditional analysis
with global statistics, for example degree distributions, do
not provide information about the structure of the system.
Communities are subgraphs containing nodes with similar
features, hence detecting communities will disclose such sim-
ilarities among nodes and also will show how the system
is organized [20]. In sociology, community is a tighter and
more cohesive social entity. Determining the communities
is of great theoretical and practical importance, since they
correspond to subgroups of related items such as collaboration
networks, groups of friends in online social networks, sets
of scientific publications or news stories on a given topic,
related commercial items, e.g., movies, books, etc. Commu-
nities also arise in other types of networks such as computer
and communication networks (the Internet, ad-hoc networks)
and biological networks (protein interaction networks, genetic
networks). Finding communities in such networks will help
in discovering hidden relationships between the nodes, in
analyzing the flow of information, and understanding the
organization and function of the system.

In distributed and parallel computing, knowing the commu-
nity structure can be used to partition the data to the processors
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in a high-performance system. By having all nodes belonging
to the same community assigned to the same processor results
in data allocations where most of the communication and data
exchange occurs within the same processor, thereby increasing
the efficiency of the system. Community detection is also
relevant to social computing, a very active and fast growing
areas of research and technology providing applications and
services that facilitate distributed computing by groups such as
teams, communities,organizations, and markets [26]. Knowing
the communities which are often implicit in the data is key
for the efficiency of such systems.

The problem of identifying communities in a network is
usually modeled as a graph clustering (GC) problem, where
vertices correspond to individual items and edges describe
relationships. Then the communities correspond to subgraphs
with a lot of edges between vertices belonging to the same sub-
graph (called in-cluster edges) and fewer edges between ver-
tices from different subgraphs (called between-cluster edges).
The GC problem has been intensively studied in the recent
years in relation to its applications in the analysis of networks.
Girvan and Newman propose in [11], [24] algorithms based
on the betweenness of the edges of a graph. Betweenness is a
characteristic that measures the number of the shortest paths in
a graph that use any given edge. In [22] Newman describes an
algorithm based on a characteristic of clustering quality called
modularity, a measure that takes into account the number of
in-cluster edges and the expected number of such edges. (We
formally define and discuss modularity in more detail in the
next section.) Modularity has become a measure of choice for
community detection researchers. Its advantages are simplicity
and intuitivity of the notion, good accuracy, and computational
feasibility (although all known algorithms are approximate).
A faster version of the algorithm from [22] was described by
Clauset et al. in [7]. Several algorithms have been proposed
based on other techniques such as computing eigenvectors of
the graph Laplacian, e.g., [31], [21], [25], simulated annealing
[30], [12], and belief propagation [13]. In all previous cases
the algorithms reported in the literature are either not fast
enough, or are inaccurate. The problem of finding a partition
that maximizes the modularity was shown to be NP-hard [5].

In this paper we will describe a new approach for GC
that uses our newly discovered relationship between the GC
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and the minimum weighted cut problems. Our algorithm finds
clusterings of a comparable quality and is much faster than the
existing clustering algorithms. The general minimum weighted
cut (MWC) problem is, given a graph G = (V,E) with
arbitrary real weights on its edges, find a partition of V
such that the set of all edges of G that join vertices from
different sets of the partition, called a cut of the partition, is
of minimum weight. GC looks related to the MWC problems
since, in a good quality clustering, the weight of the edges
between different sets of the partition (the cut) should be
small compared to the weight of the edges inside the sets.
But the MWC problem can not be directly applied to solve
the GC problem since it does not take into account the sizes
of the subgraphs induced by the cut (e.g., it is likely that
the minimum cut will consist of the edges incident to a
single vertex). There are some minimum cut based clustering
algorithms, e.g., [10], that use maximum flow computations
combined with heuristics, but they are typically slower than
modularity based algorithms, e.g. [7], and, moreover, they
cannot determine the optimal number of clusters and, instead,
construct a hierarchical decomposition of the set of all vertices
of the graph.

In this paper we prove that the problem of finding a partition
of a graph G that maximizes the modularity can be reduced
to the problem of finding a MWC of a weighted complete
graph on the same set of vertices as G. We then show
that the resulting minimum cut problem can be solved by
modifying existing fast algorithms for graph partitioning. We
demonstrate by experiments that our algorithm has generally
a better quality and is much faster than the best existing GC
algorithms.

II. OUR CLUSTERING ALGORITHM

A. Preliminaries

A graph G is an ordered pair (V (G), E(G)) of sets, where
V (G) is the set of the vertices and E(G) is the set of the edges
of G and each edge is an unordered pair (v, w) of vertices.
If E′ ⊆ E(G), then by G− E′ we denote the graph (V (G),
E(G) \ E′). A graph is bipartite, if E(G) ⊆ {(v1, v2) | v1 ∈
V1, v2 ∈ V2}, where V1∪V2 = V and V1∩V2 = ∅. A path p in
G is a sequence (v1, . . . , vk) of vertices such that (vi, vi+1) ∈
E(G) for 1 ≤ i < k. If v1 = vk, then p is a cycle. G is
connected if there is a path between any pair of vertices of G.
The components of G are its maximal connected subgraphs. A
partition P of G is a division of V (G) into subsets V1, . . . , Vs
such that Vi∩Vj = ∅ for i 6= j and

⋃s
i=1 Vi = V (G). If s = 2,

then P is a bisection. Note that, in contrast to other works,
our definitions of partition and bisection does not require the
parts to be balanced in size. A set C ⊆ E(G) is a cut of
G if there exists a partition P of G such that C is the set
of the edges of G joining vertices from different sets of P .
We will use the notation C = cut(P) and P = part(C) and
define cut(Vi, Vj) = {(t, u) ∈ E(G) | t ∈ Vi, u ∈ Vj}. Two
partitions P1 and P2 are equivalent, if cut(P1) = cut(P2). If
there are weights wt(·) associated with the edges of G, then
by cutWt(P) = wt(C) we denote the sums of the weights

of all edges in C. If M is a finite set, by |M | we denote the
number of the elements of M .

B. Modularity optimization as a minimum cut problem
As there is no formal definition of clustering and what the

clusters of a given graph are, in general it is not possible
to determine if a certain partition represents the ”correct”
clustering or which of two alternative partitions of a graph
corresponds to a better clustering. For that reason, researchers
have used their intuition to define measures for cluster quality
that can be used for comparing different partitions of the same
graph. One such measure, introduced in [23], [24], which has
received considerable attention recently, is the modularity of a
graph. Given an n-vertex m-edge graph G = (V (G), E(G))
and a partition P of V (G) into k subsets (clusters) V1, . . . , Vk,
a random graph distribution G on V (G), the modularity
Q(P, G, G) of P with respect to G (or Q(P) for short if
G and G are clear from the context) is a number between −1
and 1 defined as

Q(P) = Q(P, G, G) =
1

m

k∑
i=1

(|E(Vi)| − Ex(Vi,G)),

where E(Vi) is the set of all edges of G with endpoints in
Vi and Ex(Vi,G) is the expected number of such edges in
a random graph with a vertex set Vi from a given random
graph distribution G on V (G). Q(P) measures the difference
between the number of in-cluster edges and the expected
value of that number for P in a random (e.g., without cluster
structure) graph on the same vertex set. Larger values of Q(P)
correspond to better clusterings.

Having the definition of Q(P), we can formulate the
clustering problem as finding a partition P = {V1 ∪ · · · ∪ Vk}
of V (G) such that

k∑
i=1

( |E(Vi)| − Ex(Vi,G))→ max . (1)

Clearly

max
P
{

k∑
i=1

( |E(Vi)| − Ex(Vi,G) )}

= −min
P
{ −

k∑
i=1

( |E(Vi)| − Ex(Vi,G) )}

= −min
P
{ (|E(G)|−

k∑
i=1

|E(Vi)| )−(|E(G)|−
k∑
i=1

Ex(Vi,G) )}.

Denote

ExCut(P, G, G)} = |E(G)| −
k∑
i=1

Ex(Vi,G) .

Intuitively, ExCut(P, G, G) is the expected value of
|cut(P)| with respect to the random graph class G, assuming
the expected number of edges for G is |E(G)|. Then

max
P
{

k∑
i=1

( |E(Vi)| − Ex(Vi,G) )} =
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−min
P
{ |cut(P)| − ExCut(P, G, G)}.

Hence, instead of problem (1), one can address the problem
of computing

argmin
P
{ |cut(P)| − ExCut(P, G, G)} . (2)

The last expression shows that we can solve (1) as a problem
of finding a MWC in a complete graph G′ with a vertex set
V (G) and weight weight(i, j) on any edge (i, j) ∈ E(G′)
defined by

weight(i, j) =

{
1− pij , if (i, j) ∈ E(G)
−pij , if (i, j) 6∈ E(G),

(3)

where pij is the probability that there is an edge between
vertices i and j in a random graph from the class G. Then,
problem (1) is equivalent to the problem of computing

argmin
P′

{cutWt(P ′)} , (4)

where cutWt(P ′) denotes the weight of the cut of P ′.
We summarize these observations in the following theorem.

Theorem 1. The problem of finding a partition of a graph
G = (V,E) that minimizes the modularity can be reduced
in O( |V | + |E| ) time to the problem of finding a minimum
weighted cut in a complete graph G′ = (V,E′) with edge
weights given by (3).

For the reduction time bound in Theorem 1 we assume that
the edges of E′ \ E are defined implicitly. There are several
choices for G that have been favored by various researchers.
The random graph model G(n, p) of Erdös-Renyi [8] defines
n vertices and puts an edge between each pair with probability
p. Clearly, the expected number of edges of G(n, p) is

(
n
2

)
p.

Hence, for a graph with expected number of edges m

pij = p =
m(
n
2

) · (5)

One disadvantage of the G(n, p) model is that it fails to
capture important features of the real-world networks, in par-
ticular, the degree distribution. As has been recently observed
[3], many important types of networks like technological net-
works (the Internet, the WWW), social networks (collaboration
networks, online social networks), biological networks (protein
interactions) have degree distributions that follow a power
law, e.g., the fraction of the vertices that have degree k > 0
is roughly proportional to αk−λ for some constants α and
λ > 0. Such networks are called scale-free. In comparison,
the degrees of a random graph from the G(n, p) model follow
a Poisson distribution, i.e., the probability that a given vertex
has degree k is

(
n
k

)
pk(1− p)n−k and the expected degree of

each vertex is pn. Hence, the Erdös-Renyi model may not
be suitable as a choice for G when used for determining the
community structure of graphs of the above type.

One model that takes into account the degrees of the
vertices is studied by Chung and Lu in [6]. In that model,

the probability that there is an edge between a vertex i and a
vertex j is

pij =
didj∑n
k=1 dk

, (6)

where d1, · · · , dn are positive reals corresponding to the
degrees of the vertices such that max1≤i≤n d

2
i <

∑n
i=1 di.

(The last condition guarantees that such a graph exists if all
numbers di are integers and will be always satisfied if numbers
di are chosen to be the degrees of G.) We will refer to that
model as the Chung-Lu (CL) model. Clearly, in the CL model,
the expected degree of vertex i is di, compared with pn (i.e.,
independent on i) in the G(n, p) model. CL model captures
the degree distribution of the real world networks, since the
expected degree of vertex i is di.

Note that for both of the above choices of G the expected
number of edges for a graph in G is |E(G)|.

In the next section we will describe an efficient method for
finding a MWC of a complete graph G′ with weights on the
edges satisfying (3) and pij defined by (5) or (6).

C. Finding a MWC using multilevel graph partitioning

Above we established an important relationship between
the modularity optimization and the MWC problems, i.e.,
that the problem of finding a partition of a given graph that
maximizes the modularity can be reduced to the problem
of finding a minimum weight cut. Most existing work on
the MWC problem considers the case where all weights are
non-negative. The MWC problem in the case of non-negative
weights is known to be polynomially solvable, e.g., by using
algorithms for computing maximum flows [1]. In contrast, the
MWC problem in case of real-value weights is NP-hard and
algorithmic aspects of the problem are much less studied. Here
we show that available heuristics for another related problem,
graph partitioning, can be adapted to solve this version of the
MWC problem.

1) Overview of the multilevel graph partitioning.: For-
mally, the graph partitioning (GP) problem is, given a graph
G = (V,E), to find a partition (V1, V2) of V such that
||V1|−|V2|| ≤ 1 (i.e., the partition is balanced) and cut(V1, V2)
is minimum. (Some versions of the problem consider partitions
into an arbitrary number of parts.) Hence, in comparison with
the minimum cut problem, there is the additional requirement
for a balanced partition. Because of its important applications,
e.g., in high performance computing and VLSI design, GP is
a well-researched problem for which very efficient methods
have been developed. Spectral partitioning methods [27], [28]
produce good results but have long running times. Geometric
graph partitioning algorithms [14], [29] can be applied only
if one has the coordinates for the vertices. Multilevel graph
partitioning schemes [4], [15] can produce better partitions
than spectral methods and have better running times for most
of the instances. The multilevel GP is both fast and accurate
for a wide class of graphs that appear in practical applications.
It is inspired by the multigrid method from computational
mathematics. The multigrid method is a group of algorithms
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Fig. 1. The stages of multilevel partitioning.

for solving differential equations using a hierarchy of dis-
cretizations. The multilevel GP has been used in the works of
Barnard and Simon [4], Hendrickson and Leland [15], Karypis
and Kumar [17], [18], and others. The method for bisecting a
graph consists of the three phases(Figure 1).

Thus, we get a sequence of graphs G =
G0, G1, G2, . . . , Gk. We partition Gk by greedy graph
growing partitioning. At the refinement phase, we project
partitioning Pi of Gi to Pi−1 of Gi−1. We have more degrees
of freedom at Gi than Gi−1 and we improve Pi using
Kerninghan-Lin algorithm.
Coarsening phase. The original graph G is coarsened by
partitioning it into connected subgraphs and contracting them
to single vertices. For that purpose, a maximal matching M of
the vertices of G is constructed. Such a matching is computed
in a greedy manner, i.e., for each unvisited unmatched vertex
v one of its unmatched neighbors is picked at random; if none,
then v remains unmatched. Then each edge of M is collapsed
to a single vertex, replacing any set of resulting parallel edges
by a single edge. Moreover, a weight of each new vertex
(respectively edge) is assigned equal to the sum of the weights
of the vertices (respectively edges) that it represents. Weights
on the original vertices of G are defined 1, in the case of
the G(n, p) model, or their degrees, in the case of the CL
model, as justified in Corollary 1 below. (The coarsening
procedure, including alternative methods for determining the
set of the shrunk subgraphs and analysis of their effect on
the quality of the final partition, is described in much detail in
[17].) The resulting graph is coarsened repeatedly by the same
procedure until one gets a graph of a sufficiently small size.
Let G0 = G,G1, . . . , Gl be the resulting graph sequence.
Partitioning phase. The graph Gl is partitioned into two
parts using any available partitioning method (e.g., spectral
partitioning or the Kernighan-Lin (KL) algorithm [19]).
Uncoarsening and refinement phase. The partition of Gl is
projected on Gl−1, which involves replacing each vertex by
the subgraph that was contracted to that vertex during the
coarsening step. Since the weight of each vertex of Gl is a
sum of the weights of the corresponding vertices of Gl−1, then
the cut of both partitions will have the same weight. However,

since Gl−1 has more vertices than Gl, it has more degrees of
freedom and, therefore, it is possible to refine the partition of
Gl−1 in order to reduce its cut size. To this end, the projection
of the partition of Gl is followed by a refinement phase, which
is usually based on the KL algorithm (see next subsection). In
the same way, the resulted partition of Gl−1 is converted into
a partition of Gl−2 and refined, and so on until a partition of
G0 is found.

2) Kernighan-Lin refinement.: Since the refinement step
is the most involved part of the algorithm, which ultimately
determines its accuracy and efficiency, we will describe it in
more detail. It has been shown [17] that the KL algorithm can
be a good choice for performing the refinement.

The KL algorithm involves several iterations, each consist-
ing of moving a vertex from one set of the partition to the
other. Let P = {P1, P2} be the current partition. For each
vertex u of the graph a gain for u is defined as

gain(u) =
∑

v∈N(u)\P (u)

weight(u, v)−
∑

v∈N(u)∩P (u)

weight(u, v),

(7)
where N(u) is the set of all neighbors of u and P (u) is that
set of P that contains u. gain(u) measures how the weight of
the cut will be affected if u is moved from P (u) to the other
set of P . The KL algorithm then selects a vertex w from the
smaller set of the partition with a maximum gain, moves it to
the other set, and updates the gains of the vertices adjacent
to w. Moreover, w is marked so that it will not be moved
again during that refinement step. The process is continued
until either all vertices have been moved, or the S most recent
moves have not led to a better partition. (S is a user chosen
parameter that is set to 50 in the current implementation.) At
the end of the refinement step, the last s ≤ S moves that have
not improved the partition are reversed.

3) Implementation: The implementation of our algorithm
for clustering is based on the version of multilevel partitioning
implemented by Karypis and Kumar [17], [18], which has been
made freely available as a software package under the name
METIS. The multilevel graph partitioning algorithm is also
implemented in parallel by Karypis and Kumar [16] and is
called ParMetis. ParMetis is an MPI-based parallel library. The
algorithms implemented in ParMetis are based on the parallel
multilevel k-way graph partitioning, adaptive repartitioning,
and parallel multi-constrained partitioning schemes. Initially,
a single processor partitions the original graph into two
subgraphs, then two processors partition the two subgraphs
just produced, and so on. In our experiments, we used METIS.

Note that graph partitioning, minimum cut, and clustering
are related, but with important differences, problems, as illus-
trated in Table I. We have already shown how the clustering
problem can be reduced to a minimum cut problem and here
we will show how the resulting minimum cut problem can be
solved by a graph partitioning algorithm based on METIS.
Because of the differences between graph partitioning and
MWC, we have to make some evident changes. For instance,
since graph partitioning requires balanced partitions, we have



5

to drop the requirement for balance of the partition. At the
uncoarsening phase, we ignore the restrictions that control the
sizes of the parts. We have also to determine the cardinality
of the partition that minimizes the cut size. But the main
implementation difficulty is related to the size of G′. Although
the original graph, G, is often sparse, i.e., it has n vertices
and O(n) edges, the transformed one, G′, is always dense,
as it has

(
n
2

)
= Ω(n2) edges. The main challenge will be to

construct an algorithm whose complexity is close to linear on
the size of the original graph, rather than on the size of the
transformed one. Next we show that it is possible to simulate
an execution of a KL refinement step on G′ by explicitly
maintaining information only about the edges from the original
graph G and implicitly taking into account the remaining edges
by modifying the formulae for computing weights and gains.

In order to give intuition about why this works, assume
that the edges of G′ belong to two types that we call visible
and invisible. The visible edges correspond to the edges of the
original graph G and are therefore few (assuming G is sparse).
These edges carry weight 1 and are maintained explicitly. The
invisible edges are between any two vertices of G′. (Note that
for each visible edge there is also an invisible one parallel to
it, i.e., joining the same endpoints.) The weight of invisible
edge (i, j) is −pij . Although the number of invisible edges is
Ω(n2), because of their uniform distribution, the contribution
of these edges to the cut is easy to compute by maintaining
additional information of size O(1) only. The next two lemmas
formalize this notion.

Lemma 1. Let P = {V1, V2} be a partition of G and let G′

be the transformed weighted graph with respect to the G(n, p)
random graph model. Let P ′ be the cut in G′ corresponding
to P . Then cutWt(P ′) = cutWt(P)− |V1| |V2|p , where p =
m/
(
n
2

)
.

Proof: Follows from formulae (3) and (5). There is an
edge in G′ joining any vertex from V1 with any vertex in V2.
For an edge from G the corresponding weight is 1 − p, and
an edge in G′ not in G the corresponding weight is −p.

The lemma shows that if one maintains the values of |V1|
and |V2| during a KL refinement, one can work with the
original graph G rather than with the modified G′, updating
at each step the value of the cut in O(1) time using Lemma 1.

A similar formula holds for the case of the CL model.

Lemma 2. Let P = {V1, V2} be a partition of G and let G′

be the corresponding weighted graph with respect to the CL
random graph model. Assign a weight wt(v) to each vertex v
equal to its degree. Let P ′ be the cut in G′ corresponding to
P . Then

cutWt(P ′) = cutWt(P)− wt(V1)wt(V2)p , (8)

where wt(Vi) =
∑
v∈Vi

wt(v) and p =
(∑

v∈V (G) wt(v)
)−1

.

Proof: Follows from formulae (3) and (6) and the equality∑
v∈V1

∑
w∈V2

wt(v)wt(w)

p
=

(∑
v∈V1

wt(v)

)(∑
w∈V2

wt(w)

)
/p .

According to the lemma, the cut weight of P ′ can be
computed in O(1) time given the cut weight of P , if one
maintains the values of the weights of V1 and V2 during the
KL refinement.

In the case of both the G(n, p) and the CL random graph
models, for moving a vertex v from one partition to another
during a KL refinement we need only to update the gains
of the neighbors of v in G. Having those gains, one can
maintain cutWt(P) in total time proportional to the size of
G, excluding the time for priority queue operations needed to
extract vertices with maximum gains, which is O(n log n) in
total. By Lemma 1 or Lemma 2, one can at any time compute
cutWt(P ′) from cutWt(P) and the weights of the partitions
in O(1) additional time.

From Lemma 1 and Lemma 2 it follows that in the case of
both models the same KL refinement algorithm can be used,
if the vertex weights are appropriately defined.

Corollary 1. Let P = {V1, V2} be a partition of G and let
G′ be the corresponding weighted graph with respect to either
the G(n, p) or the CL random graph model. Define the weight
of any vertex v to be 1, in the case of the G(n, p) model, or
the degree of v, in the case of the CL model. Then cutWt(P ′)
can be computed by formula (8).

4) Clustering into an optimal number of clusters: The
algorithm described above is a bisection algorithm, i.e., it
finds a partition (and hence clustering) of the input graph into
two parts. Our algorithm for an arbitrary number of clusters
uses the following recursive procedure. We run the bisection
algorithm described above and let P be the resulting partition.
If P consists of only one set (i.e., the original graph G does
not have a good cluster partition), we are done. Else, we run
recursively the bisection algorithm on the two subgraphs G1

and G2 of G induced by the vertices of the two sets of P . It
is important to keep, during that recursive call, the weights
of the edges computed during the first iteration instead of
recomputing them based on G1 and G2. The reason is that the
random graph model based on G will be different than those
based on G1 and G2 since formulae 5 and 6 will produce
different values for pij .

5) Time analysis.: The Fiduccia and Mattheyses of the KL
algorithm from [9] takes linear time. It uses an array of bucket
lists to achieve linear running time. By using the analysis of
Fiduccia and Mattheyses of the KL algorithm from [9], it
follows that clustering any network of n vertices and m edges
into two communities by our algorithm takes O(n log n+m)
time, where n and m are the numbers of the nodes and
links of the network, respectively. Finding a clustering in
optimal number of k parts takes O((n log n+m)d) time, where
d is the depth of the dendrogram describing the clustering
hierarchy. Since the dendrogram is represented by a binary
tree, log2 k ≤ d ≤ k.
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Problem Modularity optimization Minimum Cut Graph Partitioning
Objective Minimize modularity Minimize cut size Minimize cut size

Balance of partition Sizes may differ Sizes may differ Equal sizes
Cardinality of partition To be computed To be computed An input parameter

TABLE I
COMPARISON BETWEEN MODULARITY OPTIMIZATION, MINIMUM CUT, AND GRAPH PARTITIONING PROBLEMS.

III. EXPERIMENTS AND PERFORMANCE EVALUATION

We performed a number of experiments on real graphs as
well as on randomly generated graphs, in order to measure
the accuracy of our algorithm and its efficiency as well as
to compare it with previous algorithms. We first describe
several experiments on real-world graphs, whose purpose is
to illustrate the use of our algorithm and community detection
in general for extracting structural information from network
data. Then we include the results of an experiment measuring
the algorithm accuracy, the so called Newman-Girvan test.
We include this test as an example of non-modularity based
accuracy test and because of its popularity. Its disadvantages
are that it uses graphs of very special structure and of relatively
small sizes. That is why we concentrate most of our effort
and describe in most detail the results of another type of
experiments, included in the third subsection. It uses graphs of
different size and structures, and on which we are able to test
both the speed and the accuracy of our algorithm versus several
others. In all experiments the CL version of our algorithm was
used.

A. Testing on real-world-data graphs

We tested our algorithms on a number of real-world graphs
such as the nd.edu domain data [2], the United States college
football data [11], and the Zachary’s karate club network [32].
In all cases our algorithms produced clustering consistent with
our previous knowledge about the communities. We describe
here in more detail the Zachary club network only. The goal
of including this example is not to demonstrate the qualities of
our algorithm, but rather to illustrate the notion of community
detection with a real-life example. This network, used often
for illustration of community detection algorithms, describes
the interactions between the members of a karate club that
consequently split into two because of infight between the
members, thereby revealing the hidden communities of the
original network. The vertices of the corresponding graph
denote club members and the edges correspond to friendships
between members. As shown on Figure 2, the bisection
constructed by our algorithm classified correctly the members
of the two subgroups, except for node 10. That node has the
same number of links (one) to both communities, hence adding
it to the smaller community results in a greater modularity (i.e.,
our bisection has a better modularity than the ”real” one.)

B. Newman-Girvan accuracy test

Following the experimental setting of [24], we generated
random graphs with 128 vertices and 4 communities of size
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Fig. 2. Zachary’s karate club network. Members of the communities
resulting after the split are denoted by circles and squares, respectively. The
communities found by our algorithm are separated by the vertical line.

Outdegree Degree Newman-Girvan Ours
1 16 1.00 1.00
2 16 1.00 1.00
3 16 0.98 1.00
4 16 0.97 1.00
5 16 0.95 1.00
6 16 0.85 0.99
7 16 0.60 0.95
8 16 0.30 0.79

TABLE II
COMPARING THE QUALITY OF THE CLUSTERING OF OUR ALGORITHM AND

NEWMAN-GIRVAN’S ALGORITHM.

32 each. The expected degree of any vertex is 16, but the
expected outdegree (the expected number of neighbors of a
vertex that belong to a different community) is set to i in the
i-th experiment (i ≤ 16). Hence, higher values of i correspond
to graphs with weaker cluster structures. The experiment is
intended to measure the sensitivity of the algorithm to the
strength of the communities.

In order to decide whether to include an edge (v, w) in
the graph in the i-the experiment, a random number r in the
interval [0, 1] is generated and (v, w) is accepted if r ≥ i/31
and v and w belong to the same community or r ≥ (16−i)/96
and v and w belong to different communities, and is rejected
otherwise.

Table II compares the quality of the clusterings produced
by Newman-Girvan’s algorithm and ours. A clustering pro-
duced by any of the algorithms is considered ”correct” if it
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matches the original partition of communities from the graph
generation phase. (Note that, due to the probabilistic nature
of the graphs, the clustering that maximizes the modularity
might be different from the original partition, especially if the
modularity is low.)

Our algorithm classifies correctly more than 99% of the
edges for outdegrees 0, 1, 2, 3, 4, 5, 6 and in all cases it is better
than Newman-Girvan’s (more than twice better for the case
outdegree=8).

C. Testing speed and accuracy

Table I (supplementary file) compares the performance of
our algorithm with four other algorithms that are considered
among the best with respect to their speeds and/or accuracies.
Clauset, Newman, and Moore’s algorithm [7] is an agglomer-
ative algorithm that is an improvement of a previous algorithm
[22] in terms of the speed and is claimed to have the same
quality of the partition. Agglomerative algorithms start with
a community partition, where each single vertex represents a
community. At each iteration a pair of communities are merged
into a single one such that a measure of cluster quality, in
this case the modularity, is improved. The second algorithm
is Newman’s algorithm described in [25], which is a spectral
algorithm based on eigenvector computations. The other two
algorithms, of Guimera and Amaral [12] and Reichardt and
Bornholdt [30], are based on simulated annealing optimization.

Most of the algorithms tested, notably Guimera-Amaral
and Reichardt-Bornholdt algorithms, have parameters that can
be played with in order to improve the accuracy of the
algorithms on particular graphs. It is possible that by varying
the parameters from experiment to experiment and from graph
to graph, the quality of some partitions would have improved.
Our algorithm also has parameters that allow trading off speed
for accuracy. However, such type of optimization and fine-
tuning of the algorithms is beyond the scope of this paper.
In all experiments, we have used the recommended or default
values of all parameters.

The test graphs in our experiments are random graphs with
varying numbers of clusters, sizes, densities, cluster sizes, and
modularities. The graphs are generated by initially assigning
a set of isolated vertices into a number of clusters with preset
sizes. Then, for each pair of vertices v and w, an edge
(v, w) is generated with probability pin, if v and w belong
to the same cluster, and with probability pout, otherwise,
where pin and pout are input parameters. Increasing pin and/or
decreasing pout produces test graphs with better community
structures (higher modularities). Increasing both pin and pout
increases the density (average vertex degree) of the graph.
Hence, varying pin and pout we can create graphs with desired
properties.

Experiment 1–10 have been run 100 times on different
random graphs and experiments 11–13 have been run 10 times.
All experiments have been run on an Intel Xeon CPU 1.60GHz
processor desktop computer with 4G of memory.

For each experiment, the table shows the number of the
vertices and the average number of edges of the test graph,

the number of the clusters in the original partition during
generation, and the average modularity of that partition. Then,
for each of the algorithms, the average running time and
modularity of the partition are listed.

Figures 1 and 2 (supplementary file) show the distribution of
the degrees of the vertices for each of the experiments. The in-
degree of a vertex in those tables is defined here as the number
of the adjacent vertices from the same cluster as defined
during the generation process and the out-degree as the number
of adjacent vertices from a different partition. One would
expect that the support interval (the interval where the density
function is positive) for the in-degrees will always be greater
than (to the right of) the one for the out-degrees, in order to
have well defined community structures, but this is not always
the case. When the number of the communities is large (as in
experiment 4), it is possible for the out-degrees of vertices to
exceed their in-degrees, while the average number of neighbors
to any fixed neighboring community to be still lower than
the in-degree. In experiments 8, 9, and 10, this effect is
further amplified by the low modularity of the partitions, which
translates into weaker community structures.

Experiments 1–4 study how the performance of the algo-
rithms depends on the number of clusters, which vary from 2
to 9. The results indicate that the qualities of the clusterings
are comparable, while Newman’s (N) and Guimera-Amaral’s
(GA) algorithms time performance is more sensitive to the
number of the clusters.

In experiments 5–7, the test graphs have the same numbers
of vertices, numbers of cluster, and modularities, but different
densities. All algorithms were quite accurate and showed little
variance in their performance when sparsity changes.

In experiments 8–10, we compare the algorithms when the
modularity (the quality of the original clustering) is low. In
these experiments, the Clauset, Newman, and Moore’s (CNM)
algorithm considerably underperformed the other four with
respect to the quality of the partition.

Finally, in experiments 11-13, we compared the scalability
of the algorithms. Because of the low scalability of some algo-
rithms and the long time it takes to run a single experiment,
those experiments were run only 10 times. As such, small
differences in the modularity should be taken with caution,
and attention should be paid to the running times, which vary
significantly from algorithm to algorithm. The experiments
show that the GA algorithm is the slowest, followed by the
other simulated annealing based Reichardt and Bornholdt’s
(RB) algorithm, which is about 4 times faster. Neither of
these two algorithms can be used in reasonable time for
graphs containing more than a few hundred thousand edges.
Algorithm N is much faster than those two and can be used
for graphs of size several million edges. The only algorithm
that can scale to graphs of sizes up to tens of millions of edges
is the CNM algorithm, but it is also the least accurate of all,
as seen in the sensitivity tests (experiments 8–10). Yet, our
algorithm is about 30 times faster than the CNM algorithm.

Since Table I (supplementary file) shows only averages, we
give on Figures 3 and 4 (supplementary file) the distribution
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of the modularities for each algorithm and each experiment,
represented as differences between the modularities of our
algorithm and those of the other algorithms. Those figures
show that in experiments 1 through 8 our algorithm not
only produces equal or better quality clusterings on average,
but virtually on any single graph in those tests. The only
experiments where the quality is worse in some instances,
in spite of the good quality of our algorithm on average,
are experiments 9 and 10, where the modularity is very low
– 0.123 and 0.081, respectively. Algorithm N performs the
best in those experiments, which shows that it can be a good
alternative to our algorithm in low to moderate size graphs (up
to 4-5 million edges).

In summary, in those experiments our algorithm produced
partitions of quality comparable to the most accurate existing
algorithms, in times orders of magnitude smaller. Ours is the
only one of the tested algorithms that can produce high quality
clusterings on graph of sizes exceeding several million edges.

IV. CONCLUSION

This paper proposes a new approach for modularity opti-
mization by reducing it to a minimum cut problem and then
solving the latter problem by applying methods for graph
partitioning. Our proof-of-concept implementation, based on
the METIS partitioning package, demonstrated the practicality
of the approach. The changes we made to METIS were
relatively small and various improvements and refinements that
take into account the specifics of the clustering problem, use
alternative minimum cut or graph partitioning algorithms, or
apply heuristics and parameter adjustments in order to improve
the accuracy are possible and will be topics of further research.
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