
Algorithms for Approximate Shortest Path Queries on
Weighted Polyhedral Surfaces∗

Lyudmil Aleksandrov Hristo N. Djidjev Hua Guo
Anil Maheshwari Doron Nussbaum Jörg-Rüdiger Sack

April 22, 2008

Abstract

We consider the well known geometric problem of determining shortest paths be-
tween pairs of points on a polyhedral surface P , where P consists of triangular faces
with positive weights assigned to them. The cost of a path in P is defined to be the
weighted sum of Euclidean lengths of the sub-paths within each face of P .

We present query algorithms that compute approximate distances and/or approx-
imate shortest paths on P . Our all-pairs query algorithms take as input an approx-
imation parameter ε ∈ (0, 1) and a query time parameter q, in a certain range, and
builds a data structure APQ(P, ε; q), which is then used for answering ε-approximate
distance queries in O(q) time. As a building block of the APQ(P, ε; q) data struc-
ture, we develop a single source query data structure SSQ(a;P, ε) that can answer
ε-approximate distance queries from a fixed point a to any query point on P in loga-
rithmic time. Our algorithms answer shortest path queries in weighted surfaces, which
is an important extension, both theoretically and practically, to the extensively studied
Euclidean distance case. In addition, our algorithms improve upon previously known
query algorithms for shortest paths on surfaces. The algorithms are based on a novel
graph separator algorithm introduced and analyzed here, which extends and generalizes
previously known separator algorithms.

1 Introduction

Shortest path problems rank among the fundamental computer science problems, different
aspects of which are studied in computational geometry, network optimization, graph algo-
rithms, geographical information systems (GIS), and others. These problems arise naturally

∗Research supported by Natural Sciences and Engineering Research Council of Canada and US Depart-
ment of Energy under contract W-705-ENG-36. Preliminary research leading to this paper has appeared in
[6, 7]. Research was carried out in part while the first and second authors were visiting Carleton University.
The first author is from the Bulgarian Academy of Sciences, Sofia, Bulgaria. The second is from Los Alamos
National Laboratory, USA. The remaining authors are from Carleton University, Ottawa, Canada.

1

in various applications such as motion/route planning, navigation, graphics, seismology, in-
jection molding (for references see [10]). Aside from the importance of shortest path problems
in their own right, they often appear in the solutions to other problems.

Unlike the well-studied graph version of the shortest path problem, computing shortest
paths in geometric domains is a much more challenging problem. Existing algorithms for
many geometric shortest path problems are quite complex in both design and implementation
or have a large time and space complexities. Hence, they are unappealing to practitioners
and pose challenge to theoreticians. Problem instances are known to be computationally
”hard”, see e.g., [12]. This, along with the fact that geometric models are approximations
for reality and there is a need of fast algorithms computing high-quality but not necessarily
optimal paths, makes approximation algorithms suitable and necessary.

In many cases the computation of shortest paths with respect to the classic Euclidean
distance does not provide an adequate solution. Non-Euclidean distances naturally occur in
a variety of key application domains, such as GIS, Robotics, Optics, and Seismology, where
the regions are non-homogeneous and the cost of travel is different at different locations. For
example, in GIS a terrain could consist of different types of regions (e.g. water, forest, rocks)
which are modeled by assigning suitable weights to each of them. This leads to the so called
weighted shortest path problem. Considering weighted problems adds further complexity to
solutions.

Frequently, shortest path queries between different pairs of points are executed repeatedly
over time for the same domain. Examples of applications employing repeated shortest paths
queries are tourist information systems and planning search-and-rescue strategies in terrains.
Due to the relatively high time complexities for shortest path computations, in particular in
weighted domains, efficient shortest path query algorithms for such applications are not only
desirable, but often are the only way that timely answers can be provided. This motivates
our search for algorithms for answering approximate shortest path queries.

We consider paths that stay on a connected polyhedral surface1 P in the 3-dimensional
Euclidean space consisting of n positively weighted triangular faces. The cost of a path lying
inside a face is its Euclidean length multiplied by the weight of the face. The cost of a general
path on P is the sum of the costs of the sub-paths within each face traversed. For a pair of
points a and b on P , a path of least cost between them is called a shortest path and its cost
is called a distance between a and b. Clearly, this weighted scenario is a generalization of the
classic Euclidean distance model, which is obtained by assigning unit weights to all faces. In
this paper, we present algorithms for answering approximate distance (and/or approximate
shortest path) queries between pairs of points on P .

More precisely, let ε be a fixed real number in (0, 1). For a pair of points a and b on P , an
ε-approximate (or simply approximate, if no ambiguity arises) distance between these points
is any number whose ratio with the distance between a and b is in (1 − ε, 1 + ε). A path
between a and b on P whose cost is an ε-approximate distance is called an ε-approximate
(approximate) shortest path.

1Surface P can be any polyhedral 2-manifold with no additional geometrical and/or topological properties
like convexity, being a terrain, absence of holes, etc., assumed.

2

In this setting, the approximate shortest path query problem is: preprocess the surface P
so that an approximate distance (and/or an approximate shortest path) between any query
pair of points in P can be computed efficiently. We distinguish two standard variations of
this problem. In the All Pairs Query (APQ) problem, the query consists of a pair of arbitrary
points on P (as well as pointers to the faces of P containing the query points). In the Single
Source Query (SSQ) problem, the query consists of a single point whereas the other point,
called source, is fixed and given in advance.

The main result of this paper is a family of approximate solutions to the APQ problem
on weighted polyhedral surfaces. More precisely we present algorithms that, for an input
parameter q in a certain range, construct a data structure APQ(P, ε; q), which is then used
for answering of approximate shortest path queries between arbitrary pairs of points in P in
O(q) time per query. As a building block for our solution to the APQ problem we present an
approximate solution for the SSQ problem as well. To the best of our knowledge these are
the first solutions to the APQ and SSQ problems on weighted surfaces. These problems were
mentioned as open problems in [31]; it is easy to see that they are natural ones to consider
once we know how to answer queries on surfaces under Euclidean metric. To place our work
in the context of the literature we next state some relevant results.

1.1 Overview of previous work

A large amount of research has been devoted to efficient computation of shortest paths in
geometric environments. Here, we concentrate on results related to SSQ and APQ problems
on polyhedral surfaces in the 3-dimensional Euclidean space. With a few exceptions these
results have been obtained with respect to the Euclidean distance, and in the discussion
below we assume the Euclidean distance if not explicitly specified otherwise. We distinguish
between exact and approximate SSQ and APQ problems, referring to the cases where finding
of exact or approximate distances is required.
Work on exact problems: A solution to the exact SSQ problem on general polyhedral
surfaces was presented initially in [41] and then improved in [35]. For a surface of size n
and a source point s, the algorithm in [35] takes O(n2 log n) preprocessing time to construct
a diagram that can be used to answer distance queries to s in O(log n) time. Applying an
alternate approach, Chen and Han [17, 18] obtained an algorithm with improved prepro-
cessing time and controllable query time. For a surface of size n and an input parameter
1 ≤ d ≤ n, their algorithm takes O(n2) preprocessing time to construct a data structure of
size O(n log n/ log d) that allows answering distance queries to the source in O(d logn/ log d).

The exact APQ problem on general polyhedral surfaces is believed to be complex, both
theoretically and computationally. To the best of our knowledge no complete solution to this
problem has been published so far. It had been announced in [1, 21] that methods applied
to special cases, such as planar polygonal domain [21] and surface of convex polytopes [1],
extend to the general case. These potential solutions represent a theoretical interest only,
due to their high time and space complexities.

Due to the difficulty of the exact SSQ and APQ problems in the general case, researchers
paid special attention to finding efficient solutions under certain restrictions imposed on the

3

Problem Geom. Model Preprocessing Space Query Remarks Reference

SSQ Planar domain O(n log n) O(n) O(log n) [32]
SSQ Convex Surf. O(n log n) O(n) O(log n) [40]
SSQ General Surf. O(n2) O(n log n/ log d) O(d log n/ log d) 1 ≤ d ≤ n [17]

APQ Planar domain O(n5+10δ1+δ) O(n5+10δ1+δ) O(n1−δ log n) 0 < δ1 ≤ 1, [21]
δ > 0

APQ Convex Surf. O(n6m1+δ) O(n6m1+δ) O(
√

n

m1/4
log n) 1 ≤ m ≤ n2, [1]

δ > 0

Table 1: Selected exact solutions to the Euclidean SSQ and APQ problems.

domain. Guibas and Hershberger [29] presented an asymptotically optimal solution of the
exact APQ problem inside a simple polygon in the plane. In O(n) time their algorithm
constructs a data structure that allows answering distance queries between arbitrary pairs
of points inside a simple polygon of size n in O(log n) time. In addition, the corresponding
shortest paths can be reported in time proportional to their combinatorial size.

The exact SSQ problem in planar polygonal domains drew considerable attention and has
been studied extensively. An asymptotically optimal algorithm for the exact SSQ problem
has been presented in [32]. For a planar polygonal domain of size n, it takes O(n logn) time
to build a data structure of size O(n) that then can be used to answer single source queries
in O(log n) time.

A number of suboptimal solutions for the exact APQ problem in planar polygonal do-
mains have been published. For a domain defined by h polygonal obstacles of total size
n, algorithms with O(n), O(h + log n), O(h log n), O(log2 n), and O(log n) query times are
proposed in [21]. The bounds on the preprocessing time and the space for the corresponding
data structures vary from O(n5) to O(n15).

An algorithm for solving the exact APQ problem with O(n2) bound on the preprocessing
time and space has been proposed in [15]. The bound on the query time of this algorithm
depends on the position of the query points and is O(n log n) in the worst case.

An optimal solution of the exact SSQ problem on the surface of a convex polytope has
been recently presented in [40]. For a polytope of size n it takes O(n logn) preprocessing
time and distance queries to the source are answered in O(logn) time. The exact APQ
problem on the surface of a convex polytope has been studied by Agarwal et al. in [1].
They proposed a scheme that, for a convex polytope of size n and an input parameter m,
1 ≤ m ≤ n2, takes O(n6m1+δ) (δ > 0) preprocessing time and space to construct a data
structure that serves distance queries between arbitrary pairs of points in O(

√
n log n/m1/4)

time. See Table 1 for more details.
Work on approximate problems: The high complexity of the available solutions for the
exact problems, especially for the APQ problem, keeps open the interest towards finding
conceptually simpler and more efficient approximate solutions.

In [31], an algorithm for solving the approximate SSQ problem on general polyhedral
surfaces is proposed. For a surface of size n, a source point s and an approximation parameter

4

ε, 0 < ε < 1, the algorithm uses O(n
ε
log 1

ε
log n

ε
) preprocessing time and builds a data

structure of size O(n
ε
log 1

ε
). Approximate distance queries to s are then answered in O(log 1

ε
)

time. This assumes that the face containing the query point is specified with the query -
otherwise, a point location data structure needs to be used (e.g., the one in [42] can be used
which requires O(n2 log n) time and O(n2) space for preprocessing and O(log n) time for
locating the face containing the query point). Moreover, a solution of the approximate SSQ
problem on the surface of a convex polytope with improved preprocessing time and data
structure size has been proposed in [31].

In [22], Clarkson presented an algorithm for solving the approximate APQ problem in
planar polygonal domains. For an approximation parameter 0 < ε ≤ π and a domain of
size n, the algorithm builds, in O(n

ε
log n) time, a data structure of size O(n

ε
) that supports

approximate shortest path queries in O(n(1
ε

+ log n)) time. As noticed by Chen in [14],
Clarkson’s approach can be used to obtain an algorithm with query time reduced to O(1

ε
(1

ε
+

log n)) at the expense of a preprocessing time increased to O(n2(1
ε

+ log n)) and a size of
the data structure increased to O(n(1

ε
+ n)). In the same paper, an alternative algorithm

with O(
√

n3/ log n) preprocessing time and O(n logn) size of the data structure has been
presented. This algorithm is not a true approximation algorithm, since the reported distances
can be up to 6 times greater than the exact ones.

In [11], Arikati et al. presented a family of algorithms for solving the approximate APQ
problem in planar polygonal domains under Lp metrics (1 ≤ p ≤ ∞). These algorithms
achieve various trade-offs between the quality of approximation, the query time, the size
of the data structures and the preprocessing time. Similarly to Chen’s algorithm, these
algorithms do not guarantee true approximation, except for the case p = 1.

Approximation problems on the surface of a convex polytope P have been extensively
studied. A series of results have been obtained based on a result of Dudley [25] about
Hausdorff approximation of convex sets. Dudley’s result shows that P can be approximated
by a convex polytope Q of size O(1/ε

3

2) so that distances on Q provide ε-approximation
to the distances on P . This was used in the algorithm of [3] to compute an ε-approximate
shortest path in O(1

ε3 +n log 1
ε
) time. Later, in [30], this algorithm was extended to solve the

approximate APQ problem in O(n) preprocessing time and size of the data structure and in
O(log n

ε3/2
+ 1

ε3) query time. Practical issues about this approach as well as an implementation
and experiments have been discussed in [2]. That algorithm finds an ε-approximate distance
between any pair of points on P in O(n√

ε
+ 1

ε4) time. Recently, Chazelle et al. [13] proposed
a randomized solution to the approximate APQ problem on convex surfaces. See Table 2 for
more details.
The weighted case: In the weighted surface model it is assumed that positive weights
are assigned to the surface faces. Cost of a path on the weighted surface is computed as
the weighted sums of the Euclidean lengths of their portions inside the faces of the surface.
The weighted model was introduced in [36] for planar subdivisions. Solutions of the exact
problems in the weighted case seem to be infeasible, since computing of exact distances even
on very simple weighted surfaces with just a few faces requires a solution of high degree
algebraic equations.

5

Problem Geom. Model Preprocessing Space Query Reference

SSQ General Surf. O(n
ε

log 1
ε

log n
ε
) O(n

ε
log 1

ε
) O(log 1

ε
) [31]

APQ Planar domain O(n
ε

log n) O(n
ε
) O(n(1/ε + log n)) [22]

APQ Planar domain O(n2(1/ε + log n)) O(n(n + 1/ε)) O(1
ε
(n + 1/ε)) [14]

APQ Convex Surf. O(n) O(n) O(1
ε3 + log n

ε3/2
) [30]

Table 2: Selected approximate solutions to the Euclidean SSQ and APQ problems.

Problem Geom. Model Preprocessing Space Query Reference
SSSP tree Weighted Surf. O(n

ε2 log n log 1
ε
) O(n) O(1) [8]

SSSP tree Weighted Surf. O(n
ε

log n
ε

log 1
ε
) O(n) O(1) [37, 38]

SSSP tree Weighted Surf. O(n√
ε
log n

ε
log 1

ε
) O(n) O(1) [9, 10]

SSQ Weighted pl. reg. O(n8 log n
ε
) O(n4) O(n7 log n

ε
) [36]

SSQ Weighted pl. reg. O(n4

ε2 log2 n
ε
) O(n4

ε2 log n
ε
) O(log n

ε
) [20]

SSQ Weighted Surf. O(n√
ε
log n

ε
log 1

ε
) O(n√

ε
log 1

ε
) O(log 1

ε
) here

APQ
Weighted Surf.

of genus g
O((g+1)n2

ε3/2q
log n

ε
log4 1

ε
) O((g+1)n2

ε3/2q
log4 1

ε
) O(q) here

APQ
Weighted Surf.

of genus 0
O(n2

ε2q
log q log n

ε
log4 1

ε
) O(n2

ε3q2 log2
q log6 1

ε
) O(q) here

Table 3: Selected solutions to SSSP tree, SSQ, and APQ problems on weighted surfaces. It is assumed
that query consists of query points as well as pointers to the faces containing the query points.

Most of the known results in the weighted case concern restricted versions of the approx-
imate SSQ problem. So, for the case of weighted planar subdivision of size n, the algorithm
presented in [36] constructs - a so called - restricted shortest path map from a fixed source
point to the edges of the weighted planar subdivision of size O(n4) and in roughly O(n8 log n

ε
)

time. The map then can be used to answer approximate distance queries from the source to
points on the edges of the surface in roughly O(n7 log n

ε
) time.

In a series of papers [8, 9, 10, 37, 38] - the so called - approximate Single Source Shortest
Path (SSSP) tree problem has been studied. In this problem, for a given source vertex on a
weighted polyhedral surface of size n and an approximation parameter ε ∈ (0, 1), one has to
compute ε-approximate distances from the source to all other vertices of the surface. The
approximate SSSP tree problem, in which the query point is restricted to be a vertex, rather
than an arbitrary point on the surface. In the first three rows of Table 3 we list selected
solutions to the approximate SSSP tree problem, which can be used for solving approximate
SSQ and APQ problems on weighted surfaces as it was sketched first in [7]. The method
we develop and use in this paper can be viewed as a realization and generalization of the
approach mentioned in [7].

The constants hidden in the “big-O” notation of all results, except the one in [20],
presented in Table 3 depend on certain geometrical properties of the weighted surface P .
The constant hidden in the “big-O” notation concerning the solutions of the SSQ and APQ
problems presented in this paper is bounded by 5Γ log 2L, where Γ is the average of the

6

reciprocals of the sinuses of the angles of the faces of P (see Lemma 3 here for more detail
and [10] for further discussion). In theory Γ can be big, but for this, a considerable portion
of the faces of P should have big aspect ratios, which is unrealistic in practice. For example,
if none of the angles of P is smaller than 6◦, then Γ is less than 10.

During the write-up of the journal version of [6, 7], the results in [19, 20] with respect to
the weighted region problem in planar domains have appeared. This work is inspired by our
work and that of Reif and Sun [38], and the authors were able to remove the dependence on
the geometric parameters at the expense of increasing the dependence on n as well as the
ratio of the weights (max weight to min weight). Their analysis requires the bound on the
maximum number of links possible in a weighted shortest path; which is Ω(n2) as shown in
[36].

1.2 Our approach and main contributions

Our approach is based on three main techniques, which we develop, combine and use in
our solution of the approximate SSQ and APQ problems on weighted surfaces. We refer to
these techniques as: 1) Efficient solution of the approximate SSSP tree problem on weighted
surfaces; 2) Local Voronoi Diagrams; 3) Weighted Surface Partitioning. Below we briefly
discuss each of these techniques and describe how they are combined to obtain our results.

The efficient solution of the approximate SSSP tree problem in weighted surfaces lies
in the core of our approach. Recall that in this problem we are given an approximation
parameter ε ∈ (0, 1) and a source vertex on the weighted triangulated surface P and the
goal is to construct an ε-approximate SSSP tree from the source vertex to all other vertices
of P . Here we develop and use a modification of the solution of the approximate SSSP tree
problem presented in [10]. The solution includes a discretization method transforming the
“continuous” SSSP tree problem on P to a SSSP tree problem in a graph Gε(P) = (Vε, Eε),
called approximation graph. The nodes of the approximation graph Gε include the vertices
of P and a set of additional points, called Steiner points, inserted along the bisectors of the
faces of P . The edges of Gε connect nodes in neighbouring faces and have cost equal to
the cost of the shortest “local” paths between their endpoints. A path is called local if it
intersects at most two faces of P . The number of nodes of Gε lying in faces neighbouring a
fixed face is small and thus the approximation graph Gε is sparse. It is also shown that the
distances between nodes in Gε approximate the distances between their corresponding points
in P . In this way, the approximate SSSP tree problem on P is reduced to the construction
of a SSSP tree in its corresponding approximation graph Gε. Next, we employ an efficient
algorithm from [10] for solving the SSSP tree problem in Gε. This algorithm benefits from
the geometrical features of Gε inherited from P and avoids consideration of a large number
of paths during the construction of the tree. As a result, the SSSP tree problem in Gε is
solved in O(|Vε| log |Vε|) time instead of O(|Eε|+ |Vε| log |Vε|) time if the standard Dijkstra’s
algorithm would have been applied.

The second main technique that is used is the notion of Local Voronoi Diagrams (LVD).
Each pair of adjacent faces determines a LVD. LVD data structures combined with a SSSP
tree in the approximation graph Gε provide a solution to the approximate SSQ problem as

7

follows. Assume that a SSSP tree Tε(a) in Gε rooted at a node a has been computed. Then
for a query point b in a face f , the collection of LVDs related to f support finding of a node
b′ in a face neighbouring f , such that the distance from a to b′ in Gε plus the cost of the
local path from b′ to b is an ε-approximation of the distance from a to b in P . The node
b′ is found in O(log 1

ε
) time. Using the tree Tε(a) an approximate shortest path from a to

b can be listed in time proportional to its combinatorial complexity. So, given the SSSP
tree Tε(a) and a full collection of LVD data structures we can answer approximate distance
queries from a to points in P in O(log 1

ε
) time. Note that the face containing the query point

is assumed to be known and hence it should be part of the query.
Partitioning techniques have been successfully applied to shortest path problems in both

graphs and geometric environments. Examples include solutions of shortest path problems
in planar graphs and in planar domains [11, 16, 26, 27, 33]. In this paper, we develop
and apply a partitioning technique to solve the approximate APQ problem on weighted
polyhedral surfaces, as sketched next.

First, we compute a special set of faces S, called separator, whose removal from P par-
titions the surface into disjoint, connected regions R1, . . . , Rk. Our APQ data structure
consists of a collection of SSQ data structures constructed with respect to this partitioning.
The SSQ data structures can be divided into two groups. The first group consists of SSQ
data structures with sources related to the separator S. Let S̃ be the set of faces in S plus
the faces neighbouring faces in S. For each node of the approximation graph Gε incident to
a face in S̃ we construct SSQ data structure rooted at this node. The second group consists
of SSQ data structures related to regions. We consider each region Ri as a separate weighted
surface and construct a full collection of SSQ data structures restricted to this region. That
is, for each node of the approximation graph Gε incident to the region Ri we construct a
SSQ data structure restricted to Ri. These two groups form our APQ data structure.

The usage of the APQ data structure for answering approximate distance queries is based
on the properties of the approximation graph Gε and the separator S. It is shown that the
distance between any pair of query points lying in different regions can be approximated by
the sum of their distances to an “optimal” node of Gε lying in a face of S that neighbours
the region containing one of the points. Hence approximate distance queries between query
points lying in different regions can be answered by searching the nodes of Gε in faces of
S neighbouring one of the regions containing the query points. If the query points lie in
the same region Ri and the shortest path between them does not leave the region, then
approximate distance between query points can be found by searching the nodes of Gε in the
faces neighbouring one of the faces containing the query points. Note that in this case we
use the SSQ data structures restricted to the region Ri. The other possible cases are treated
similarly.

Clearly, the preprocessing time for the construction of the APQ data structure, its size
and the query time depend on the properties of the partition induced by S. In order to reduce
the preprocessing time and size of the APQ data structure we require that the number of
nodes of Gε lying in faces of S̃ to be small and the sizes of subgraphs of Gε induced by different
regions to be balanced. The upper bound on the query time depends on the number of the

8

nodes of Gε lying in faces of S that neighbour regions containing the query points. Therefore,
we need the maximum of these numbers to be as small as possible.

To find a “good” partitioning of P with all the required properties we consider the dual
graph P ∗ of P and formulate the partitioning problem for P as graph separator problem for
P ∗. We assign weights and costs to the vertices of P ∗ related to the number of nodes of
Gε incident to the corresponding faces of P . For any real number t ∈ (0, 1) we introduce
the notion of t-separator as a set of vertices S∗ of P ∗ whose removal leaves no component
of total weight exceeding tw(P ∗), where the weight of a component (region) is the sum of
the weights of its vertices and w(P ∗) denotes the total weight of P ∗. Furthermore, the set of
vertices from S∗ that are adjacent to the vertices in a fixed component is called boundary of
this component. Let B = B(S∗) denote the maximum cost of a boundary of the components
induced by the separator S∗. Using this terminology we consider and solve the following
graph separator problem: Given a graph P ∗ with weights and costs assigned to its vertices
and a real number t ∈ (0, 1) find a small cost t-separator S∗ such that B is as small as
possible.

This graph separator problem formulation is rather general and many of the known
graph separator results can be viewed as solutions of its particular cases. For example, the
well known separator result by Lipton and Tarjan [34] can be viewed as a solution of the
problem formulated here, where P ∗ is planar, t = 2/3, and all vertices have unit cost. An
other important example is the separator result by Frederickson [26] obtained for planar
graphs with unit costs, where an upper bound on the size of B is provided. Other separator
results related to the above formulation include [4, 5, 23, 28]. In this paper, we show the
existence of t-separators for the class of graphs dual to triangulated polyhedral surfaces
with weights and costs assigned to their vertices. We establish bounds on the cost of these
separators and on the cost of the boundaries of the induced components depending on the
genus of the graph, on the assigned costs, and on the parameter t. We propose an efficient
algorithm for construction of such separators. This is a novel separator result that extends
and/or generalizes upon many previously known separator results. We believe that due to
its generality this separator result could be applied successfully to other algorithmic graph
problems.

The partitioning of the surface P is the first step in the construction of our APQ data
structures. Different choices of the parameter t result in APQ data structures with different
preprocessing times, sizes and query times. So, we take query time as an input parameter
q, which defines an appropriate choice of t, and obtain an APQ data structure supporting
queries in O(q) time. Next we discuss the main contributions of this paper.

We present a novel algorithm for solving approximate APQ problem in weighted polygo-
nal surfaces of arbitrary genus. The algorithm takes as input a query time parameter within
a certain range and builds a data structure APQ(P, ε; q) to answer approximate distance
and/or shortest path queries between arbitrary points in P in O(q) time. As a module for
our APQ algorithm we present a solution to the approximate SSQ problem as well. To the
best of our knowledge, these are the first solutions to approximate SSQ and APQ problems
on weighted polygonal surfaces. We present a detailed analysis of the algorithms and estab-

9

lish asymptotic bounds on their running times, sizes of the obtained data structures and on
the query times with respect to the input.

Since the weighted surface model is a generalization of the classic Euclidean distance
model, our solutions are alternatives to the known solutions of approximate SSQ and APQ
problem on surfaces and in planar polygonal domains with respect to Euclidean distance.
Although the dependence of our solutions on the size of the surface n and on the approxi-
mation parameter ε compares favourably with some previous results (see Tables 2) obtained
with respect to the Euclidean distance, decisive comparison is difficult due to the fact that
the parameters of our solutions depend on the geometry of the underlying surface. Our
analysis reveals these dependence in detail.

For the case where the polygonal surface P has genus zero, i.e. P is homeomorphic
to a sphere, we present a more elaborate algorithm providing an improved solution to the
approximate APQ problem. This algorithm constructs a data structure whose size is reduced
approximately by a factor of qε

3

2 , at the expense of an increase in preprocessing time by a
factor of ε−

1

2 . An important feature of this solution is that the asymptotic dependence on
n of the product of the size of the data structure and the query time q is sub-quadratic
provided that q = Ω(nδ) for δ > 0.

We present a new graph separator algorithm for graphs dual to triangulated surfaces of
arbitrary genus with weights and costs assigned to their vertices. The algorithm computes a
set of vertices whose removal partitions the graph into components of specified weight and
so that their boundaries have small cost. This result extends and/or improves upon many
previous separator results, i.e. [4, 5, 23, 26, 28, 34]. We employ this separator algorithm
in our solution of the APQ problem. Our opinion is that the algorithm may find applica-
tions for solving other problems, in particular on weighted surfaces, and in other models of
computation, e.g., in parallel computing.

1.3 Organization of the paper

The remainder of this paper is organized as follows. In Section 2, we present and analyze our
separator algorithm for graphs with weights and costs assigned to their vertices. In Section
3, we describe the construction of the approximation graph Gε, show its approximation
properties and discuss the construction of SSSP tree in Gε. In Section 4, we present our
solution of the approximate SSQ problem. Next, in Section 5, our solution to the approximate
APQ problem is presented. The important planar problem instance, i.e., weighted surfaces
of genus zero, is discussed in Section 6. Finally, in Section 7, we conclude with a discussion
of extensions and open problems.

2 Partitioning of embedded graphs with weights and

costs

In this section, we present two new results on partitioning of embedded graphs of bounded
genus with weights and costs assigned to their vertices. We consider connected graphs that

10

are 2-cell embedded onto an orientable surface of genus g.
Let G = (V, E) be an embedded graph of genus g, where each vertex v ∈ V is endowed

with non-negative weight, denoted by w(v), and non-negative cost, denoted by c(v). For a
subgraph G′ of G, we denote the sum of the weights of the vertices in G′ by w(G′). Similarly,
the sum of the costs of the vertices of G′ is denoted by c(G′). Throughout this section t is
a real number in (0, 1). A set of vertices S of G is called a t-separator if its removal from
G leaves no component of weight exceeding tw(G). Recall that genus of a graph G is the
minimum number of handles that must be added to a sphere so that G can be embedded on
the resulting surface. Moreover, g = 0 if and only if G is planar.

Our results, presented as Theorems 1 and 2 below, show the existence and construction
of small cost t-separators in embedded graphs of genus g. The results are obtained by
extending a number of graph partitioning techniques that appeared in [4, 5, 24, 26]. In
the core is a technique developed in [4], in which an embedded and triangulated graph K
of genus γ is partitioned by means of fundamental cycles2 with respect to a spanning tree
T of K. The choice of an appropriate set of fundamental cycles is done by construction
and manipulation of an auxiliary graph, referred to as separation graph. The edges of the
separation graph correspond to fundamental cycles in K and the removal of an edge from the
separation graph corresponds, in terms of the connectivity and the weight, to the removal
of the corresponding fundamental cycle from K. Consequently, we are able to construct a
t-separator of K consisting of fundamental cycles by finding a set of edges that partitions the
separation graph in the required way. If the genus of K is small, then its separation graph
is much simpler (e.g., for planar graphs it is a tree) and its partitioning is easy and efficient.
The next lemma states results obtained by applying the separation graph technique on K.
The lemma follows directly from the presentation in [4].

Lemma 1 Let K be an embedded and triangulated graph of genus γ with non-negative
weights on its vertices and a spanning tree T . There exists a t-separator C of G that satisfies
the following:

(a) The separator C consists of at most 2γ + 3/t fundamental cycles .

(b) Any of the components of K \ C is adjacent to at most 2γ + 3 cycles in C.

Such a separator C can be constructed in O(|K| log |K|) time.

Next we present our first result concerning existence and construction of “low-cost” t-
separators for embedded graphs of genus g with weights and costs. Lemma 1 by itself is
not sufficient for constructing such separators, since fundamental cycles in the graph to be
partitioned may have large cost. To handle this we use a technique, called slicing, in which
the input graph is “sliced” into subgraphs with “short” in terms of cost spanning trees (see
[5]). Then the resulting subgraphs are further partitioned by means of fundamental cycles
applying Lemma 1 (a).

We denote the sum of the squares of the costs of the vertices of G by σ(G), i.e. σ(G) =
∑

v∈V c(v)2.

2A fundamental cycle is a cycle consisting of a single non-tree edge (v1, v2) plus the two paths in T from
v1 and v2 to their lowest common ancestor.

11

Theorem 1 Let G be an embedded graph of genus g with weights and costs assigned
to its vertices. For any t ∈ (0, 1) there exists a t-separator S whose cost is at most
4
√

(2g + 3/t)σ(G). Such a separator can be constructed in O(|G| log |G|) time.

Proof: The theorem is proved by constructing a t-separator S whose cost is as required.
The separator S is constructed in two phases. In the first phase we “slice” the graph into
subgraphs with “short” (in terms of cost) spanning trees. In the second phase, we use Lemma
1 to obtain a t-separator. Initially, we set the separator S = ∅.

Phase I: (Slicing) We add a dummy vertex ρ of zero weight and cost to G into one of
the faces of G and connect it to the vertices of this face. Then we convert the graph into
a directed one by replacing each edge by a pair of edges with opposite directions. Using
Dijkstra’s algorithm we construct a single source shortest path (SSSP) tree T rooted at ρ
assuming that the cost of an oriented edge (u, v) equals to c(v). The radius of the tree T is
defined as the maximum distance between ρ and any vertex of T and is denoted by r(T).
For any real x ∈ (0, r(T)) we define a set of vertices L(x) called level as follows. A vertex v
is in L(x) if its distance to ρ is at least x and the distance of its predecessor in T to ρ is less
than x.

Let h =
√

σ(G)
4(2g+3/t)

. We apply the method described in [5] and compute a set of levels Lh,

so that their removal partitions G into components with SSSP trees of radius not exceeding
2h. The total cost of the vertices in the set of levels Lh does not exceed σ(G)/h. The vertices
in the levels Lh are inserted into S.

Phase II: (t-separator) In this phase, each “heavy” component K, i.e. w(K) > tw(G), of
the graph G \ Lh is further partitioned by fundamental cycles as stated in Lemma 1 with
a parameter tK = tw(G)/w(K). The resulting separator S(K) is inserted in S. By the
construction in Phase I and by Lemma 1 the cost of the separator S(K) is bounded by
c(S(K)) ≤ 4h(2γ(K) + 3/tK), where γ(K) is the genus of the embedding of K. Therefore,
for the cost of the obtained separator, we have

c(S) ≤ σ(G)/h +
∑

w(K)>tw(G)

4h(2γ(K) + 3w(K)/tw(G))

≤ σ(G)/h + 4h(2g + 3/t) = 4
√

(2g + 3/t)σ(G). (1)

The time required for the construction of the separator S is dominated by the time for the
construction of the SSSP tree T of G, which can be done in O(|G| log |G|) time, e.g. using
Dijkstra’s algorithm.2

In many applications, including our query algorithms presented later in this paper, it is
useful to construct separators possessing certain additional properties. For our purposes we
need t-separators, that partition the graph into components with “small-cost” boundaries.
To obtain such separators we, first, construct a “low-cost” t-separator using the approach
described in Theorem 1 and then further partition components with costly boundaries ap-
plying separation graph technique (Lemma 1 (b)). Similar separators were, first, constructed

12

and used for planar graphs with uniform costs by Fredericson in [26]. The separators there
are obtained recursively using 2/3-separators from [34]. Separation graph technique allows
for direct and more efficient construction of the required separators and is applicable for
graphs with costs.

Before stating and proving our next result we need to formalize some notions related to
the partitions induced by t-separators. Any t-separator S naturally defines a partitioning
of the vertices of G into sets inducing the connected components of G \ S and S itself. Let
V1, . . . , Vk, S be the partitioning defined by a t-separator S. By our definition, a vertex in a
set Vi, for some 1 ≤ i ≤ k, can be adjacent to vertices in Vi ∪ S only. The subset of vertices
in S that are adjacent to vertices in Vi is called boundary of Vi (or of the component induced
by Vi) and is denoted by ∂Vi. A partitioning V1, . . . , Vk, S defined by a t-separator S is called
B-regular (or simply regular), where B is a real number, if c(∂Vi) ≤ B, for i = 1, . . . , k..

Theorem 2 Let G be an embedded graph of genus g with maximum degree three and with
weights and costs assigned to its vertices. For any t ∈ (0, 1) there exists a t-separator
S, that defines a 2B-regular partitioning of G with B =

√

(g + 1)tσ(G), whose cost is

O
(

√

(g + 1)σ(G)/t
)

. Such a separator can be constructed in O(|G| log |G|) time.

Proof: We set 18h = B/(g + 1) =
√

tσ(G)/(g + 1) and apply Phase I as described in the
proof of Theorem 1 above. Thus we compute a set of levels Lh, whose removal partitions
the graph into components, whose spanning trees have radii (in terms of cost) bounded by
2h. For the total cost of the vertices in Lh we have

c(Lh) ≤ σ(G)/h. (2)

Then, we apply Phase II and obtain a set C1 of fundamental cycles, such that the set
of vertices in S1 = Lh ∪ C1 is a t-separator for G. For the cost c(C1) of the vertices in the
cycles C1, we have

c(C1) ≤ 4h(2g + 3/t). (3)

In addition, from Lemma 1 (b) and the bound on the radii of the components resulting after
the removal of Lh, follows that the cost of the vertices on the boundary of any component
defined by S1 which are not in Lh is at most 4h(2g + 3) ≤ (2/3)B.

The set S1 is a t-separator, but it may not induce a 2B-regular partitioning since there
might be components in G \ S1 with boundaries whose costs exceed 2B. To obtain a 2B-
regular partitioning, we consider each component K of G \ S1 with a “high-cost” boundary
and further partition it obtaining 2B-regular partitioning as follows.

Let K be a component of G \ S1, such that c(∂K) > 2B. By our construction, we have

c(∂K \ Lh) ≤ (2/3)B and so c(∂K ∩ Lh) ≥ (4/3)B. (4)

We consider the subgraph of G induced by the set of vertices V (K) ∪ ∂K and denote it by
K̃. Let the embedding of K̃ has genus γ(K). We assign new weights w1(v) and costs c1(v)
to the vertices of K̃ as follows. We denote by ∂′K the set of the vertices in ∂K that belong

13

to Lh, i.e. ∂′K = ∂K ∩Lh. The new costs of the vertices in ∂K are set to zero and the new
costs of the vertices in K equal its original cost, i.e., for v ∈ K we have c1(v) = c(v) and for
v ∈ ∂K, c1(v) = 0.

The new weight of a vertex v in K is the sum of the costs of the vertices in ∂′K that
are adjacent to v. The weights of the vertices in ∂K and the vertices in K not adjacent to
∂′K are set to zero. By this definition and since the maximum degree of G is three we have
w1(K̃) ≤ 3c(∂′K).

Then, we set tK = (2/3)B/w1(K̃) and compute a tK-separator of K̃ using Lemma 1. We
denote this separator by C(K). For the cost of this separator we have

c(C(K)) ≤ 4h(2γ(K) + 9w1(K̃)/2B) ≤ 8hγ(K) + c(∂K ∩ Lh)/(g + 1). (5)

Let us consider any component K1 of K̃ \C(K) and estimate the cost of its boundary in
G. The boundary ∂K1 can contain vertices from the cycles in C(K) and vertices from ∂K,
only. We estimate, first, the cost of the vertices in ∂K1 that belong to ∂K. By (4) it follows
that the cost of the vertices in (∂K1 ∩ ∂K) \ Lh is at most (2/3)B. By our definitions, the
total cost of the vertices from Lh in the boundary ∂K1 is bounded by w1(K1) and thus it
does not exceed tKw1(K̃) = (2/3)B.

From Lemma 1 (b) and the estimate on the radius of the spanning tree in K it follows
that the total cost of the vertices from C(K) in the boundary ∂K1 is at most 4h(2γ(K)+3) ≤
(2/3)B. We have shown that c(∂K1) ≤ 2B. Thereby we define the separator S to be the
union of S1 and the separators C(K) computed for all components K with c(∂K) > 2B.
Clearly, S is a t-separator that induces a 2B-regular partitioning of G.

Next, we estimate the cost of the separator S. We use (2), (3), (5) and the definitions of
B and h and obtain

c(S) ≤ c(S1) +
∑

c(∂K)>2B

c(C(K)) ≤

σ(G)/h + 4h(2g + 3/t) +
∑

c(∂K)>2B

8hγ(K) + c(∂K ∩ Lh))/(g + 1) ≤

σ(G)/h + 16hg + 12h/t + 3c(Lh)/(g + 1) <
(19g + 77

g + 1

)

√

(g + 1)σ(G)/t ≤ 77
√

(g + 1)σ(G)/t.

The estimate on the time for the construction of the separator S is straightforward. 2

3 Approximating Shortest Paths

First, we adapt the discretization scheme presented in [10] and establish properties which
are used later for answering shortest path queries. Let P be a polyhedral surface in 3-
dimensional Euclidean space consisting of n triangular faces f1, . . . , fn. Each face fi has an
associated positive weight wi, representing the cost of travelling a unit Euclidean distance
inside it. The cost of tr aveling along an edge is the minimum of the weights of the triangles

14

incident to that edge. Edges are assumed to be part of the triangle from which they inherit
their weight. The cost of a path π in P is defined as ‖π‖ =

∑n
i=1 wi|πi|, where |πi| denotes

the Euclidean length of the portion of π in fi. Given two points a and b in P a path of
minimum cost joining a and b is called shortest path between a and b and is denoted by

a
P
 b. It is known that the shortest paths in P consists of segments with end-points on the

edges of P . The cost ‖a P
 b‖ of this path is referred to as distance between a and b and is

denoted by distP (a, b).

3.1 Approximation graph

Let ε be a real number in (0, 1). As part of our algorithms we will be constructing an
approximation graph Gε = (Vε, Eε), which is a supergraph of the approximation graph con-
structed in [10], whose nodes correspond to geometric objects, namely, Steiner points and
vertex vicinities of “small” radius in P . Costs will be assigned to the edges of Gε so that the
distances between nodes in Gε approximate the distances between corresponding objects in
P .

The construction of the graph Gε closely follows the scheme described in [10]. The
approximation graphs we define here and in [10] have the same set of nodes but the graph
here has some additional edges. Moreover, the definition of the costs assigned to the edges
of Gε is slightly different. To emphasize these differences we give a short description of the
approximation graph we use here.

As detailed in [10], around each vertex v of P we define a “small” star-shaped polygon
E(v) called vertex vicinity. More precisely, E(v) is contained within the union of the triangles
incident to v and its intersections with each of these triangles is a “small” isosceles triangle
with side length εr(v), where r(v) is called weighted radius of v. The weighted radius r(v)
is defined by

r(v) =
wmin(v)

7wmax(v)
d(v), (6)

where d(v) is the minimum Euclidean distance from v to the set of edges incident to triangles
around v but not incident to v and wmin(v) and wmax(v) are the minimum and the maximum
weight of triangles incident to v, respectively. The nodes of Gε are of two types depending
on the object in P they represent. For each vertex of P and its vertex vicinity we define
a node representing them in Gε and call them vertex vicinity nodes. Steiner point nodes
(or simply Steiner points) represent Steiner points inserted in P . Steiner points are placed
along the bisectors of the angles of the faces of P forming a geometric progression with ratios
depending on ε and on the geometry of P as detailed in [10]. The approximation properties
of Steiner points are stated in the following lemma.

Lemma 2 [10] Let x and y be points lying on two different edges of a face f of P and
outside vertex vicinities. There is a Steiner point p in f such that |xp|+ |py| ≤ (1+ε/2)|xy|.

Upper bounds on the number of nodes of Gε, i.e. Steiner points inserted in P and vertex
vicinity nodes are given by the following lemma.

15

Lemma 3 [10]
(a) The number of nodes of Gε incident to a bisector ℓ of an angle α at a vertex v is

bounded by C(ℓ) 1√
ε
log2

2
ε
, where the constant C(ℓ) < 2

sin α
log2

2|ℓ|
r(v)

.

(b) The total number of nodes of Gε is less than C(P) n√
ε
log 2

ε
, where C(P) is the average

of the constants C(ℓ) over all 3n bisectors of the angles of the faces of P . The constant C(P)
is less than 5Γ log2 2L, where L is the maximum of the ratios |ℓ|/r(v(ℓ)) over all bisectors ℓ
(v(ℓ) being the vertex incident to ℓ) and Γ is the average of the reciprocals of the sinuses of
the face angles in P , i.e. Γ = 1

3n

∑3n
i=1

1
sinαi

.

To define the edges of Gε we introduce the notion of face neighbourhood for points in P . The
face neighbourhood of a vertex of P is the union of the triangles incident to that vertex. The
face neighbourhood of a point in a face f of P consists of the union of f and its neighbouring
faces, where two faces are neighbours if they share an edge of P . The face neighbourhood
of a point a is denoted by N (a). The face neighbourhood of a node of p of Gε is the face
neighbourhood of its representation (Steiner point or vertex) in P .

The edges of Gε are defined as follows. A node p of Gε is connected to all nodes, whose
representations are incident with its face neighbourhood N (p). To define costs of the edges
of Gε we use the notion of local paths. A path in P is called local if it intersects at most
two faces. The cost c(p, q) of an edge (p, q) in Gε is defined as the cost of the local shortest
path restricted to lie in the intersection of their face neighbourhoods N (p)∩N (q). Thereby,
the cost c(p, q) of an edge (p, q) joining a pair of Steiner points is defined as the cost of the
shortest path restricted to lie in the union of the triangles 3 containing p and q. The cost of
an edge between a vertex vicinity node and a Steiner point is the cost of the shortest path
restricted to lie in the triangle containing the Steiner point. The cost of an edge between
two vertex vicinity nodes is the cost of the segment along the edge of P joining these two
vertex vicinities.

3.2 Approximation properties of Gε

The paths in the approximation graph Gε are called discrete paths. The cost c(πGε(p, q)) of a

discrete path πGε(p, q) is the sum of the costs of its edges. Let p
Gε
 q denote a shortest path

in Gε between a pair of nodes p and q of Gε. As is shown below, in general, the cost c(p
Gε
 q)

of a shortest discrete path is an ε-approximation of the distance ‖p̃ P
 q̃‖, where p̃ and q̃

are points in P incident to the objects represented by p and q. A discrete path πGε(p, q)
between nodes p and q can be embedded naturally in P as follows. First, each node on that
path is embedded into the object it represents, i.e. either a Steiner point or a vertex vicinity.
Then each edge of πGε(p, q) is embedded into the local shortest path between the objects
representing its end-nodes. As a result we obtain a sequence of vertex vicinities joined by
polygonal paths in P . Finally, each vertex vicinity is replaced with a two (or one) segment
path through the vertex of P in that vicinity. We refer to this embedding of a discrete path
πGε(p, q) into P as natural embedding and denote it by π̃Gε(p, q). By our definitions, the cost

3Recall, that an edge of P belongs to the triangle from which it inherits its weight.

16

in P of the natural embedding π̃Gε(p, q) of a discrete path minus the cost of its portions
inside vertex vicinities equals the cost of πGε(p, q) in Gε.

The following theorem states the time complexity for solving SSSP problem in the ap-
proximation graph Gε.

Theorem 3 [10] The SSSP problem in the approximation graph Gε can be solved in
O(|Vε| log |Vε|) = O(n√

ε
log n

ε
log 1

ε
) time.

Next, we discuss how the approximation graph Gε can be used to approximate distances
and shortest paths in P . For the sake of this discussion, we assume that the distances and
shortest paths between any pair of nodes of Gε are given to us. Let a and b be arbitrary

points in P . If a and b lie in neighbouring triangles and the shortest path a
P
 b between

them is a local path (i.e. stays inside the quadrilateral formed by the union of their triangles)
than we can report the exact path in constant time. So, we concentrate on the approximation
of shortest paths that cross more than two faces.

Naturally, we consider paths of the form {a P
 p

Gε
 q

P
 b} and then approximate

distP (a, b) by the minimum of ‖a P
 p‖+ c(p

Gε
 q) + ‖q P

 b‖ taken over all choices of nodes
p and q in Gε. As shown below, we can obtain the desired approximation by taking the
minimum not over all pairs of nodes in Gε, but only over pairs p and q such that p ∈ N (a)
and q ∈ N (b). Moreover, we show that it suffices to compute the local shortest paths between

a and p and between b and q. We denote these local shortest paths by a
N (a)
 p and q

N (b)
 b

and define approximate discrete paths between pairs of points in P as follows.

Definition 1 A path between a pair of points a and b in P is called approximate discrete
path if it is either a shortest local path joining a and b or a path of the form

{a N(a)
 p

Gε
 q

N (b)
 b}, (7)

where p ∈ N (a), q ∈ N (b). The cost of an approximate discrete path is ‖a N(a)
 p‖ + c(p

Gε

q) + ‖q N (b)
 b‖ or its cost in P if it is a local path. The cost of a shortest approximate

discrete path between a and b is called approximate distance between a and b and is denoted
by distGε(a, b).

Note that by this definition the approximate distance distGε(a, b) between points a and b
lying in neighbour triangles is the minimum of the cost of the shortest local path between a
and b and the cost of any path of the form (7). The next theorem establishes the relation
between approximate distances and the distances in P .

Theorem 4 For any pair of points a and b in P one of the following two holds, either

(a) (1 − 2ε)distP (a, b) ≤ distGε(a, b) ≤ (1 + 2ε)distP (a, b), (8)

or

17

(b) There is a vertex v of P , such that the points a and b together with any shortest path
between them in P are in the face neighbourhood N (v). Moreover,

distP (a, b) − ε(w(a) + w(b))r(v) < distGε(a, b) < (1 − ε)distP (a, b), (9)

where w(a) and w(b) are the weights of the faces containing a and b, respectively, and r(v)
is the weighted radius of v defined by (6) .

Proof: There are three possible cases depending on the coincidence of the points a and b
with representatives of the nodes of Gε.
Case 1: Let a and b be incident with the representations of nodes p and q of Gε. Then by

our definitions distGε(a, b) = c(p
Gε
 q). Following the proof of Theorem 3.2 in [10], we obtain

c(p
Gε
 q) ≤ (1 + ε)distP (a, b), (10)

which is stronger than the right inequality in (8).
To estimate distGε(a, b) from below we assume that distGε(a, b) < distP (a, b), otherwise

the lower bound in (a) holds. We consider the natural embedding of the path p
Gε
 q. As

discussed above, the cost of the path p
Gε
 q in Gε equals the cost of its natural embedding

in P minus the total cost of the portions of this embedding inside vertex vicinities. By the
definitions of the vertex vicinities and the cost of the edges in Gε the total cost of these

portions does not exceed εc(p
Gε
 q) provided that the path p

Gε
 q contains none or at least

two vertex vicinity nodes. Thus, in these cases, we have

distP (a, b) ≤ c(p
Gε
 q) + εc(p

Gε
 q) = distGε(a, b) + εdistGε(a, b) < distGε(a, b) + εdistP (a, b),

where we used the assumption distGε(a, b) < distP (a, b). The latter implies

(1 − ε)distP (a, b) < distGε(a, b), (11)

which is stronger than the left inequality in (8).

It remains to consider the case where the path p
Gε
 q contains exactly one vertex vicinity

node, say corresponding to a vertex v of P . In this case, from the definitions it follows that
distP (a, b) ≤ distGε(a, b) + ε(w(a)+ w(b))r(v). This implies the lower bound in (a) provided
that distP (a, b) ≥ (w(a) + w(b))r(v). If dP (a, b) < (w(a) + w(b))r(v), then (b) holds.
Case 2: Consider now the case where a and b are neither Steiner points nor inside vertex
vicinities. If the points a and b lie in neighbour triangles and the shortest path between
them is a local path then by our definitions distGε(a, b) = distP (a, b) and the theorem holds.
So, we assume below that any shortest path between a and b intersects more than two faces.

First, we prove the upper bound on distGε(a, b) by constructing an approximate discrete

path {a N(a)
 p

Gε
 q

N (b)
 b} whose cost is at most (1 + 2ε)distP (a, b). Let π̃ = a

P
 b be a

shortest path between a and b in P . The path π̃ consists of segments with end-points on the
edges of P . We call these points bending points of the path π̃. From our assumption, the

18

a
P
 b

p
G
 q

a
p

y(a)

N (a)

b

y(b)
x(a)

q
N (b)x(b)

Figure 1: A shortest path π̃ = a
P
 b = {a, x(a), y(a)

P
 x(b), y(b), b} between a and b is approxi-

mated by an approximate discrete path (dashed) {a N(a)
 p

Gε
 q

N (b)
 b}.

path π̃ intersects more than two faces. There are two subcases to consider - the one where
π̃ remains entirely inside N (a) ∪ N(b) - and the other where the path π̃ is not entirely in
N (a)∪N (b). Here we discuss the latter case, and the other one will trivially follow from its
proof.

We denote by y(a) the first bending point on π̃ when traversed from a to b, where the
path exits N (a) (see Figure 1). Similarly, let x(b) be the last bending point on π̃ when
traversed from a to b, where the path enters N (b). Furthermore, we denote by x(a) the
bending point on π̃ preceding y(a) and by y(b) the bending point succeeding x(b).

Let us consider, first, the case where none of the points x(a), y(a), x(b), and y(b) is
inside vertex vicinity. By their choice x(a) and y(a) lie on two different sides of the face f
containing the segment (x(a), y(a)). We define p to be a Steiner point in f such that

|x(a)p| + |py(a)| ≤ (1 + ε/2)|x(a)y(a)|. (12)

The existence of such a Steiner point is shown in Lemma 2. Similarly, let q be a Steiner
point inside the face containing (x(b), y(b)) and such that

|x(b)q| + |qy(b)| ≤ (1 + ε/2)|x(b)y(b)|. (13)

If x(a) = x(b) and y(a) = y(b) we choose p = q. Now we have defined an approximate

discrete path π(a, b) = {a N(a)
 p

Gε
 q

N (b)
 b} and estimate its cost.

We consider the case where (x(a), y(a)) 6= (x(b), y(b)) (Figure 1). From the definition of
the points x(a) and y(b), and the triangle inequality we have

‖a N(a)
 p‖ ≤ ‖a P

 x(a)‖ + ‖x(a)p‖ (14)

and

‖q N(b)
 b‖ ≤ ‖y(b)

P
 b‖ + ‖qy(b)‖. (15)

Again from the triangle inequality and the validity of (10) for the path p
Gε
 q we obtain

c(p
Gε
 q) ≤ (1 + ε)(‖y(a)

P
 x(b)‖ + ‖py(a)‖ + ‖x(b)q‖). (16)

19

Then the cost of the path π(a, b) is estimated by summing (14), (16), and (15) and using
(12), and (13)

c(π(a, b)) = ‖a N(a)
 p‖ + c(p

Gε
 q) + ‖q N(b)

 b‖ ≤
‖a P
 x(a)‖ + (1 + ε)‖y(a)

P
 x(b)‖ + ‖y(b)

P
 b‖ +

(1 + ε/2)‖x(a)y(a)‖ + (1 + ε/2)‖x(b)y(b)‖ +

ε(‖py(a)‖ + ‖x(b)q‖) ≤ (1 + 2ε)distP (a, b)

The case where segments (x(a), y(a)) = (x(b), y(b)) is simpler. The cases where some of
the points x(a), y(a), x(b), and y(b) are inside vertex vicinities are handled by the same
technique.

Next, we estimate distGε(a, b) from below. Again, we assume that distGε(a, b) <
distP (a, b). Otherwise, statement (a) of the theorem holds. We consider any approximate

discrete path of the form {a N (a)
 p

Gε
 q

N (b)
 b}. If p is a vertex vicinity node we denote by p̃

the vertex in that vicinity. Correspondingly, r(p̃) is the weighted radius of p̃ defined by (6).
If p is a Steiner point node then p̃ denotes the corresponding Steiner point and we assume
r(p̃) = 0. We use analogous notation q̃ and r(q̃) for q. From our definitions and using this
notation, we have

‖a N(a)
 p‖ ≥ ‖a P

 p̃‖ − εw(a)r(p̃) and ‖q N(b)
 b‖ ≥ ‖q̃ P

 b‖ − εw(b)r(q̃). (17)

Then, for the cost of the path {a N (a)
 p

Gε
 q

N (b)
 b}, which is distGε(a, b), we obtain

‖a N (a)
 p‖+ c(p

Gε
 q)+ ‖q N (b)

 b‖ ≥ ‖a P
 p̃‖+ c(p

Gε
 q)+ ‖q̃ P

 b‖− ε(w(a)r(p̃)+w(b)r(q̃)).
(18)

In the case where

w(a)r(p̃) + w(b)r(q̃) ≤ ‖a P
 p̃‖ + c(p

Gε
 q) + ‖q̃ P

 b‖,

we use (18) and (11) and obtain

‖a N (a)
 p‖ + c(p

Gε
 q) + ‖q N (b)

 b‖ ≥
(1 − ε)(‖a P

 p̃‖ + c(p
Gε
 q) + ‖q̃ P

 b‖) ≥
(1 − ε)(‖a P

 p̃‖ + (1 − ε)distP (p̃, q̃) + ‖q̃ P
 b‖) ≥

(1 − ε)2(‖a P
 p̃‖ + distP (p̃, q̃) + ‖q̃ P

 b‖) ≥ (1 − 2ε)distP (a, b), (19)

which implies the lower bound in (a).
Consider now the case where

w(a)r(p̃) + w(b)r(q̃) > ‖a P
 p̃‖ + c(p

Gε
 q) + ‖q̃ P

 b‖. (20)

20

We show that in this case (b) holds. This inequality is possible only if one of the points p̃
or q̃ is a vertex of P , denoted by v, and the other is either a Steiner point inside the face
neighbourhood of v or the same vertex. Furthermore, (20) implies that the points a and b

and any shortest path a
P
 b stay in N (v).

In the case where p̃ = q̃ = v we use (18) and obtain

distGε(a, b) ≥ ‖a P
 v‖ + ‖v P

 b‖ − ε(w(a) + w(b))r(v) ≥ distP (a, b) − ε(w(a) + w(b))r(v),

which proves the lower bound in (b).
If p̃ = v and q̃ is a Steiner point in N (v), then from (17) we have

distGε(a, b) ≥ ‖a P
 v‖+c(p

Gε
 q)+‖q̃ N (b)

 b‖−εw(a)r(v) ≥ ‖a P
 v‖+‖b P

 v‖−ε(w(a)+w(b))r(v),

and the lower bound in (b) holds again.
The cases where just one of the points a or b is Steiner point or incident to a vertex

vicinity are treated analogously. 2

Next, we make some remarks on the quality of the approximation given by the approx-
imate distances in the cases (a) and (b) of Theorem 4. If case (a) of the theorem applies
then the approximate distance distGε(a, b) is an approximation of the distance distP (a, b)

with relative error of
|distGε (a,b)−distP (a,b)|

distP (a,b)
, which is bounded by 2ε. Case (b) of the theo-

rem can be viewed as an exception covering a special situation where points a and b are
“close” to each other and “near” a vertex v of P , meaning that any shortest path in P
between them stays in the face neighbourhood N (v). Furthermore, in case (b) the ap-
proximate distance distGε(a, b) is less than the actual distance distP (a, b) and it is an ap-
proximation with relative error not exceeding ε(w(a) + w(b))r(v)/distGε(a, b). Therefore, if
(w(a)+w(b))r(v) ≤ 2distGε(a, b) the quality of the approximation is 2ε, same as in case (a).
If the ratio r(v)(w(a) + w(b))/distGε(a, b) is larger than 1/ε then the relative error could be
as big as 1. For example, if points a and b are inside the vertex vicinity E(v) then distGε(a, b)
is zero and the relative error is 1. Note, that the conditions for the occurrence of case (b)
and the presence of eventually large (compared to ε) relative error are easily detected by
the position of the points a and b, the structure of the approximate discrete path and the
ratio (w(a)+w(b))r(v)/distGε(a, b). Thus, if the approximation is not satisfactory the exact
shortest path restricted to lie inside N (v) can be computed. Straightforwardly, such compu-
tation can be done in time quadratic to the number of faces incident to v, which is efficient
if the degree of v is small. Alternatively, additional preprocessing can be done for vertices
with large degrees so that exact shortest paths in their face neighbourhoods can be answered
efficiently. The above discussion is summarized in the next corollary.

Corollary 1 The distance distGε(a, b) approximates distP (a, b) with relative error 2ε, except
possibly when the case (b) of Theorem 4 applies and (w(a) + w(b))r(v) > 2distGε(a, b).

We conclude this section by a remark on the computation of approximate distances. The
approximate distance distGε(a, b) between a pair of points a and b can be computed as follows.

21

We consider the approximate discrete paths of the form (7) and compute the minimum

min(‖a N (a)
 p‖ + c(p

Gε
 q) + ‖q N (b)

 b‖), (21)

over all pairs of nodes p ∈ N (a) and q ∈ N (b). In the case where a and b do not lie in
neighbour faces this minimum is the approximate distance distGε(a, b). In the case where
the points a and b lie in neighbouring faces, we also need to consider the shortest local path
between them.

4 Fixed source shortest path queries

In this section, we describe an algorithm, that takes as input a point a in P , called source, and
an approximation parameter ε ∈ (0, 1) and constructs a data structure, called Single Source
Queries (SSQ), such that for any query point b, called target, the approximate distance
distGε(a, b) (and/or an approximate shortest path) from a to b is computed efficiently. (It is
assumed that the query consists of the query point b and a pointer to the face of P containing
b.) The algorithm uses the approximation graph Gε defined and analyzed in the previous
section as follows.

First, we construct the set of nodes of the approximation graph Gε, as described in Section
3. Then we augment Gε so that a becomes a representation of a new node in Gε. That is,
we add a new node in Gε whose representation in P is a and connect it to all nodes of Gε,
whose representations are incident to the face neighbourhood N (a) of the face containing
a. A cost equal to the cost of the shortest local path between a and the representation of
the corresponding node in N (a) is assigned to each of the new edges. This augmentation
of the approximation graph is denoted by Ga

ε or simply Gε, when no ambiguity arises. The
augmentation takes time proportional to the number of the new edges, which by Lemma 3
is O(1√

ε
log 1

ε
). The result of Theorem 4 is extended straightforwardly to the graph Ga

ε and

to the approximate distances distGa
ε
(a, b), where b is an arbitrary point in P .

Next, we run the SSSP algorithm on Ga
ε with source a and store the SSSP tree and

the distances as required. Then, for a query point b, we will find the shortest approximate
discrete path from a to b and output its cost distGa

ε
(a, b) as an approximation to the distance

distP (a, b) and the natural embedding of the path, if required.
Approximate discrete paths between the node a and a point b are either local shortest

paths, or paths of the form {a Ga
ε
 p

N (b)
 b}, where p is a node of Ga

ε incident to the face
neighbourhood of b. Hence, the computation of the approximate distance distGa

ε
(a, b) requires

finding

min
p∈N (b)

(distGa
ε
(a, p) + ‖p N (b)

 b‖) (22)

and the cost of the shortest local path between a and b if they lie in neighbouring faces.
The cost of the shortest local path when necessary is computed in constant time. So we
concentrate on the computation of (22).

22

We have already computed and stored the distances distGa
ε
(a, p) from a to all nodes p ∈ Ga

ε

and thus our task is reduced to finding a node p(b) that minimizes (22) for a query point
b. Next, we introduce the notion of Local Voronoi Diagrams between a pair of adjacent
faces and show how that can be used in finding the node p(b) as required in (22). More
precisely, let f be a face of P and let N (f) be its face neighbourhood consisting of at most
three faces. Each of these faces in turn have Steiner points which have been placed on their
corresponding bisectors. The distance of the path from a to b that we are interested in
passes through one of these Steiner points. Our objective is to locate that Steiner point
that satisfies Equation (22). For each face f ′ ∈ N(f) we compute the Steiner point that
satisfies this equation and then take the minimum among all the neighbouring faces. We
will compute an additively weighted Voronoi Diagram of the set of Steiner points in f ′, with
respect to the distance distGa

ε
, and restrict this diagram to f . We call the resulting diagram

as the Local Voronoi Diagram and denote it by LVD(a, f ′, f). Given this diagram, for a
query point b ∈ f , we will be able to efficiently compute the Voronoi region which contains
b, and hence the Steiner point in face f ′ that satisfies the equation (22). Next, we state how
we carry out the construction of LVD(a, f ′, f) and perform point location in it.

Let f = ABC and, without loss of generality, let e = AB be horizontal, where f is above
AB, and A is to the left of B. Let f ′ be the face adjacent to e. Without loss of generality let
p1, p2, . . . , pk be the set of Steiner points in f ′ ordered according to their increasing distance
from a. First, we will compute LVD of these points on e, denoted by LVD(a, f ′, e), and then
propagate it to the interior of the face f .

The Voronoi diagram on e is computed in an incremental fashion, by considering Steiner
points in increasing order of their distances to a. Assume that we have already computed
LVD(a, f ′, e) with respect to Steiner points p1, . . . , pi (where, i < k) and now we wish to
update this diagram to include the effect of the next Steiner point pi+1. Due to the convexity
and the continuity of the distance measure, Voronoi cell of pi+1 on e, with respect to Voronoi
cells of p1, . . . , pi will either be empty or will consist of a single interval; denote this interval
by [x−, x+]. Let M be an endpoint of one of the intervals characterizing the Voronoi diagram
of p1, . . . , pi. The relative position of M with respect to the interval [x−, x+] on e can be
computed in constant time. Hence, using binary search we can find the location of the
endpoints x− and x+ on e and update the diagram within this interval. Since each newly
inserted element occupies at most one interval, it is easy to see that there are, in all, at
most 2k − 1 intervals on e. They can be maintained in a search tree structure by naturally
following their containment order.

Next, we propagate the Voronoi diagram to the interior of the face f . Note that
LVD(a, f ′, f) has the following combinatorial structure: Voronoi cells are connected, each
cell has a non-empty intersection with e, and it has at most 2k−1 cells. We use plane sweep,
in the +y direction starting at e. In place of computing the full diagram, we compute the
diagram for a set of horizontal segments in f , parallel to e, that correspond to ‘events’. These
events represent combinatorial changes in LVD, which in turn corresponds to the end of a
Voronoi cell for a Steiner point. The events are maintained in a priority queue with respect
to their increasing distance from e. Initially the events are derived from adjacent intervals on

23

e; each interval endpoint is the intersection point of e and the bisector (i.e., locus of all points
that are equidistant) between two Steiner points. During the sweep, intervals disappear one
by one and the adjacency between the intervals changes, which gives rise to new events. For
horizontal lines corresponding to two consecutive event points, there are only O(1) changes
in the LVDs, and the corresponding interval structure can be maintained using the persistent
tree structure of [39]. It can be seen that LVD for horizontal lines corresponding to events
in f can be encoded in O(k log k) time.

Given a query point b ∈ f , we locate the Voronoi region of LVD(a, f ′, f) containing b
as follows. First we perform a binary search with respect to its distance from e to locate
the two adjacent horizontal lines corresponding to event points in which b lies. Let these
lines be e′ and e′′, where e′ is further than e′′ with respect to distance from e. Using the
persistent tree structure we know the interval structure on e′ and e′′, and we also know the
set of Steiner points in f ′ that contribute these intervals. Note that the interval structure
is same between e′ and e′′, except that one of the intervals has disappeared on e′′. Consider
an interval endpoint in e′′ and its corresponding endpoint in e′. Furthermore, we know the
equation of the curve (bisector) that joins these two endpoints. In constant time we can test
whether b is to the left or to the right of this curve (for example this can be accomplished by
intersecting this curve with the horizontal line passing through b). Therefore, using binary
search we can locate the Voronoi cell containing b in O(log k) time.

As stated above, our objective was to locate that Steiner point that satisfies Equation
(22). To do this for each face f ′ ∈ N(f), using the LVD(a, f ′, f), we compute the Steiner
point that satisfies this equation and then take the minimum among all the neighbouring
faces. In the next lemma we summarize the above discussion.

Lemma 4 Let p1, . . . , pk be the set of Steiner points and the vertices of P incident to N (f)
and let δi = distGε(a, pi) for i = 1, . . . , k. A data structure exists so that for a point b ∈ f the

minimum min1≤i≤k(δi +‖pi
N(b)
 b‖) and the point for which it is achieved can be computed in

O(log k) time. The size of the data structure is O(k) and it can be constructed in O(k log k)
time.

We define SSQ(a; P, ε), data structure to consists of the SSSP tree rooted at a in the
approximation graph Ga

ε plus the collection of local Voronoi diagrams LVD(a, f ′, f) for all
pairs of neighbouring faces f, f ′ ∈ P . This data structure can be used to answer single source
queries as follows. We assume that each query consists of the query point b on P as well as
the face f(b) containing b.

First, using the LVD data structure we find the point p(b) for which the minimum (22)
is achieved. Then, if a and b lie in neighbour faces, we compute the shortest local path
between a and b and output the approximate distance distGa

ε
(a, b), which is the smaller of

the two values. If an approximation path is required we output the natural embedding of
the approximate discrete path whose cost is distGa

ε
(a, b). The quality of this approximation

follows from Theorem 4 and Corollary 1. The above discussion is summarized in the next
theorem.

24

Theorem 5 Given a triangulated, weighted surface P with n faces, a point a ∈ P and the
set of nodes Vε of Gε, a data structure SSQ(a; P, ε) of size O(|Vε|) = O(n√

ε
log 1

ε
) exists, so

that the approximate distance between a and a query point b in P can be found in O(log 1
ε
)

time. The data structure can be constructed in O(|Vε| log |Vε|) = O(n√
ε
log n

ε
log 1

ε
) time.

Proof: Follows from the above discussion and using Lemma 3, Lemma 4, and Theorem 3.
2

5 Arbitrary shortest path queries

In this section, we describe and analyze an algorithm for constructing a data structure, called
All Pairs Queries (APQ), such that approximate distance (and/or approximate shortest
paths) queries between pairs of arbitrary points in P can be answered efficiently. In addition
to the weighted polyhedral surface P and the approximation parameter ε, the algorithm
takes as input a query time parameter q and outputs a data structure APQ(P, ε; q), which
can answer approximate distance queries in O(q) time (the parameter q is within a range of
values and it is made precise in the theorem at the end of this section).

Our approach is based on the results obtained in the previous two sections. First, we
compute the set of Steiner points and vertex vicinities defining the set of nodes Vε of the
approximation graph Gε. Then, we consider the dual graph P ∗ of P , defined as follows. The
set of nodes of P ∗ corresponds to the set of faces of P and two nodes in P ∗ are joined by
an edge if their corresponding faces are neighbours. To each node u of P ∗ we assign the
weight w(u) equal to the number of nodes of Gε, that are incident to the face f(u) in P .
Furthermore, we assign the cost c(u) equal to the number of nodes of Gε, that are incident
to the face neighbourhood N (f(u)). The total weight w(P ∗) of P ∗ and the value σ(P ∗),
defined in Section 2, are estimated using Lemma 3 by

w(P ∗) ≤ C(P)
n√
ε

log
2

ε
and σ(P ∗) ≤ Γ(P)

n

ε
log2 2

ε
, (23)

where C(P) = 1
n

∑

f∈P C(f) and Γ(P) ≤ 16
n

∑

f∈P C2(f). We observe that the weight of P ∗

and σ(P ∗) are related by
σ(P ∗) ≤ 16w2(P ∗) ≤ 16nσ(P ∗). (24)

Next, we choose a value t ∈ (0, 1) depending on the input query time q and use Theorem
2 to construct a t-separator S, that induces a regular partitioning of P ∗. The separator S of
P ∗ corresponds to a set of faces in P , which we refer to as face separator (or simply separator)
and denote again by S. The face separator S partitions the surface P into regions, that are
unions of faces corresponding to the connected components of P ∗ \ S. The boundary ∂R of
a region R is the set of triangles in S, that neighbour faces in R.

Finally, we use Theorem 5 and construct a collection of SSQ data structures depending on
the region partitioning defined by the face separator S. The collection of SSQ data structures
and the region partitioning induced by S constitutes the APQ(P, ε; q) data structure. We
refer to the construction of the APQ data structure as preprocessing and present it in more

25

detail in Table 4. We denote the genus of the surface P by g. The query time parameter q

will not exceed an upper bound q̄ defined by q̄ = (g+1)2/3n1/3

√
ε

.

APQ Preprocessing

Input: A weighted polyhedral surface P of genus g and consisting of n
triangular faces; an approximation parameter ε ∈ (0, 1);

query time parameter q ≤ q̄ = (g+1)2/3n1/3

√
ε

.

Output: Data structure APQ(P, ε; q).

Step 1. Define the set of nodes of Gε by computing the Steiner points
and vertex vicinities of P .

Step 2. Construct the dual graph P ∗ and assign weights and costs
to its nodes as specified above.

Step 3. Set t = q2

4(g+1)σ(P ∗) log2 1

ε

Using Theorem 2, compute a t-separator S and construct
the region partitioning of P induced by S.

Step 4. For each p, that is a Steiner point or vertex of P incident
to a face, which neighbours a face in S compute and
store SSQ(p; P, ε) data structure.

Step 5. For each region R and for each Steiner point or vertex of P
incident to a face in R compute and store SSQ(p; R, ε)
data structure restricted to the faces in R.

Table 4: All Pairs Queries Preprocessing algorithm

In the next lemma we estimate the time for the construction and the size of APQ(P, ε; q)
data structure.

Lemma 5 For any q ≤ q̄ = (g+1)2/3n1/3

√
ε

the construction of the data structure APQ(P, ε; q)

by the preprocessing algorithm takes O((g+1)n2

ε3/2q
log n

ε
log4 1

ε
) time. The size of APQ(P, ε; q) is

O((g+1)n2

ε3/2q
log4 1

ε
).

Proof: We estimate the time following the steps as presented in Table 4. By Lemma 3,
Step 1 takes O(n√

ε
log 1

ε
) time. The time for the execution of Step 2 is O(n). According to

Theorem 2, Step 3 is executed in O(n log n) time.
Recall that t = q

2/(4(g+1)σ(P ∗) log2 1
ε
). To estimate the times for the execution of Steps

4 and 5 we use Theorems 5 and 2. In Step 4, we compute O(
√

(g + 1)σ(P ∗)/t) SSQ data
structures in O(w(P ∗) log w(P ∗)) time each. The sizes of these data structures are bounded
by O(w(P ∗)).

In Step 5 for each region R defined by the separator S we construct SSQ data structures
restricted to R. The number of these structures in R equals the total weight of the faces in

26

R, which we denote by w(R). By Theorem 3, the construction of each of these SSQ data
structures is O(w(R) logw(R)) and their size is bounded by O(w(R)). Overall, the time for
the execution of Step 5 is bounded by O(tw2(P ∗) log w(P ∗)). The total size of the SSQ data
structures stored in Step 5 is O(tw2(P ∗)).

Finally, we use w2(P ∗) ≤ nσ(P ∗) and observe that under the assumption q ≤ q̄ the
time used by Step 4 dominates the execution time used by Step 5, and consequently, the
total time of the whole preprocessing algorithm. Similarly, the total size of the SSQ data
structures stored during Step 4 is bigger than the total size of the structures stored during
Step 5. Thus, the asymptotic bounds on the time required by the algorithm and the size of
the output are obtained by evaluation of the time and size used by Step 4 in terms of n and
ε. We use the estimates (23). 2

The APQ data structure built by the preprocessing algorithm can be used to answer
approximate distance queries in the following way. Let a and b be points in P and let f(a)
and f(b) be the faces containing a and b respectively. We use APQ(P, ε; q) to compute the
approximate distance distGε(a, b), defined as the cost of the shortest approximate discrete
path between a and b.

By definition, approximate discrete paths are either local shortest paths or paths of the

form (7), which is {a N (a)
 p

Gε
 q

N (b)
 b}. In the case where f(a) and f(b) are neighbours we

compute the shortest local path between a and b. Then, we concentrate on finding the cost of
a shortest path of the form (7), i.e. computing the minimum (21). Recall, that APQ(P, ε; q)
contains a collection of SSQ data structures as specified in Steps 4 and 5 in the preprocessing
algorithm. If a data structure SSQ(p′; P, ε) is present in APQ(P, ε; q) for some node p′ of
Gε, then we can use it and find the minimum cost of an approximate discrete path between
a and b among the paths containing p′. We simply compute distGε(a, p′) and distGε(p

′, b),
using SSQ(p′; P, ε) twice, and sum them up. By Theorem 5, this computation takes O(log 1

ε
).

Thereby we introduce the notion of separating set of nodes of Gε for a pair of points a and
b. A set of nodes Gε is called separating set for a and b if any approximate discrete path of
the form (7) between a and b contains a node from that set. Our query algorithm specifies
a separating set A for a and b, such that for any p′ ∈ A the data structure SSQ(p′; P, ε) is
present in APQ(P, ε; q) and then computes the minimum minp′∈A(distGε(a, p′)+distGε(p

′, b)).
Clearly, this minimum is the cost of the shortest approximate discrete path of the form (7).
The time for this computation is O(|A| log 1

ε
). In Table 5, we present the query algorithm.

If an approximate shortest path between a and b is required we output the natural
embedding of the approximate discrete path for which the minimum distGε(a, b) is achieved.
This can be done by using the SSSP trees stored in the corresponding SSQ data structure
in time proportional to the size of this path. The next lemma establishes the correctness of
the query algorithm and evaluates its running time.

Lemma 6 The algorithm APQ Query correctly computes the approximate distance
distGε(a, b). The running time of the algorithm is O(max(q, 1√

ε
log2 1

ε
)).

Proof: The correctness of the query algorithm follows from the observation, that the cost
of any approximate discrete path between a and b is given by the values M0, M1 and M2,

27

APQ Query

Input: Query points a and b and faces f(a) and f(b), such that a ∈ f(a) and b ∈ f(b).
Output: The approximate distance distGε(a, b).

Set M0 = M1 = M2 = ∞.

Step 1. If f(a) and f(b) are neighbour faces, then compute the shortest local

path a
f(a)∪f(b)
 b and assign its cost to M0.

Step 2. If either of the faces f(a) or f(b) is in the separator S, then define A
to be the set of nodes of Gε incident to the face neighbourhood
N (a) or N (b), respectively.

Step 3. If neither of the faces f(a) and f(b) is in S, then define A to be the set
of nodes of Gε incident to the faces in the boundary ∂R(a) of
the region R(a) containing f(a).

Step 4. Use data structures SSQ(p′; P, ε) and compute
M1 = minp′∈A(distGε(a, p′) + distGε(p

′, b)).

Step 5. If f(b) ∈ R(a) then define A1 to be the set of nodes of Gε incident to
the face neighbourhood N (b). Use data structures SSQ(p′; R(a), ε) and
compute M2 = minp′∈A1

(distGε(a, p′) + distGε(p
′, b)).

Set distGε(a, b) = min(M0, M1, M2) and output it.

Table 5: The APQ Query algorithm answers approximate shortest path queries between
arbitrary points on P in O(q) time using APQ(P, ε; q).

depending on the position of the faces f(a) and f(b) with respect to the partitioning defined
by the separator S. The running time of the algorithm is dominated by the times for the
execution of Steps 4 and 5. As discussed above these times are bounded by O(|A| log 1

ε
) and

O(|A1| log 1
ε
). By Lemma 3, |A1| = O(1√

ε
log 1

ε
) and by Theorem 2 and the choice of t in the

APQ Preprocessing algorithm we obtain |A| ≤ 2
√

(g + 1)tσ(P ∗) ≤ q

log 1

ε

. 2

The results obtained in this section are summarized in the next theorem.

Theorem 6 Let P be a weighted polyhedral surface of genus g and consisting of n trian-

gular faces. Let ε ∈ (0, 1) and q ∈ (1√
ε
log2 1

ε
, q̄ = (g+1)2/3n1/3

√
ε

). There exists a data struc-

ture APQ(P, ε; q), such that approximate distance queries in P can be answered in O(q)

time. The structure APQ(P, ε; q) is constructed in O((g+1)n2

ε3/2q
log n

ε
log4 1

ε
) time and its size is

O((g+1)n2

ε3/2q
log4 1

ε
).

28

6 Improved APQ data structure for surfaces of genus

zero

In this section, we consider a surface P of genus zero4 (i.e. P is homeomorphic to a planar
domain). We refer to this as P being planar. We show that when P is planar it is possible
to construct, a data structure which is improved in terms of its size, for answering distance
queries between arbitrary pairs of points on P . We refer to this data structure as planar APQ
data structure and denote it by PAPQ(P, ε; q). Roughly speaking the size of the planar APQ
data structure is reduced by a factor of qε3/2, whereas the preprocessing time is increased
by a factor of ε−

1

2 compared to the general APQ data structure described in the previous
section. More precisely we are going to show that the following theorem holds:

Theorem 7 Let P be a weighted polyhedral surface of genus zero consisting of n tri-
angular faces. Let ε ∈ (0, 1) and q ∈ (1

ε
log2 1

ε
, n1/4

ε
). There exists a data structure

APQ(P, ε; q), such that approximate distance queries in P can be answered in O(q) time.
The structure PAPQ(P, ε; q) is constructed in O(n2

ε2q
log q log n

ε
log4 1

ε
) time and its size is

O(n2

ε3q2 log2
q log6 1

ε
).

The key in the construction and analysis of the planar APQ data structure, as stated
in Theorem 7, is the observation that shortest paths in the approximation graph Gε inherit
some planar properties from the surface P . These properties allow us to answer queries
efficiently while using less stored information.

First we describe the PAPQ data structure and present a preprocessing algorithm, called
as PAPQ Preprocessing, for its construction. Next, we analyze the preprocessing algorithm
and establish upper bounds on the size of the data structure and time required for its
construction in terms of the input parameters. Then we describe, analyze and prove the
correctness of a query algorithm. The algorithms are obtained following the approach used
in the general case; hence in our presentation we emphasize the differences.

As in the general case, the preprocessing algorithm takes as input an approximation
parameter ε ∈ (0, 1) and a query parameter q not exceeding q̄

′ = n1/4

ε
and produces a

data structure that is later used for answering shortest path queries in P . The algorithm is
presented formally in Table 6. The first three steps of the PAPQ Preprocessing algorithm are
the same as in the APQ Preprocessing algorithm, except for a slightly different separation
parameter t′ in Step 3. At the end of Step 3, we obtain a partitioning of the faces of P
into sets called regions and a special single set S called separator. Each region corresponds
to a connected subgraph of P ∗ and no two faces from different regions are neighbours.
The number of nodes of Gε incident to the faces in any region R is bounded by t′w(P ∗),
i.e. w(R) ≤ t′w(P ∗). The boundary of a region R is defined as the set of faces in S that
neighbour faces in R and is denoted by ∂R. In Step 3, the preprocessing algorithm computes
and stores the boundary ∂R of each region following the order in which the triangles forming
that boundary appear around R. This order is well defined in the planar case, since the
edges shared by any of our regions and its boundary form a cycle.

4The genus of P can be easily computed using Euler’s formula.

29

According to Theorem 2 the cost of the boundaries of the regions is bounded by
2
√

t′σ(P ∗) and the cost c(S) of the separator is O(
√

σ(P ∗)/t′), where σ(P ∗) is the sum
of the squares of the costs of the faces in P .

Our PAPQ Preprocessing algorithm consists of three more steps. In these, we compute a
collection of shortest path distances and a collection of so called partial SSQ data structures
that will form the PAPQ(P, ε; q) data structure.

A partial SSQ data structure SSQ(p; F, ε) from p to a set of faces F ⊂ P is defined as the
set of Local Voronoi Diagrams LVD(p, f ′, f) from p to all faces f ∈ F , where f ′ ∈ N(f). Note
that the partial SSQ data structure does not store the shortest paths from p to the nodes
of Gε incident to faces neighbouring faces in F . It stores diagrams LVD(p, f ′, f) for f ∈ F
only. From Lemma 4 it follows, straightforwardly, that the partial SSQ data structures,
SSQ(p; F, ε), have size O(w(F)) and can be constructed in O(w(F) logw(F)) time, provided
that the distances from p to the nodes in the faces neighbouring F are computed in advance.

We denote by N (S) the set of faces that neighbour faces in S, i.e N (S) = ∪f∈SN (f). In
Step 4, the algorithm computes distances and partial SSQ data structures related to nodes in
Gε, that are incident to faces in N (S). That is, for each node p ∈ N (S) the following three
sub-steps are implemented. First (in Step 4.1) the SSSP tree in Gε rooted at p is computed.
The distances distGε(p, q) from p to all nodes q ∈ N (S) are stored in the PAPQ(P, ε; q) data
structure. Then, in Step 4.2 the algorithm computes and stores partial SSQ data structures
SSQ(p; S, ε) from nodes p ∈ N (S) to faces in S. Step 4.3 is implemented for nodes that are
incident to faces in S only. For any such node p up to three more partial SSQ data structures
with source p are computed and stored. That is, for each of the regions R(p) neighbouring
the face containing p (recall that p is incident to a face in S) the partial SSQ data structure
SSQ(p; R(p), ε) is computed and stored.

Note that, although SSSP trees rooted at nodes in N (S) were computed, they are not
stored in the planar APQ data structure. Instead carefully selected collection (related to the
separator S) of partial SSQ data structures have been computed and stored. As a result the
size of the obtained APQ data structure is considerably reduced compared to the one in the
general case.

To describe Step 5, we introduce the notion of restricted distances with respect to a region
in Gε. A node p of Gε is said to be inside a region R if p is incident to faces in R only. Nodes
that are not inside R are said to be outside of R.

Definition 2 For a region R and a pair of nodes p and q outside R we define the restricted
distance between p and q with respect to R to be the least cost of a path in Gε between p and
q that avoids nodes inside R. We denote the restricted distance between p and q with respect

to R by c(p
Gε\R
 q).

Clearly, the restricted distances from a node p outside of R to all other nodes q outside R
with respect to R can be computed by running the SSSP algorithm from p in the subgraph
of Gε obtained by removal of all nodes inside R. The upper bound on the running time
of the SSSP algorithm as stated in Theorem 3 applies in this case too. In Step 5, the
PAPQ Preprocessing algorithm considers all pairs (p, R(p)), where p is a node incident to a

30

face f(p) ∈ S and R(p) is a region neighbouring f(p) (or equivalently f(p) ∈ ∂R(p)), and
computes the restricted distances with respect to R(p) from p to all nodes q outside of R(p).
The restricted distances from p to nodes q, that are incident to faces in S, are stored in the
PAPQ(P, ε; q) data structure.

Step 6 of the PAPQ Preprocessing algorithm is same as Step 5 of the preprocessing
algorithm in the general case (see Table 4). Recall, that in this step the algorithm computes
and stores the SSQ data structures SSQ(p; R, ε) for all regions R computed in Step 3 and
nodes p incident to faces in R.

PAPQ Preprocessing

Input: A weighted polyhedral surface P of genus zero and consisting of n
triangular faces; an approximation parameter ε ∈ (0, 1);

query time parameter q ≤ q̄
′ = n1/4

ε
.

Output: Data structure PAPQ(P, ε; q).

Implement Steps 1 and 2 of APQ Preprocessing algorithm (Table 4).

Step 3. Set t′ = q2ε

4σ(P ∗) log2
q log2 1

ε

. Using Theorem 2, compute a t′-separator S.

Construct the region partitioning of P induced by S.
Compute and store the boundary of each region in sorted order.

Step 4. For each node p ∈ Gε that is incident to a face in N (S) implement
Steps 4.1 – 4.3 below:

Step 4.1. Compute SSSP tree in Gε rooted at p.

Step 4.2. Compute and store partial SSQ data structures SSQ(p; S, ε).

Step 4.3. If p ∈ S then for any region R(p) neighbouring the face incident
to p compute and store SSQ(p; R(p), ε).

Step 5. For each node p incident to a face f ∈ S and for each region R

neighbouring f compute and store restricted distances c(p
Gε\R
 q)

from p to all nodes q, incident to faces in S.

Step 6. For each region R and for each node p incident to a face in R
compute and store SSQ(p; R, ε) data structure.

Table 6: Planar All Pairs Queries Preprocessing algorithm

The next lemma establishes upper bounds on the running time of the
PAPQ Preprocessing algorithm and on the size of the PAPQ(P, ε; q) data structure.

Lemma 7 For q ≤ n1/4

ε
the PAPQ Preprocessing algorithm takes O(n2

ε2q
log q log n

ε
log4 1

ε
)

time. The size of the PAPQ(P, ε; q) data structure is O(n2

ε3q2 log2
q log6 1

ε
).

31

Proof: First we estimate the running time of the preprocessing algorithm. As we have
shown in the proof of Lemma 5, the total time for the execution of the first three steps is
bounded by O(n√

ε
log n

ε
). The data stored in the PAPQ data structure during the first three

steps is O(n√
ε
log 1

ε
).

According to Theorem 2, the number of the SSSP trees computed in Step 4.1

is O(
√

σ(P ∗)/t′), that is O(
σ(P ∗) log q log 1

ε

(q
√

ε)
). By Theorem 3, each of these computa-

tions takes O(w(P ∗) log w(P ∗)) and hence the time for the execution of Step 4.1 is

O(
σ(P ∗)w(P ∗) log w(P ∗) log q log 1

ε

(q
√

ε)
).

As stated above, the time for computation of a partial SSQ data structure SSQ(p; F, ε) is
proportional to w(F) logw(F), where, by our definitions, w(F) is the number of nodes inci-
dent to faces in F . The size of this data structure is O(w(F)). Thereafter, the running time
of Step 4.2 is O(w(N (S))w(S) logw(S)). By our definitions this is O(c(S)w(S) logw(S)),

which, using the bound on c(S), is O(
σ(P ∗)w(S) log w(S) log q log 1

ε

(q
√

ε)
). Clearly, this bound is asymp-

totically less than the bound obtained for Step 4.1. The size of the SSQ data structures stored
during Step 4.2 is O(w(N (S))w(S)), which is bounded by c2(S). The latter by Theorem 2

is O(σ(P ∗)/t′), which after substitution of t′ is O(
σ2(P ∗) log2

q log2 1

ε

εq2).

Step 4.3 runs in O(w(S)t′w(P ∗) log(t′w(P ∗))), which as shown below, is dominated by
the running time of Step 6. Similarly, the size of the SSQ data structures stored during this
step is asymptotically less than the size of the SSQ data structures stored by Step 6.

Restricted distances in Step 5 are computed using SSSP algorithm, and hence, the time
for its execution satisfies the same asymptotic upper bound as Step 4.1. The number of the
restricted distances stored in Step 5 is bounded by c2(S), which coincides with the bound
obtained for the data stored during Step 4.2.

Step 6 is same as Step 5 in APQ Preprocessing algorithm for the general case and its
running time was estimated in the proof of Lemma 5 to be O(t′w2(P ∗) log w(P ∗)). The size
of the SSQ data structures stored during this step is O(t′w2(P ∗)). By substitution of t′ and
using (24), we obtain, that both, the running time and the size of the data stored in Step 6

is O(εq2n). For q ≤ q̄
′ = n1/4

ε
, this is asymptotically less than the running time of Step 4.1

and also asymptotically less than the size of the data structures stored in Step 4.2.

Overall, the running time of the PAPQ Algorithm is O(
σ(P ∗)w(P ∗) log w(P ∗) log q log 1

ε

q
√

ε
). The

size of the PAPQ(P, ε; q) data structure is O(
σ2(P ∗) log2

q log2 1

ε

εq2). The estimates stated in the

lemma are obtained from these using (23). 2

Next, we describe our query algorithm, called PAPQ Query. The algorithm resembles
the structure of the APQ Query algorithm as presented in Table 5, but differs in the way
some of the steps are implemented. Thereby, in our presentation below we follow and refer
to Table 5. The PAPQ Query algorithm takes as input query points a and b together with
the faces f(a) and f(b), containing a and b, respectively. The output of the algorithm is the
approximate distance distGε(a, b) between a and b in P (see Definition 1).

As in the general case, the distance distGε(a, b) is found as the minimum of three values
M0, M1, and M2 corresponding to the cost of the shortest path among particular types of

32

discrete paths between a and b. Initially M0, M1, and M2 are set to infinity. The value M0

corresponds to the cost of the shortest local path between a and b, i.e., if a and b lie in the
neighbouring faces f(a) and f(b), respectively, then the shortest path between a and b lying
inside the union f(a) ∪ f(b) is computed and its cost is assigned to M0.

The value M1 corresponds to the cost of the shortest approximate discrete path of the
form (7), i.e.

M1 = min
p∈N (a),q∈N (b)

(‖a N (a)
 p‖ + c(p

Gε
 q) + ‖q N (b)

 b‖).

The query algorithm uses the PAPQ data structure and properly selected separating sets,
depending on the positions of a and b with respect to the separator S, to compute M1

efficiently. Recall, that a set A of nodes in Gε is called separating set for a and b if any
approximate discrete path between a and b contains a node in A.

In the case where both faces f(a) and f(b) are in S, the algorithm sets the separating
set A to be the set of nodes incident to N (b) and computes the minimum M1 using the

formula M1 = minq∈A(distGε(a, q) + ‖q N (b)
 b‖). Observe, that the SSQ data structures

SSQ(q; S, ε) from nodes q ∈ A to the faces in S are present in the PAPQ data structure
and so the distances dGε(a, q) are computed in O(log 1

ε
) time. The shortest local path and

correspondingly the distance ‖q N (b)
 b‖ is computed in constant time. We have |A| =

O(1√
ε
log 1

ε
) and thus M1 is computed in O(1√

ε
log2 1

ε
) time.

The case where just one of the faces f(a) and f(b) is in S is treated similarly. Without
loss of generality, assume that f(a) is in S and f(b) is not. Then f(b) must be in one
of the regions defined by S. We denote this region by R(b). In this case, the algorithm
uses separating set A consisting of all nodes in Gε that are incident to faces in the boundary
∂R(b) of R(b). By Theorem 2 the size of A does not exceed q

√
ε

log σ(P ∗) log 1

ε

. Then, the algorithm

computes M1 using the formula M1 = minq∈A(distGε(a, q) + distGε(q, b)). For any node q in
A both SSQ data structures SSQ(q; S, ε) and SSQ(q; R(b), ε) are stored in the PAPQ data
structure and therefore M1 can be computed in O(|A| log 1

ε
) time, which is at most O(q).

The case where the faces f(a) and f(b) belong to different regions, say R(a) and R(b)
respectively, is central to our presentation. Planarity of P is essentially used by our query
algorithm in this case. To find the minimum M1 in this case, we use a pair of separating
sets A(a) and A(b) consisting of the nodes in Gε that are incident to the faces in ∂R(a) and
∂R(b), respectively. Then the algorithm finds the minimum M1 by computing

min
p∈A(a),q∈A(b)

(distGε(a, p) + c(p
Gε\R(a)
 q) + distGε(q, b)), (25)

where c(p
Gε\R(a)
 q) is the restricted distance between p and q with respect to the region

R(a). By our definitions it is easily seen that this minimum equals to M1. Next, we describe
how our query algorithm computes (25).

First, we observe that for any pair of nodes p ∈ A(a) and q ∈ A(b) the SSQ data

structures SSQ(p; R(a), ε) and SSQ(q; R(b), ε), as well as the distance c(p
Gε
 q) are present

in the PAPQ(P, ε; q) data structure. Thus, the three terms in (25) for any fixed pair of

33

nodes p and q can be computed in O(log 1
ε
) time. The number of such pairs, however, can

be large and searching over all pairs to compute (25) is unacceptable. Therefore, we use
a more elaborate approach and devise a recursive procedure, called search min (a, b), to
compute M1. The procedure uses the circular structure of the boundaries ∂R(a) and ∂R(b)
and properties of shortest approximate discrete paths related to the planarity of P . First we
introduce some notation.

For a given face f ∈ ∂R(a), let M1(f) be the minimum defined by

M1(f) = min
p∈A(f),q∈A(b)

(distGε(a, p) + c(p
Gε\R(a)
 q) + distGε(q, b)), (26)

where, A(f) is the subset of A(a) consisting of the nodes of Gε incident to f . We consider
pairs of nodes (p, q) for which this minimum is achieved and denote by (p∗, q∗) the one with

smallest restricted distance c(p∗
Gε\R(a)
 q∗). The pair (p∗, q∗) is called optimal pair of nodes

for f . The face f ∗ containing q∗ is called optimal face for f . The corresponding restricted
path, with respect to R(a), π∗(f) = π(p∗, q∗) is called optimal path for f . Observe, that
by this definition an optimal path π(p∗, q∗) does not contain nodes which are inside R(a) or
R(b). (It does not contain nodes inside R(a), since it is a restricted shortest path with respect
to R(a). It does not contain nodes inside R(b) since q∗ has been chosen to minimize the

restricted distance c(p
Gε\R(a)
 q) among pairs (p, q) for which the minimum (26) is achieved.)

The next lemma establishes an important property of optimal paths. Let f1 and f2 be
different faces in ∂R(a) and let π∗(f1) and π∗(f2) be optimal paths for f1 and f2, respectively.
Let f ∗

1 and f ∗
2 be the optimal faces for f1 and f2 determined by π∗(f1) and π∗(f2), respectively.

Furthermore, let π̃∗(f1) and π̃∗(f2) be the natural embedding of the paths π∗(f1) and π∗(f2)
in P . Roughly speaking, the natural embedding of a discrete path is obtained by embedding
its edges into their corresponding local shortest paths (see Section 3.2 for more detail).

Lemma 8 If the natural embeddings π̃∗(f1) and π̃∗(f2) intersect then the face f ∗
1 is optimal

for f2 and f ∗
2 is optimal for f1.

Proof: Let z be the first point of intersection between π̃∗(f1) and π̃∗(f2) (following the paths
starting at f1 and f2, respectively). Let (p∗1, q

∗
1) and (p∗2, q

∗
2) be the optimal pair for f1 and

f2, respectively, for which the minimum (26) is achieved. Let π1(a, b) = (a
Gε
 p∗1

Gε
 q∗1

Gε
 b)

denote the shortest path from a to b passing through the optimal pair (p∗1, q
∗
1). Similarly,

let π2(a, b) denote the shortest path from a to b passing through (p∗2, q
∗
2). Let π1(i, j) (or

π2(i, j)) denote the subpath of π1(a, b) (respectively, π2(a, b)) between (nodes) i and j.
Case 1: Consider the case when z corresponds to a node in Gε. In that case the subpaths
π1(z, b) and π2(z, b) have equal cost. Construct a new path π12(a, b) = {π1(a, z), π2(z, b)}.
We have ‖π1(a, b)‖ = ‖π12(a, b)‖, thus π12(a, b) is a shortest path intersecting f1 and f ∗

2 via
an optimal pair (p∗1, q

∗
2). Hence, the face f ∗

2 is optimal for f1. (So does f ∗
1 for f2.)

Case 2: Consider the case when z does not correspond to a node in Gε. It belongs to the
intersection of the embedding of two edges e1 = (w1, v1) and e2 = (w2, v2) from π∗(f1) and
π∗(f2), respectively. We say that point z is isolated if there exists a disk of non-zero radius

34

centred at z that does not contain any other point that is common to π∗(f1) and π∗(f2). We
consider the case when z is an isolated point in Case 2.a and 2.b, and otherwise in Case 2.c.
Case 2a: Let z be an isolated point in the interior of a face, denoted by f(z). Then z is
the intersection of two segments corresponding to embeddings of edges e1 and e2. Let the
embedding ẽ1 of e1 is represented by two segments ẽ1 = {w1x1, x1v1}, where w1 and v1

correspond to nodes in Gε and x1 is a bending point. Likewise, let the embedding ẽ2 of e2

be ẽ2 = {w2x2, x2v2}, where w2 and v2 correspond to nodes in Gε and x2 is a bending point.
Without loss of generality assume that z is intersection of x1v1 and x2v2 (see Figure 2 (a)).
Note that the points (or the corresponding nodes in Gε) w1, v1, w2, v2 are incident to the
face neighbourhood N (z) of z. Thus, by definition, (w1, v2) and (w2, v1) are edges of Gε.
Also, the cost of the edge (w1, v2) corresponds to the cost of shortest path connecting the
endpoints which is restricted to lie within the face neighbourhood N (z). Same argument
holds for the cost of edge (w2, v1). By triangle inequality and the cost of edges, we have

w1
N (z)
 v2 ≤ w1x1 + x1v2 and w2

N (z)
 v1 ≤ w2x2 + x2v1. Since x1v2 + x2v1 < x1v1 + x2v2, it

follows that

‖w1
N (z)
 v2‖ + ‖w2

N (z)
 v1‖ < ‖w1x1‖ + ‖w2x2‖ + ‖x1v1‖ + ‖x2v2‖ = ‖e1‖ + ‖e2‖ (27)

In case x1 and x2 are also nodes in Gε, then w1 coincides with x1, w2 coincides with x2, and
(27) is still valid. We construct two paths denoted by π12(a, b) and π21(a, b), from a to b, pass-
ing through f1 and f2, respectively, as follows: π12(a, b) = {π1(a, w1), (w1, v2), π2(v2, b)} and
π21(a, b) = {π2(a, w2), (w2, v1), π2(v1, b)}. Applying (27), we have ‖π12(a, b)‖ + ‖π21(a, b)‖ <
‖π1(a, b)‖ + ‖π2(a, b)‖. Hence, this case contradicts the optimality of the paths that we
started with.
Case 2b: Let z be an isolated point on an edge of P . Then z must be a bending point as
shown in Figure 2(b) and (c). Note that w1, w2, v1, v2 are nodes in Gε and the edges e1 and
e2 are denoted by e1 = (w1, v1) and e2 = (w2, v2), respectively. In all possible cases, we have

‖w1
N (z)
 v2‖ + ‖w2

N (z)
 v1‖ < ‖w1

N (z)
 v1‖ + ‖w2

N (z)
 v2‖ = ‖e1‖ + ‖e2‖, which follows the

same argument as above. This proves that z can not be an isolated point on an edge of P .
Case 2c: Consider now the case where z is not isolated. (The only possibility for z in
this case is shown in Figure 2(d).) The embedding of e1 is represented by three segments
{w1x1, x1y1, y1v1}, where w1, v1 are nodes of Gε and they are the endpoints of e1. Similarly,
the embedding of e2 is represented by {w2x2, x2y2, y2v2}. Then x1, x2, y1, y2 are bending
points and z is their first common point. Without loss of generality let x2 coincide with z.
We have already shown that (w1, v2) and (w2, v1) are edges of Gε. By observation, we have

‖w1
N (z)
 v2‖+‖w2

N (z)
 v1‖ = ‖w1

N (z)
 v1‖+‖w2

N (z)
 v2‖. As in Case 2a, we define two paths:

π12(a, b) = {π1(a, w1), (w1, v2), π2(v2, b)} and π21(a, b) = {π2(a, w2), (w2, v1), π2(v1, b)}. Thus,
we have ‖π12(a, b)‖+‖π21(a, b)‖ = ‖π1(a, b)‖+‖π2(a, b)‖. Hence, ‖π12(a, b)‖ = ‖π1(a, b)‖ and
‖π21(a, b)‖ = ‖π2(a, b)‖ must hold. Otherwise, without loss of generality let ‖π12(a, b)‖ =
‖π1(a, b)‖+ δ and ‖π21(a, b)‖ = ‖π2(a, b)‖ − δ, where δ > 0. This contradicts the optimality
of the optimal paths π∗(f1) and π∗(f2). Hence, we proved the claim. 2

Recall, that the edges in the region R, that are incident to faces in its boundary ∂R form
a cycle. Furthermore, in Step 3 of the preprocessing algorithm the faces in each boundary

35

x1

z

y2

y1
x2

z

y1x2

x1 y2

(a) (b)

y2zx2

x1

y1

v1

x2(z)

v2

y1x1 y2

u1 u2

(c) (d)

Figure 2: An illustration of the case when point z whose representation is not a node in Gε. (a) Point z

is an isolated point in the interior of a face (Case 2.a). (b) and (c) Point z is an isolated point on an edge

of P (Case 2.b). (d) Point z is not isolated (Case 2.c).

36

have been stored in the PAPQ data structure sorted according to their appearance around
R. So, any pair of different faces f1 and f2 in the boundary ∂R defines a clockwise chain
C(f1, f2; ∂R) (or simply C(f1, f2) if no ambiguity arises) consisting of all faces, including f1

and f2, between f1 and f2 ordered in clockwise direction starting at f1. We also use the
notation C(f, f) for a chain consisting of a single face f and C̄(f, f) for the chain consisting
of all faces in ∂R ordered in clockwise direction starting at f . The size of a chain C(f1, f2) is
the number of faces in it and is denoted by |C(f1, f2)|. We define median of a chain C(f1, f2)
as a face f ∈ C(f1, f2) such that the difference between the sizes of the chains C(f1, f) and
C(f, f2) is at most one.

Let f ∗
1 and f ∗

2 be the optimal faces for f1 and f2, respectively, where f1, f2 are on the
boundary of R(a) and f ∗

1 , f ∗
2 are on the boundary of R(b). Then, for a chain C = C(f1, f2)

on the boundary of R(a), the chain C∗ = C(f ∗
2 , f ∗

1) on the boundary of R(b) is said to be
the optimal chain (see Figure 3). Furthermore, optimal chains and faces satisfy the following
useful relation.

f

f2

R(b)

f∗

b

z

R(a)
a

π∗(f2)

π∗(f1)

π∗(f)

C∗ = C(f∗
2 , f∗

1)
C = C(f1, f2)

f∗
2

f∗
1

f1

Figure 3: Illustration of an optimal chain

Lemma 9 Let C be a chain on ∂R(a) and let C∗ be a chain on ∂R(b) be optimal chain for
C. Then, any face f ∈ C has an optimal face in C∗.

Proof: Follows from the planarity of P and Lemma 8. See Figure 3. 2

Next we describe our procedure search min(a, b), that computes the minimum (25). The
procedure first computes approximate distances distGε(a, p) and dGε(q, b) for all nodes p and
q incident to faces in ∂R(a) and ∂R(b), respectively. Then, the procedure picks an arbitrary
face f0 on ∂R(a) and computes the minimum M1(f0) and an optimal face f ∗

0 ∈ ∂R(b) for f0.
At the end, search min(a, b) calls a recursive procedure search min(C̄(f0, f0), C̄(f ∗

0 , f ∗
0))

and outputs M1 as the smaller of M1(f0) and the value returned by that procedure. Below,
we describe the recursive procedure search min(C, C∗).

The procedure search min(C, C∗) takes as input a chain C = C(f1, f2) in the boundary
of R(a) and an optimal chain C∗ = C(f ∗

2 , f ∗
1) for C and computes the minimum M1(C, C∗)

defined by (25), but over the subsets A(C) ⊂ A(a) and A(C∗) ⊂ A(b), where A(C) consists
of all nodes in Gεε incident to faces in C. The set A(C∗) is defined analogously with respect
to b. The procedure search min(C, C∗) checks whether any of the chains C and C∗ consists

37

of a single face and if so computes M1(C, C∗) by checking all pairs of nodes p ∈ A(C) and
q ∈ A(C∗). If both chains contain more than one face then the procedure finds the median
face f of C and computes the minimum

M1(f) = min
p∈A(f),q∈A(C∗)

(distGε(a, p) + c(p
Gε\R(a)
 q) + distGε(q, b)), (28)

and an optimal face f ∗ for f . Then, the procedure search min(C, C∗) calls recursively
search min(C(f1, f), C(f ∗, f ∗

1)) and search min(C(f, f2), C(f ∗
2 , f ∗)) and outputs

M1(C, C∗) = min(M1(C(f1, f), C(f ∗, f ∗
1)), M1(C(f, f2), C(f ∗

2 , f ∗))). (29)

The latter is valid because of Lemma 9.

Lemma 10 The procedure search min(a, b) correctly computes the minimum (25) in
O(max(1

ε
log2 1

ε
, q)) time.

Proof: The fact that search min(C, C∗) computes M1(C, C∗) follows by induction on the
size of C and using the validity of (29). Then, by definition, we have C̄(f0, f0) = ∂R(a) and
C̄(f ∗

0 , f ∗
0) = ∂R(b) and the correctness of search min(a, b) follows.

We first estimate the running time of search min(C, C∗). From its description it is easy
to see, that the running time of search min(C, C∗) is bounded by T (C∗) log |C|, where
T (C∗) is an upper bound on the time for computing the minimum M1(f) by (28) for any
face f in C. By Lemma 3, the size of the set A(f) for any face f is O(1√

ε
log 1

ε
) and hence

T (C∗) = O(|A(C∗)|√
ε

log 1
ε
). We have obtained that the running time of search min(C, C∗) is

O(|A(C∗)|√
ε

log |C| log 1
ε
). On the other hand, if one of the chains consists of a single face, the

running time of search min(C, C∗) is Ω(1
ε
log2 1

ε
).

The running time of search min(a, b) is the sum of the times for the initialization and
the time taken by the recursive procedure search min(C̄(f0, f0), C̄(f ∗

0 , f ∗
0)). The latter is

O(w(∂R(b))√
ε

log |∂R(a)| log 1
ε
), where w(∂R(b)) is the number of nodes of Gε incident to faces

in ∂R(b). By Theorem 2 and the value of the separation parameter t′ we have w(∂R(b)) ≤
q
√

ε

log q log 1

ε

. From the same estimate on w(∂R(a)) we have that |∂R(a)| ≤ q. Therefore,

procedure search min(C̄(f0, f0), C̄(f ∗
0 , f ∗

0)) runs in O(max(1
ε
log2 1

ε
, q)) time.

Partial SSQ data structures SSQ(p; R(a), ε) and SSQ(q; R(b), ε) are present in the PAPQ
data structure for all nodes p incident to faces in ∂R(a), and for nodes q incident to faces in
∂R(b). Therefore, each of the distances distGε(a, p) and distGε(q, b) is computed in O(log 1

ε
)

time. The number of these distances is bounded by the sum w(∂R(a))+w(∂R(b)), which as

discussed above is less than 2 q
√

ε

log q log 1

ε

. Hence, this computation takes less than O(q) time.

Computing M1(f0) and an optimal face f ∗
0 ∈ ∂R(b) takes O(max(1

ε
log2 1

ε
, q

log q
)) time.

The lemma follows. 2

Finally, we consider the case where faces f(a) and f(b) belong to a single region R = R(a) =
R(b). To find the distance distGε(a, b) in this case, we partition approximate discrete paths

38

between a and b into two groups. The first group consists of approximate discrete paths that
stay within R and the second group consists of those that contain nodes outside R. Then,
the distance distGε(a, b) is equal to the smaller of the two distances found with respect to
the paths in each group.

To find the distance with respect to the paths inside R, we define A to be the set of nodes

in Gε incident to the faces in N (f(a)) and compute minp∈A(‖a N (a)
 p‖ + distR(p, b)). For

any p ∈ A the distance distR(p, b) is computed using the SSQ data structure SSQ(p; R, ε)
in O(log 1

ε
) time. The shortest local path is computed in constant time and therefore the

minimum and the distance inside R is computed in O(1√
ε
log2 1

ε
). The distance with respect

to paths that leave R is computed in O(q) time.
This concludes the description of the PAPQ Query algorithm. We summarize the above

discussion in the following lemma.

Lemma 11 The algorithm PAPQ Query correctly computes the approximate distance
distGε(a, b) in O(max(1

ε
log2 1

ε
, q)) time.

The validity of Theorem 7 stated in the beginning of the section follows from Lemmas 7 and
11.

7 Extensions and Conclusions

In this paper, we present novel solutions to fundamental shortest path query problems. The
algorithms improve and generalize previous solutions in terms of 1) setting: a) Euclidean
to weighted and b) arbitrary genus g, 2) preprocessing time, and/or 3) size of query data
structure. We also develop a new graph partitioning algorithm for graphs of genus g with
weights and costs on vertices which extends and/or generalizes previously known separator
algorithms. Our techniques also enable us to obtain improved results with space-query time
tradeoffs for the planar case, i.e., when the genus is 0.

A natural question arises whether the range (1√
ε
log2 1

ε
, q̄) of query time parameter q, in

Theorem 6, can be widened, while keeping the efficiency of the algorithm. This question
can be answered affirmatively by constructing a hierarchical APQ data structure, in which
second level APQ data structures are built and stored for each region of the partitioning.
For each region R of the partitioning construct an APQ(R, ε; q̄R) restricted to R, where
q̄R is the corresponding upper bound for R. Then, in the APQ-Query algorithm we use
APQ(R, ε; q̄R) to answer approximate shortest path queries in the case where both query
points lie in R in O(q̄R) in time. The latter is O(q) since q̄ ≤ q. Our analysis shows that if

q ≤ q̄1 = (g+1)5/9n2/3

ε2/3
log7/3 1

ε
the result of Theorem 6 extends to the case q ∈ (q̄, q̄1). By the

same approach the interval for q in the planar case can be extended from above.
Next, we briefly describe how our technique can be used to build an APQ data structure

with query time parameter q = log 1
ε
. We build an ε-mesh consisting of O(1

ε2) additional
points in each triangle f of P . The mesh is constructed so that for each point a in f there
is a mesh point p which is closer to a than εd(p), where d(p) is the minimum distance from

39

p to any node of Gε outside f . Then for each mesh point we compute, in O(n2

ε5/2
log n

ε
log 1

ε
)

time, the SSQ data structure. For a pair of query points a, b we first find the mesh point
p(a) closest to a, and then use the structure SSQ(p(a); P, ε) to find distGε(p(a), b). Each of
these two steps is carried out in O(log 1

ε
) time. It can be shown that ‖ap(a)‖+distGε(p(a), b)

is an ε-approximation of the distance distP (a, b).

References

[1] P. K. Agarwal, B. Aronov, J. O’Rourke, and C. A. Schevon. Star unfolding of a polytope
with applications. SIAM J. Comput., 26(6):1689–1713, 1997.

[2] P. K. Agarwal, S. Har-Peled, and M. Karia. Computing approximate shortest paths on
convex polytopes. Algorithmica, 33(2):227–242, 2002.

[3] P. K. Agarwal, S. Har-Peled, M. Sharir, and K. Varadarajan. Approximate shortest
paths on a convex polytope in three dimensions. Journal of the ACM, 44(4):567–584,
1997.

[4] L. Aleksandrov and H. Djidjev. Linear algorithms for partitioning embedded graphs of
bounded genus. SIAM J. Disc. Math., 9(1):129–150, 1996.

[5] L. Aleksandrov, H. Djidjev, H. Guo, and A. Maheshwari. Partitioning planar graphs
with costs and weights. J. Exp. Algorithmics, 11:1.5, 2006.

[6] L. Aleksandrov, H. Djidjev, H. Guo, A. Maheshwari, D. Nussbaum, and J.-R. Sack.
Approximate shortest path queries on weighted polyhedral surfaces. In In Proc. 31st
Int. Symp., Mathematical Foundations of Computer Science, LNCS 4162, pages 98–109.
Springer-Verlag, 2006.

[7] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack. An ε-approximation
algorithm for weighted shortest path queries on polyhedral surfaces. In Proc. 14th Euro
CG Barcelona, pages 19–21, 1998.

[8] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack. An ε-approximation
algorithm for weighted shortest paths on polyhedral surfaces. In Proceedings of SWAT,
LNCS 1432, pages 11–22, Berlin, Germany, 1998. Springer.

[9] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack. An improved approxi-
mation algorithm for computing geometric shortest paths. In In Proc. Foundations of
Computation Theory, LNCS 2751, pages 246–257, Berlin, Germany, 2003. Springer.

[10] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Determining approximate shortest
paths on weighted polyhedral surfaces. Journal of ACM, 52(1):25–53, 2005.

40

[11] S. Arikati, D. Chen, L. Chew, G. Das, M. Smid, and C. Zaroliagis. Planar spanners
and approximate shortest path queries among obstacles in the plane. In In Proc. of the
Forth Annual Fourth Annual European Symposium on Algorithms ESA’96, LNCS 1136,
pages 514–528, Berlin, Germany, 1996. Springer-Verlag.

[12] J. Canny and J. H. Reif. New lower bound techniques for robot motion planning
problems. In Proc. 28th. Annu. IEEE Symposium on Foundations of Computer Sciences,
pages 49–60, 1987.

[13] B. Chazelle, D. Liu, and A. Magen. Sublinear geometric algorithms. SIAM J. Comput.,
35:627–646, 2006.

[14] D. Chen. On the all-pairs Euclidean short path problem. In Proc. 6th ACM-SIAM
Sympos. on Discrete Algorithms (SODA), pages 292–301, 1995.

[15] D. Chen, O. Daescu, and K. Klenk. On geometric path query problems. In Proc. 5th
WADS, Lecture Notes in Comp. Sci., 1272:248–257, 1997.

[16] D. Z. Chen and J. Xu. Shortest path queries in planar graphs. Proc. 32nd Annu. Symp.
Theory Comput. (STOC), pages 469–478, 2000.

[17] J. Chen and Y. Han. Shortest paths on a polyhedron. In Proceedings of 6th ACM
Symposium on Computational Geometry, pages 360–369, 1990. Full version IJCGA 6:
127-144, 1996.

[18] J. Chen and Y. Han. Storing shortest paths for a polyhedron. In Proc. 1991 Int. Conf.
on Comp. and Information, volume 497 of LNCS, pages 169–180, 1991.

[19] Siu-Wing Cheng, Hyeon-Suk Na, Antoine Vigneron, and Yajun Wang. Approximate
shortest paths in anisotropic regions. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein,
editors, SODA, pages 766–774. SIAM, 2007.

[20] Siu-Wing Cheng, Hyeon-Suk Na, Antoine Vigneron, and Yajun Wang. Querying ap-
proximate shortest paths in anisotropic regions. In Jeff Erickson, editor, Symposium on
Computational Geometry, pages 84–91. ACM, 2007.

[21] Y.-J. Chiang and J. Mitchell. Two-point Euclidean shortest path queries in the plane.
In Proc. 10th ACM-SIAM Sympos. on Discrete Algorithms (SODA), pages 215–224,
1999.

[22] K. Clarkson. Approximation algorithms for shortest path motion planing. Proc. 19th
Annu. Symp. Theory Comput. (STOC), pages 56–65, 1987.

[23] H. N. Djidjev. Linear algorithms for graph separation problems. In SWAT’88, LNCS,
volume 318, pages 216–222. Springer-Verlag, Berlin, Heidelberg, 1988.

41

[24] Hristo Djidjev. Partitioning planar graphs with vertex costs: Algorithms and applica-
tions. Algorithmica, 28(1):51–75, 2000.

[25] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J.
Approx. Theory, 10(3):227–236, 1974.

[26] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs. SIAM J.
Comput., 16:1004–1022, 1987.

[27] G. N. Frederickson. Planar graph decomposition and all pairs shortest paths. Journal
of ACM, 38(1):162–204, 1991.

[28] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separator theorem for graphs of
bounded genus. J. Algorithms, 5:391–407, 1984.

[29] L. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J.
Comput. Syst. Sci., 39:126–152, 1989.

[30] S. Har-Peled. Approximate shortest paths and geodesic diameters on convex polytopes
in three dimensions. Discrete & Comp. Geometry, 21:217–231, 1999.

[31] S. Har-Peled. Constructing approximate shortest path maps in three dimensions. SIAM
J. Comput., 28(4):1182–1197, 1999.

[32] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the
plane. SIAM J. Comput., 28:2215–2256, 1999.

[33] P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest-path algorithms for
planar graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997.

[34] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl.
Math., 36:177–189, 1979.

[35] J. Mitchell, D. Mount, and C. Papadimitriou. The discrete geodesic problem. SIAM J.
of Computing, 16:647–668, 1987.

[36] J. Mitchell and C. Papadimitriou. The weighted region problem: Fiding shortest paths
through a weighted planar subdivision. Journal of the ACM, 38:18–73, 1991.

[37] J. H. Reif and Z. Sun. An efficient approximation algorithm for weighted region short-
est path problem. In Proceedings of the 4th Workshop on Algorithmic Foundations of
Robotics (WAFR2000), pages 191–203, Hanover, New Hampshire, 2000. A. K. Peters
Lt.

[38] J. H. Reif and Z. Sun. On finding approximate optimal paths in weighted regions. J.
Algorithms, 58:1–32, 2006.

42

[39] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Com-
munications of ACM, pages 669–679, 1986.

[40] Y. Schreiber and M. Sharir. Optimal-time algorithm for shortest paths on a convex
polytope in tree dimensions. In Proceedings of 22nd ACM Symposium on Computational
Geometry, pages 30–39, 2006.

[41] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM J. Computing,
15:193–215, 1986.

[42] Xuehou Tan, Tomio Hirata, and Yasuyoshi Inagaki. Spatial point location and its
applications. In Tetsuo Asano, Toshihide Ibaraki, Hiroshi Imai, and Takao Nishizeki,
editors, SIGAL International Symposium on Algorithms, volume 450 of Lecture Notes
in Computer Science, pages 241–250. Springer, 1990.

43

