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Abstract—To solve an optimization problem using a commercial quan-
tum annealer, one has to represent the problem of interest as an
Ising or a quadratic unconstrained binary optimization (QUBO) problem
and submit its coefficients to the annealer, which then returns a user-
specified number of low-energy solutions. It would be useful to know
what happens in the quantum processor during the anneal process so
that one could design better algorithms or suggest improvements to the
hardware. However, existing quantum annealers are not able to directly
extract such information from the processor. Hence, in this work we
propose to use advanced features of D-Wave 2000Q to indirectly infer
information about the dynamics of the state evolution during the anneal
process. Specifically, D-Wave 2000Q allows the user to customize the
anneal schedule, that is, the schedule with which the anneal fraction is
changed from the start to the end of the anneal. Using this feature, we
design a set of modified anneal schedules whose outputs can be used
to generate information about the states of the system at user-defined
time points during a standard anneal. With this process, called slicing,
we obtain approximate distributions of lowest-energy anneal solutions
as the anneal time evolves. We use our technique to obtain a variety of
insights into the annealer, such as the state evolution during annealing,
when individual bits in an evolving solution flip during the anneal process
and when they stabilize, and we introduce a technique to estimate the
freeze-out point of both the system as well as of individual qubits.

1 INTRODUCTION

Quantum computers of D-Wave Systems, Inc., use a process
called quantum annealing to aim to find approximate solu-
tions of high quality for NP-hard problems [1]. The type of
function that the D-Wave annealer is designed to minimize
is given by

Q(q1, . . . , qn) =
n∑
i=1

aiqi +
∑
i≤j

aijqiqj , (1)

where n ∈ N is the number of variables, ai ∈ R are the
linear weights, and aij ∈ R are the quadratic weights. If
qi ∈ {−1,+1}, eq. (1) is called an Ising model. If qi ∈ {0, 1},
it is called a quadratic unconstrained binary optimization
(QUBO) model. The two formulations are equivalent since
they can be converted into each other by a linear trans-
formation of the variables. We consider both QUBO and

Ising models in this work. Many important NP-complete
problems, such as the Maximum Clique, Minimum Vertex
Cover, or Graph Coloring problems, can be expressed as a
minimization of the type of eq. (1) [2], [3], [4], [5], [6].

We typically apply the following three steps in order to
implement and solve an NP-hard problem on the D-Wave
annealer. First, we express the problem under investigation
as a minimization of the type of eq. (1). Second, the coeffi-
cients ai and aij of the instance of eq. (1) we want to solve
are mapped onto the qubits and the connections between
them (called couplers) of the D-Wave chip [7]. Third, a pre-
specified number of reads (solutions) are requested from the
D-Wave annealer. In particular, for each read, the value of
the i-th variable is given as the i-th bit of a bitstring which
D-Wave returns as its output from the read.

An operator called Hamiltonian describes the time evolu-
tion of any quantum system. For the D-Wave processor, the
following time-dependent Hamiltonian specifies its quan-
tum system evolution:

H(s) = −A(s)

2

n∑
i=1

σxi +
B(s)

2

 n∑
i=1

aiσ
z
i +

∑
i≤j

aijσ
z
i σ

z
j

 .

In H(s), the first term imposes an equal superposition of all
states, i.e., such that each output bit string is equally likely.
The actual input problem, determined by the coefficients ai
and aij in eq. (1), is encoded in the second term. A so-called
anneal path handles how the quantum system transitions
from the initial quantum state to the final one, by specifying
the functions A(s) and B(s). Figure 1 (left) displays the val-
ues of these functions for the D-Wave 2000Q machine at Los
Alamos National Laboratory. Both functions are indexed by
a parameter s ∈ [0, 1] called the anneal fraction. Importantly,
at the end of the anneal, we have s = 1 and A(s) = 0,
meaning that the final Hamiltonian H(1) is associated with
a low-energy quantum system whose qubits’ values can be
measured to to get a high-quality solution of eq. (1).

The D-Wave 2000Q annealer gives more freedom to
the user to tune some of the annealing control parameters
[9]. Such options include a server-side spin reversal [10],
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Fig. 1. Left: Functions A(s) (blue) and B(s) (red) for D-Wave 2000Q, where s ∈ [0, 1] is the annealing fraction in a regular schedule [8]. Right:
Functions A(s) and B(s) in a quenching schedule.

pausing [11], reverse annealing schedules [12], [13], time-
dependent gain in linear biases [14], or anneal offsets [15].
Using up to 50 user-specified time points, the anneal schedule
specifies how the anneal fraction evolves from the start to
the end of the anneal [7, Figure 2.1]. Previously, this feature
has been used for improving the accuracy of the annealer
by inserting a pause in the anneal schedule [11], [16].

The aim of this article is to investigate how the quantum
state of the D-Wave annealer changes during an anneal
process. This process is unobservable directly, since D-Wave
only allows users to read off the final qubit states at the
end of each anneal. For this reason, we design a set of
modified anneal schedules whose outputs can be used to
generate information about the states of the system at user-
defined time points during a standard anneal. Using a
custom anneal schedule and quenching, a standard feature
provided by D-Wave 2000Q [7, Section 2.5.2], we follow
the usual anneal curve up to a specific time at which we
would like to obtain information about the state. We then
modify the anneal schedule by inserting a jump to the full
anneal (see Figure 1, right), thus getting a snapshot of the
state at that intermediate time point (this idea is mentioned
but not used in [17]). Repeating this process for various
intermediate time points allows us to slice the anneal and
then stitch all the information together in order to gain a
better understanding of the dynamics of the anneal process.

We use our technique to obtain some insights into D-
Wave’s anneal process which, to the best of our knowledge,
have not been reported previously in the literature. First, our
approach allows us to visualize the state evolution during
annealing, both in terms of its energy and in terms of its
dynamics, i.e., we assess how volatile the measurement of
each individual qubit of the lowest energy state is during
annealing. We repeat our experiments for a varying number
of slices and annealing times.

Second, in order to better understand what happens
during an anneal, we present a simple genetic optimiza-
tion scheme [18] designed to find a QUBO that benefits
greatly from the quantum annealing cycle, in the sense
that it exhibits substantial improvements in terms of energy
decrease. We contrast the (optimized) QUBO obtained in

this fashion with a random QUBO. Moreover, we study the
characteristics and best parameter choices for our genetic
algorithm. Genetic algorithms have previously been used in
connection with quantum annealing, though in the context
of hybrid quantum-classical solvers [19].

Third, our technique gives us a new way to determine
an estimate of the freezeout point, a hypothetical point that
is defined as an anneal fraction s significantly smaller than
1, after which the dynamics essentially stalls, and which
can be found by fitting a Boltzmann distribution to the
annealer’s output. While we show that a freezeout point
so defined may not always exist or be identifiable by the
existing methods, we demonstrate that our slicing method
allows us to determine an analogue we call a quasi-freezeout
point (QFP). It is defined as a point at which either the
energy does not significantly improve anymore or, at an
individual qubit level, a point at which the state/value of
each individual qubit stays fixed. For the former, we analyze
the energy values determined by the slicing method and
determine the point after which the slope of the energy
plot becomes close to 0. We compare our approach to the
one based on estimating the parameters of a Boltzmann
distribution, e.g., [20]. For the latter, qubit-level QFP, we
slice the anneal at various stages (for instance, using 1000
slices for a 1000 microsecond anneal), and observe how each
qubit’s measured value (+1 or 0/ − 1) changes over the
course of the anneal. The QFP of a qubit can then be defined
as the approximate location at which the measured value of
the qubit stays invariant until the end of the anneal. Early
works on measuring the freezeout of a quantum system by
means of a Boltzmann distribution [21] or the Kibble-Zurek
mechanism [22] are available in the literature.

The article is structured as follows. Section 2 presents
our approach to slice the anneal process, that is, the anneal
schedule we employ in order to quench the anneal process
at any intermediate time. We also present our genetic al-
gorithm to find a QUBO which exhibits a substantial state
evolution during the anneal, both in terms of the total
number of bit flips of all involved qubits, as well as the
total energy decrease during the anneal. Using that QUBO,
Section 3 will visualize the state evolution during the anneal,
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both in terms of the number of bit flips and the total energy
change. We investigate how a random QUBO compares to
our optimized one, and how the number of slices influences
the results. Finally, we look at experimental measurements
of the freezeout point for various examples. A summary and
discussion of our methodology and results can be found in
Section 4.

This paper is a journal version of an article presented
at the 20th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT) 2019 [23].
Extending the conference version, the present paper also
considers the estimation of the freezeout point based on
the estimation of effective temperatures (Section 2.3), infor-
mation collected during slicing (Section 3.7), and we con-
sider schedules that use a pause during the anneal process
(Section 2.4). Additionally, the present paper contains more
extensive experiments investigating the effect of a pause in
the anneal process (Section 3.5), and the slicing of a QUBO
for the Maximum Clique problem (Section 3.6), a well-
known NP-hard problem. Since the connectivity structure
(the quadratic couplers) of the function of eq. (1) being
minimized on D-Wave does not typically match the one
of the physical qubits on the D-Wave chip, one important
aspect of quantum annealing pertains to the computation
of a suitable minor embedding of the problem structure
in eq. (1) onto the physical qubits. In this process, logical
qubits are often represented as a set of physical ones that
are supposed to act as one (called a ”chain”). Even though
chains of physical qubits represent the same logical qubit, it
is not guaranteed that all of them take the same value after
readout at the end of the anneal. This is called a ”broken
chain”. We visualize how chain breaks occur during the
anneal (Section 3.8), and estimate the freezeout point for all
individual qubits (Section 3.9). Finally, most of the figures
are new or revised, compared to the conference version.

2 METHODOLOGY

This section, which presents the methodology underlying
our work, consists of two parts. First, Section 2.1 describes
the quenching technique we use in order to get information
about the state evolution during the anneal process. To
visualize results later in the simulations, we are interested
in finding a QUBO that exhibits a pronounced evolution
during the anneal process, that is, whose lowest energy
result from a 1-microsecond anneal is (significantly) greater
than that of a longer (1000-microsecond) anneal. We find
such a QUBO with the help of a genetic algorithm presented
in Section 2.2. This section ends with a review of a published
technique to estimate freezeout points using the technique
of [20] in Section 2.3, and a short discussion of how to slice
an anneal schedule with a pause in Section 2.4.

2.1 Slicing the anneal process

The goal of this work is to infer information on how the
states evolve during the anneal process of D-Wave 2000Q.
For this, we use a feature recently introduced on D-Wave
which allows users to manually define an anneal schedule
by specifying up to 50 points on the anneal curve. In
particular, we make use of a feature called ”quenching” that

Fig. 2. Anneal schedule with quenching (near-vertical jumps) at time
points 250 (blue), 500 (red), and 750 (green) microseconds. Total anneal
time of 1000 microseconds. The full anneal schedule is shown by the
black line.

allows us to jump to the full anneal fraction of 1 within
one microsecond at any point in the anneal process (for the
precise conditions under which the quench is possible, see
[7]).

Figure 2 illustrates the sequences of quenches we em-
ploy. For the i-th quench used to slice the anneal process at
time ti, we first follow the standard anneal curve connecting
the point P0 = (0, 0) (i.e., t = 0 and s = 0) with the point
P1 = (ti, ti/T ), where T is the full anneal duration. Ideally,
the jump from the intermediate time ti to the end of the
anneal has to be done as quickly as possible, i.e., we would
like to have P2 = (ti, 1), in order to “freeze” the current
state at ti. However, the hardware constraints mentioned
above do not allow such a quench, and we have to jump to
the full anneal fraction of s = 1 at the next time point ti + 1,
thus connecting P1 with P2 = (ti + 1, 1).

Though the jump we employ is not perfectly vertical (our
anneal curve jumps to 1 at ti + 1), we expect this jump to
not considerably change the result. But we also would like
to reduce the bias caused by the 1µs quench, since for some
problems a 1µs anneal could reduce noticeably the energy of
the current state. Hence, in the next subsection, we discuss
our approach to choosing problems for which the distortion
caused by the quench is significantly reduced.

2.2 A genetic algorithm for constructing a suitable
QUBO/Ising model
It is known that different QUBO/Ising models pose different
levels of difficulty to the D-Wave annealer in terms of find-
ing a high quality solution [3]. In particular, random Ising
models might pose rather simple problems to a quantum
annealer [24]. In our experiments presented in Section 3, we
aim to investigate the state evolution during the anneal pro-
cess, and therefore seek to solve a non-trivial QUBO/Ising
instance for which the effect of quenching is as small as pos-
sible. Additionally, we seek a QUBO/Ising instance which
benefits greatly from the quantum annealing cycle in that
it also exhibits a distinctive evolution during the anneal
process, measured both in terms of energy decrease and bit
flips.

To find such a problem instance, we employ the ge-
netic algorithm presented in Algorithm 1, which works as
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Algorithm 1: Finding a suitable QUBO/Ising model
for slicing

input : N , pcross, pmut, R;
output: optimized instance for slicing;

1 S ← {Q1, . . . , QN}, where each Qi contains all linear
and quadratic terms of the hardware connectivity
graph;

2 for each Q ∈ S do
3 Set each individual linear coefficient of Q to a

random value in (−2, 2);
4 Set each quadratic coefficient of Q to a random

value in (−1, 1);
5 end
6 repeat R times
7 for each Q ∈ S do
8 Across 1000 anneals, find energy difference ∆

between the 1% minimum energy samples for
Q for a 1 microsecond and 1000 microsecond
full anneal;

9 Set fitness fQ ← ∆;
10 end
11 F0 ← proportion pcross of largest fQ values;
12 S0 ← {Q ∈ S : fQ ∈ F0};
13 S1 ← ∅;
14 repeat N times
15 Draw two random Q1, Q2 ∈ S0 and select

coefficients randomly from either Q1 or Q2

with probability 0.5; store new problem
instance in S1;

16 end
17 S2 ← ∅;
18 for Q ∈ S1 do
19 Set Q′ ← Q and overwrite each coefficient in

Q′ independently with probability pmut (for
linear coefficients use random value in
(−2, 2), for quadratic coefficients use (−1, 1));

20 Add Q′ to S2;
21 end
22 S ← S2;
23 end
24 return fittest Q ∈ S as defined in line 9;

follows. The algorithm starts by initializing a population
of N ∈ N problem instances (QUBO or Ising models),
which are collected in a set S. Those instances are randomly
generated as follows: each problem instance maps onto the
entire Chimera graph, the graph encoding the connectivity
structure of the physical qubits on the D-Wave chip, see
[7]. Its linear coefficients ai are independently sampled from
(−2, 2), and its quadratic coefficients aij are independently
sampled from (−1, 1).

Then, the algorithm proceeds by evaluating the fitness
of the current population of problem instances. To this end,
for each Q ∈ S, we find the mean of the best 1 percent of
energies in a 1 microsecond and a 1000 microsecond anneal.
We set the fitness fQ for each Q ∈ S to |fQ,1 − fQ,1000|,
where fQ,1 is the average of the best 1% samples from the
1 microsecond anneal, and fQ,1000 is the average of the best
1% samples from the 1000 microsecond anneal. Using the

mean of the best 1% samples results in more stable results
and reduces the effect of the noise, compared to merely
considering the minimum energy. The fitness fQ is, at the
same time, the objective function that the genetic algorithm
optimizes. This ensures that Algorithm 2.2 will optimize
for problem instances having the property that between a
1 microsecond and a full 1000 microsecond anneal, the state
evolves considerably in terms of the energy.

Next, the pcross portion of fittest individuals are selected
from the population for cross-over and mutation. Those
problem instances are stored in the set S0. Then we restore
the original size N of the population by crossing the fittest
individuals from set S0: we randomly choose two instances
Q1 and Q2 from S0 and generate a new one by selecting
each individual linear and quadratic coefficient indepen-
dently from either Q1 or Q2 with probability 0.5. We store
the new instance in S1 and repeat this step N times.

Finally, a mutation step is applied to the new popula-
tion. Each instance Q ∈ S1 from the new population is
first copied into Q′ ← Q. Then, we overwrite any of the
coefficients of Q′ with a probability pmut. For those coef-
ficients which are being overwritten, a linear coefficient is
sampled randomly from (−2, 2), and a quadratic coefficient
is sampled from (−1, 1). The resulting instances are stored
in a new set S2. After setting S ← S2, the genetic algorithm
is restarted with the newest population.

The entire process is repeated overR iterations. After the
last iteration, we return the fittest Q ∈ S as the result of our
algorithm, where S is the newest population generation and
fitness is calculated as fQ.

The dependence of the genetic algorithm described in
Section 2.2 on its parameters is evaluated in Section 3.1,
where we also suggest default parameter choices.

2.3 Estimating the freezeout point

The slicing approach we introduce in Section 2.1 allows one
to track how the current state, in particular its associated
energy, evolves during the anneal process. A natural param-
eter to look at in this scenario is the so-called freezeout point
[25], [26], defined as a point before the end of the anneal
at which the evolution of the quantum state “freezes”, and
after which not much quantum dynamics occurs except
for fluctuations due to noise. While such a freezeout point
may not always be well-defined theoretically or easy to
compute, our slicing method gives an alternative way to the
literature for looking at the evolution of the anneal process.
Overall, we are interested in determining a point where the
dynamics of the anneal process slows down or stops [27].

In order to be able to make a comparison, we want to
compute a freezeout point estimate based on an established
technique such as [25] or [26], and then compare it with the
freezeout point estimate computed by our method.

We use the statistical methodology of [20] to estimate
the freezeout point. This method is based on the Boltzmann
distribution, the theoretical distribution of ground-state en-
ergies of the annealer. Briefly, estimating a certain parameter
of the Boltzmann distribution, the effective inverse tem-
perature βeff of the annealer, allows one to estimate the
freezeout point. Denoting β = βeff, we first observe that the
(thermodynamic) probability of observing an energy E is
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given by Pβ(E) = g(E) exp(−βE)/Z(β), where g(E) is the
degeneracy of the energy level E and Z(β) is the partition
function serving as normalization factor.

Second, for two energies E1 and E2, the log ratio of
probabilities is

l(β) := log
Pβ(E1)

Pβ(E2)
= log

g(E1)

g(E2)
− β∆E.

The main idea of [20] is to rescale all coefficients of the
Hamiltonian under consideration by a factor x ∈ (0, 1). Let-
ting β′ = xβeff, computing the difference of log probabilities
allows us to eliminate the unknown degeneracies g(·) since

∆l =
Pβ(E1)Pβ′(E2)

Pβ(E2)Pβ′(E1)
= ∆β∆E. (2)

The expression in eq. (2) allows us to compute an empirical
freezeout point estimate. Indeed, for a fixed x ∈ (0, 1),
we rescale our Hamiltonian under consideration and ob-
tain a fixed number of R anneals for both the unscaled
(original) and rescaled Hamiltonians. By binning the ob-
tained energies of those R anneals per Hamiltonian, we can
compute empirical probabilities for each energy bin. Using
K = d

√
2Re bins is recommended in [20]. Afterwards,

we can select all pairs of bins for both Hamiltonians and
compute both ∆l and ∆E per pair. According to eq. (2), the
data pairs (∆l,∆E) will lay on a straight line through the
origin with slope ∆β = (x − 1)βeff. Estimating that slope
thus immediately allows us to compute βeff.

Having computed βeff, the freezeout point estimate fol-
lows from a simple calculation. We observe that using the
operating temperature of D-Wave 2000Q of T = 15 mK,
and the Boltzmann constant kB = 20.83661 GHz/K, we
can convert βeff via βeffkBT into a point on the anneal
schedule B(s) displayed in Fig. 1. Finding s∗ such that
B(s∗) = βeffkBT yields an estimate of the freezeout point.

The aforementioned method to measure the freezeout
point is dependent on the choice of the parameter x ∈ (0, 1)
used to rescale the Hamiltonian. Typically, values of x too
close to 0 will cause the rescaled Hamiltonian to be too
different from the original one (thus also causing its Boltz-
mann distribution to be too far away from the one of the
unscaled Hamiltonian), whereas values of x too close to 1
will not yield a good separation of the rescaled and unscaled
energy measurements used in eq. (2). We typically choose
x on a grid in the interval [0.6, 0.95]. After computing the
freezeout point estimate for each such x, in the experiments
of Section 3 we report the measurement of the freezeout
point corresponding to the largest value of x < 1.

2.4 Slicing an anneal schedule with a pause
In the experiments of Section 3, we also aim to investigate
the effect of inserting a pause into the anneal process. Fig. 3
illustrates an annealing schedule that includes a pause (the
black line), and a series of slicing schedules (green, red, and
blue lines). Specifically, the annealing with pause schedule
in Fig. 3 starts with 500 microseconds regular anneal, at
which a pause of 1000 microseconds is inserted. Afterwards,
the normal anneal schedule is resumed until it reaches the
total anneal time of 2000 microseconds. Slicing the anneal
before and during the pause allows us to observe the state
evolution even while the Hamiltonian evolution is paused.

Fig. 3. Anneal schedule with a pause of length 1000 microseconds
inserted 500 microseconds into the anneal. Quenching (near-vertical
jumps) at time points 250 (blue), 1000 (red), and 1750 (green) microsec-
onds. The full anneal schedule is shown by the black line. Total anneal
time of 2000 microseconds.

3 EXPERIMENTS

This section presents our experimental setup and results.
We start with an assessment of the tuning parameters
of our genetic algorithm (Section 3.1). In Section 3.2, we
present first results on the slicing technique of Section 2.1,
demonstrating that the Ising model returned by Algorithm 1
indeed yields more pronounced changes during the anneal.
We then focus on the evolution of the energy (Section 3.3)
and the Hamming distance (Section 3.4) during annealing.

Moreover, we look into a particular feature of the D-
Wave 2000Q, the inclusion of a pause in the anneal process
(Section 3.5). Since we are also interested in slicing chained
problems of practical importance, we modify Algorithm 1
to yield a QUBO for a well-known NP-hard problem, the
Maximum Clique problem. We use this QUBO to investigate
how the energy, Hamming distance, and freezeout point es-
timate behave (Section 3.6). Our slicing technique allows us
to define a quantity related to the freezeout point which we
define in Section 3.7. Additionally, it allows us to visualize
how chain breaks occur during the anneal (Section 3.8), and
we investigate individual freezeout estimates for all qubits
(Section 3.9).

Apart from Section 3.2, which also displays results for
a random Ising model, all figures in the remainder of the
simulations were computed using an Ising model obtained
with the genetic algorithm described in Section 2.2, or a
modification thereof.

3.1 Parameter choices for the genetic algorithm
We start by assessing the dependence of the genetic algo-
rithm described in Section 2.2 on its tuning parameters. For
this we first define a set of default parameters: population
size N = 100, crossover proportion pcross = 0.1, and
mutation rate pmut = 0.001.

While keeping two of the default parameters fixed, we
vary the third parameter in Figure 4. We report the fitness fQ
in all plots. As can be seen from the definition of fQ as the
energy difference between the 1% minimum energy samples
for a 1 microsecond and a 1000 microsecond full anneal (see
Section 2.2), the lower the fitness value the better (i.e., more
pronounced) the energy evolution during the anneal.
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Fig. 4. Dependence of the genetic algorithm on its tuning parameters, while keeping the other parameters at their default values, measured in the
fitness fQ (lower values are better). Crossover proportion pcross ∈ {0.1, 0.5, 0.9} (top left), mutation rate pmut ∈ {0.0001, 0.001, 0.01} (top right), and
population size N ∈ {50, 100, 150} (bottom left). Bottom right shows three runs of the genetic algorithm with the optimized parameters.

Figure 4 shows that selecting a low crossover rate
(pcross = 0.1) seems to be advantageous. However, choosing
the population size or the mutation rate to be too low
or too high is disadvantageous, thus leading us to the
choices N = 100 and pmut = 0.001. The default parameters
will be used in the remainder of the simulations. Figure 4
(bottom right) shows three runs of the genetic algorithm
with default parameters for 500 generations, demonstrating
a stable behavior of the tuned algorithm. Whenever we
apply Algorithm 1 in the following sections, we will always
employ 200 generations (iterations).

3.2 Evolution of the quantum state for two types of
Ising models
We verify that using an Ising model computed with the
genetic algorithm is indeed advantageous for investigating
the evolution of the quantum state during the anneal. We
refer to the optimized Ising model returned by Algorithm 1
as simply the Chimera Ising in the remainder of the text. To
be precise, we employ the Ising model with best fitness from
the third run of the genetic algorithm which is displayed in
the lower right panel in Figure 4 as a green line.

Figure 5 shows, for 1000 slices (i.e., a 1000 microsecond
anneal), the progression of the average of the 1 percent
minimum energies found. We observe that the total change
in energy is considerably more pronounced for the Chimera
Ising returned by Algorithm 1 compared to a randomly
generated non-optimized and unstructured Ising. Looking
at the plot it seems straightforward to define the freezeout
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Fig. 5. Averages of the minimum 1 percent energies found in 10 runs
of 1000 anneals. Randomly generated and unstructured Ising model
(cyan) and the Chimera Ising model (red). Both datasets are normalized
by dividing each value by their respective minimum value.

point to occur at roughly slice 500 where both curves
stabilize horizontally. We will investigate the relationship
between the point at which the energies stabilize in the
slicing plots and the freezeout point estimate computed
with the methodology of [20] (see Section 2.3) in more detail
in the next subsection.

3.3 Energy evolution during the anneal process
We now look at the evolution of energies for the Chimera
Ising model. In this and all following sections, we always
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slice an anneal process using 1000 and 2000 slices. Since we
slice in steps of one microsecond, the figures showing 1000
slices are always computed for a total anneal time of 1000
microseconds, and the figures showing 2000 slices have a
total anneal time of 2000 microseconds. For each slice we
run 1000 anneals on D-Wave 2000Q. In the plots, we report
both the mean energy among all samples returned by D-
Wave 2000Q as well as the average best 1% energies, that
is the mean among the 1% lowest energies observed among
the 1000 samples. The Hamming distance we report is the
average distance among the bitstrings corresponding to the
1% best (lowest energy) samples.

Figure 6 displays results for the Chimera Ising model
of Algorithm 1 with 1000 and 2000 slices. We observe that,
initially, the energies roughly stay constant up to around
a third of the anneal time. At that point, a continuous
reduction in energies sets in, during which the energy of
the current state becomes better and better with every slice.
Roughly halfway through the anneal the energies stabilize.

We applied the freezeout point estimation algorithm
described in Section 2.3, but it failed to produce a freezeout
point estimate for both 1000 and 2000 slices, which indicates
that the distribution of the samples’ energies does not follow
a Boltzmann distribution.

3.4 Evolution of the Hamming distance between adja-
cent slices
Similarly to Figure 6, we record the Hamming distance
between the binary solution vectors (indicating the final
measurement of each qubit) of adjacent slices. This allows us
to measure in how many bits the solution vectors of adjacent
slices differ.

Figure 7 shows the evolution of the Hamming distance
for the quantum states between adjacent slices for 1000 and
2000 microsecond anneals. Interestingly, the shapes of the
curves are similar for the two anneal durations. Importantly,
they coincide with the shape of the progression of energies
in Figure 6. However, the cause of the slight uptick in Ham-
ming distance before the pronounced decrease is unknown.

3.5 Pausing the anneal
We are interested in investigating the state evolution when
the anneal is paused. In particular, we are interested in
observing if the quantum state continues to evolve after the
point in Figures 6 and 7 at which the mean and average
best (lowest) 1% energies as well as the Hamming distance
stabilize.

For this we select the schedule displayed in Figure 3: it
has a total anneal time of 2000 microseconds, with a pause
inserted at slice 500 out of 1000 slices (microseconds). The
pause duration was 1000 microseconds.

Figure 8 shows results of this experiment. We observe
that, as before, both the energy and Hamming distance of
the current states continue to decrease during the pause,
which is shaded in light blue. Surprisingly, as soon as the
pause is over, we observe a slight uptick in the energy
measurements, which then quickly stabilize again towards
the end of the 2000 microsecond anneal. The reason of this
behavior is unknown, but it could be related to an artifact
caused by the D-Wave annealer.

3.6 Energy evolution for the Maximum Clique problem

We are interested in peering into the anneal process not only
for arbitrary (unstructured) Ising problems that conform to
the Chimera topology, but also aim to apply the slicing
approach to chained problems of practical importance. An
important feature of such problems is that they require,
before annealing, a minor-embedding onto the Chimera
graph, which means they have chains (sets of strongly
coupled physical qubits) corresponding to a logical qubit.
Chained problems are believed to have a different behavior
(i.e., more difficult for quantum annealing) compared to the
unchained ones. We select an important NP-hard problem,
the Maximum Clique problem [6], to analyze with our
slicing method. Since the QUBO for the Maximum Clique
problem is of a special form, we employ a modification of
Algorithm 1 for the optimization, using 200 generations. In
particular, we start with an initial population of Maximum
Clique QUBOs, and every time a crossover or mutation step
is performed, we directly work on the edges of the graph
for which the Maximum Clique problem is computed. This
ensures that, after crossover and mutation, the population of
QUBOs continues to contain only those QUBOs that actually
correspond to a Maximum Clique problem. In this way, we
can find a QUBO of the type of eq. (1) that corresponds to
an actual Maximum Clique problem, while also ensuring a
large difference between the energies for 1 microsecond and
1000 microsecond anneals, thereby reducing the distortion
caused by quenching.

To sample initial graphs G = (V,E) for which the Max-
imum Clique problem is solved, we draw random graphs
with |V | = 65 vertices and a density (edge probability)
that is uniformly sampled in [0.2, 0.8]. When embedding
the resulting Maximum Clique QUBOs, we employ a fixed
chain strength of 2. When running the genetic algorithm, we
employ the default choices of Section 3.1, apart from setting
pmut = 0.01 due to the fact that we have a smaller number
of parameters in this setting.

Figure 9 shows an interesting behavior of the Maximum
Clique QUBO returned by the modified Algorithm 1. As
seen before, at the beginning of the anneal, both the energies
as well as the Hamming distance between adjacent slices
slightly decrease before the pronounced decrease sets in.
Notably, there seems to be some sort of minimum right
after this pronounced decrease for both energy and Ham-
ming distance, and the energy measurements for the QUBO
continue to be volatile (oscillatory).

We compute a freezeout point estimate using the algo-
rithm of Section 2.3. We observe that the result indicates
that the freezeout occurs earlier than suggested by our
slicing plots. Note that if the quenching used by our slicing
algorithm modifies the position in the slicing plot where
the energy evolution becomes negligible, it will move the
freezeout estimate to an earlier point, but not to a later
one. This means that the discrepancy in the position of the
freezeout point estimate is due mostly to inaccuracies in the
algorithm of Section 2.3, since the slicing algorithm can only
underestimate the freezeout point, but not overestimate it.

Similarly to Figure 9, Figure 10 displays the evolution
of the Hamming distance between adjacent slices during a
1000 microsecond anneal. We observe that, similarly to the
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Fig. 6. Evolution of minimum energy states on D-Wave 2000Q for 1000 slices (left) and 2000 slices (right). Mean of all samples (blue) and mean of
the lowest 1% energies (red).
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Fig. 7. Evolution of the Hamming distance for the quantum states between adjacent slices. Plots show 1000 slices (left) and 2000 slices (right).
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Fig. 8. Evolution of energies (left) and Hamming distance (right) during a 2000 microsecond anneal with a 1000 microsecond pause. The pause
was inserted at the lower bound of the freezeout point estimate from Figure 6. Pause location is shaded in cyan from 500 to 1500 microseconds.
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Fig. 9. Evolution of energies for the optimized Maximum Clique QUBO using 1000 slices (left) and 2000 slices (right). Mean of all samples (blue)
and mean of the lowest 1% energies (red). Estimate of the freezeout point shaded in green.
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Fig. 10. Evolution of the Hamming distance for the Maximum Clique
QUBO using 1000 slices.

energy evolution in Figure 9, the Hamming distance first
stays relatively constant before a pronounced drop occurs.
Two observations are noteworthy. First, we again observe
a minimum after the drop. Second, we observe even more
pronounced oscillations than in Figure 9.

3.7 Quasi-freezeout point
We observed in the previous subsections that each of the
shapes of the energy evolution plots follows roughly the
same pattern: After an initial phase, in which the energy
of the state stays mostly constant (Phase 1), a pronounced
decline sets in (often at around one third of the anneal
time). The phase of the steep decline (Phase 2) roughly
lasts until about halfway during the anneal, after which the
energies stabilize quickly. This is followed by Phase 3, which
consists of a relatively long stretch of time until the end of
the anneal, in which the energy is roughly constant or is
decreasing very slowly. Assuming the slope of the line that
approximates the energy slicing plot of this phase is not too
steep (compared with a user specified threshold), we call the
point of the anneal process at which the third phase starts a
quasi-freezeout point (QFP).

In order to divide the energy slicing plot into the three
phases described above, we fit a polyline (degree-one spline)
using the Bayesian Optimization package of [28], which

consists of three main segments, corresponding to the three
phases, and possibly a small number of shorter connecting
segments, depending on the graph, to each slicing energy
plot. Figure 11 shows results of our fit. We consider both
the Chimera Ising model of Section 3.2 and the Maximum
Clique problem of Section 3.6, obtained with Algorithm 1.

Fitting a spline to the slicing energies gives our method
two advantages: First, the existence of a QFP can be made
dependent on a threshold for the slope set by the user,
which typically varies based on the problem being solved,
the annealer hardware, and the purpose of the analysis. If
the slope of the third segment is zero (i.e., not significantly
different from zero), or less than the user-defined threshold,
we conclude that the freezeout must have occurred at the in-
tersection of the penultimate and ultimate segment, that is,
the point at which the third segment begins. In this case, we
can use the QFP as an approximation of the freezeout point.
In our case, we consider a system ”frozen out” if the slope
of the last spline segment is less than 10 degrees. Second,
if the slope is greater than the user-defined threshold, we
conclude that the system has not frozen out prior to the end
of the anneal. This corresponds to the case where a freezeout
point does not exist for the system.

In Figure 11, we examine the QFP found for two prob-
lems: the Chimera Ising model from 3.2 (i.e., not correspond-
ing to any particular NP-hard problem), and the one for
the Maximum Clique problem from 3.6. Both are found
with Algorithm 1. We display the fitted spline segments,
and indicate the QFP determined by the last spline with
a green line. Additionally, we compute a freezeout point
estimate with the method of Section 2.3. We observe that for
the Chimera Ising problem, the technique of [20] does not
work, and that it estimates the freezeout point to be before
the point at which the energies stabilize for the Maximum
Clique problem (purple vertical lines, right column). The
QFP is indicated with a vertical green line and could be a
sensible indicator for the freezeout of the system.

The 3-tuple of the slopes of the three segments corre-
sponding to Phases 1, 2, and 3, together with the QFP, could
be possibly used as a signature vector characterizing the
anneal evolution for each problem. Since we have looked
at only two problems, we cannot suggest any rules that
link such a signature with characteristics of an individual
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problem, but it may be a topic of future reseach.
The precise slope estimates (in degrees) in each of the

subfigures of Figure 11 can be found in Table 1.

3.8 Proportion of chain breaks
Our slicing technique allows us to also look at the progres-
sion of individual qubits during the anneal (see Section 3.9).
In particular, for the Maximum Clique QUBO we can inves-
tigate how its chains on the D-Wave Chimera graph evolve.

Figure 12 displays the proportion of unbroken chains
(where an unbroken chain is defined as a chain whose qubits
all take the same value) as a function of the anneal slice
for a 1000 microsecond anneal. We observe that initially,
up to around one third of the anneal, roughly 95% of all
chains are unbroken. Towards one third of the anneal time,
roughly coinciding with the drop in energies, all of the
chains become unbroken.

3.9 Determining quasi-freezeout points at individual-
qubits level
We can use our methodology from Section 2.1 to track when
individual qubits of D-Wave “freeze” during the anneal.
To this end, we again employ the Ising or QUBO model
obtained with the genetic algorithm of Section 2.2, and read
out the value of each qubit at each of the 1000 slices during
a 1000 microsecond anneal.

In this way, we can track from what slice onwards the
value of each of the qubits remained in the state it was upon
readout at the full anneal duration. We define this timepoint
as the quasi-freezeout point (QFP) for that individual qubit.
The bitstrings we query for each slice are the ones corre-
sponding to the best energy.

Figure 13 shows results of this experiment for the
Chimera Ising (having 2032 variables) and the Maximum
Clique problems (having 1555 variables) obtained with Al-
gorithm 1. Each of the two histograms shows the number of
qubits that freeze out at a particular point in time (or slice
number) during the anneal.

We observe that, for the Chimera Ising model, the his-
togram correlates with the slicing diagrams we have seen
earlier. In particular, at the start of the anneal, not many
qubits freeze out. Roughly at one third of the anneal du-
ration, when we observe the pronounced decrease in the
slicing energies, a majority of qubits freeze out. The one
exception, which, on the surface, does not make sense, is
the large number (≈ 900) of qubits that have frozen out
at slice 1. Actually, this gives out some useful information,
since these qubits must have frozen because of the quench–
they have attained their optimal values as a result of the
quench done as part of the slicing at 1 µs time. It cannot
be explained by the 1 µs anneal that precedes that quench
because, at s = 0.001, the value of the function B(s) from
Figure 1 is practically zero, so the annealer does not have
enough information about the QUBO or Ising model of
eq. (1) in order to compute these optimal values. Hence, we
can conclude that the distortion caused by the the quenches
is expressed by having the values of ≈ 900 qubits fixed,
while the remaining ≈ 1100 qubits determine the reduced
QUBO or Ising model whose anneal progression we observe
on the slicing diagrams for the Chimera Ising problem.

For the Maximum Clique problem, the histogram on the
right of Figure 13 tells a different story. No qubit freezes out
before slice 275, and after that, qubits freeze out at seemingly
random times until almost the end of the anneal. This is
consistent with the slicing diagram, which shows that the
quantum state energy keeps on decreasing slowly until the
end of the anneal. The increased number of frozen qubits
at the very end is due to the fact that the annealing is soon
ending and there is not enough time (slices) to allow for
the qubits to flip again. The fact that the freezeout estimates
of the qubits are spaced out, with longer intervals between
them, and that several qubits are estimated to freeze out at
the same time is due to the chained nature of the Maximum
Clique problem. Qubits representing a logical qubit are
chained together and thus, typically, either a logical qubit
flips, or a part of a broken chain flips. Finally, the lack of
frozen qubits at slice 1 indicates that, for the Maximum
Clique problem, the quench did not result in such a big
distortion as happened for the Chimera Ising problem, and
the slicing result is more reliable. On the other hand, the
slicing diagrams for both the Chimera Ising and optimized
problems have similar shapes, which may indicate that,
despite the distortion caused by the quench, the Chimera
Ising plots still yield useful information.

4 DISCUSSION

This article is a first attempt to explore how the state of
a quantum annealer evolves during annealing, and a first
step in the development of methods that allow us to get fur-
ther insights into the (unobservable) anneal process. To the
best of our knowledge, such work has not been presented
previously in the literature.

We develop a novel method we refer to as slicing, based
on the quenching control feature of D-Wave 2000Q, to es-
timate the states of individual qubits at any point during
the anneal. Using this technique, we dissect the anneal
process and monitor how the energy of the state evolves.
The slicing plots allow us to track when energies or qubit
bit flips stabilize during the anneal, which can be used as an
alternative to estimate the freezeout point, similarly to the
method of [20]. We summarize our findings as follows:

1) We show that an optimized Ising or QUBO model,
computed with a genetic algorithm, exhibits a much more
pronounced evolution during the anneal than a random
problem instance.

2) Using optimized Ising or QUBO models, we observe
that the evolution of energies and Hamming distances
between adjacent states follows a similar pattern in the
experiments we conducted. Initially, the energy does not
decrease considerably. At roughly a quarter of the anneal,
a pronounced decrease sets in, which correlates with a
reduction in the number of bit flips. At around the midpoint
of the anneal, the energy stabilizes at around the energy
value that D-Wave returns as a solution at the end of the
anneal. During that phase, the number of bit flips likewise
stabilizes at a constant level (i.e., the state still changes from
slice to slice), which could reflect the noise in the machine.

3) Our technique provides an alternative to approxi-
mate the freezeout point, similarly to [20]. We introduce
the notion of a quasi-freezeout point based on the data
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Fig. 11. Chimera Ising problem (top left) and Maximum Clique problem (top right), both with anneal duration 1000 µs and found using Algorithm 1.
The same problems, but with anneal duration 2000 µs, are shown in the bottom row. Green vertical lines show the QFP found by the spline method.
Purple vertical lines show the freezeout point estimates computed by the method of Section 2.3 (that method could not determine any freezeout
point estimates for the Chimera Ising problem).

TABLE 1
Spline segment slopes (in degrees) for Figure 11

Problem anneal time Phase 1 Phase 2 Phase 3
Chimera Ising 1000 µs 3.45 -84.21 -7.07
Chimera Ising 2000 µs 3.0 -84.54 -9.71
Maximum Clique 1000 µs -16.92 -84.42 -2.32
Maximum Clique 2000 µs -17.46 -84.3 -1.31
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Fig. 12. Proportion of unbroken chains for the Maximum Clique QUBO
using 1000 slices.

collected during slicing, which can be used to approximate
the freezeout point in cases it cannot be computed by other
methods, and suggest an algorithm for its computation.

4) We demonstrate that the quantum state still keeps on

evolving even during a pause in the anneal process.
5) For the case of Maximum Clique problem, we show

that the proportion of broken chains is low at the start of
the anneal and quickly decreases to zero, meaning that all
chains are unbroken early on in the anneal.

6) We show that the Chimera Ising and the Maximum
Clique problem have quite different behaviors. While, in the
former, a large number of qubits freeze very early during
the anneal, for the latter no qubits freeze out during the first
quarter of the anneal, after which qubits obtain their final
values at roughly the same rate until the end of the anneal.
By applying the slicing method to other random Chimera
Ising problems, as well as other realizations of the optimized
QUBO stemming from the genetic algorithm, we confirm
that the results of this article hold true in greater generality.
A multitude of further research avenues are possible:

1) Improving the genetic algorithm implementation by
including possibly advantageous characteristics of genetic
algorithms such as multiple individual crossovers, adaptive
mutation and crossover rates, and different types of elitism.

2) Slicing problems using other types of anneal sched-
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Fig. 13. Histograms showing the number of frozen out qubits at each slice. Left histogram shows the Chimera Ising model, and right histogram
shows the Maximum Clique problem, obtained with Algorithm 1.

ules such as reverse annealing schedules.
3) Slicing other problems, including chained optimiza-

tion problems (e.g., Maximum Cut and Graph Partitioning),
and those that are especially difficult for D-Wave to solve.

4) Investigate for random Ising problems if the set of
qubits that freeze out early/late changes. If we consistently
observe the same qubits freezing out early/late, we might
deduce biases or other properties of the D-Wave machine.

5) Finally, if future hardware advances allow quenching
to become much shorter, e.g., in the low nano-second range,
our methods will be able to produce more accurate results.
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