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Abstract The holistic analysis and understanding of the latent (that is, not-
directly observable) variables and patterns buried in large datasets is crucial
for data-driven science, decision making and emergency response. Such ex-
ploratory analyses require devising unsupervised learning methods for data
mining and extraction of the latent features, and non-negative matrix fac-
torization (NMF) is one of the prominent such methods. NMF is based on
compute-intense non-convex constrained minimization, which, for large datasets
requires fast and distributed algorithms. However, current parallel implemen-
tations of NMF fail to estimate the number of latent features. In practice,
identifying these features is both difficult and significant for pattern recogni-
tion and latent feature analysis, especially for large dense matrices. In this
paper, we introduce a distributed NMF algorithm coupled with distributed
custom clustering followed by a stability analysis on dense data, which we call
DnMFk, to determine the number of latent variables. The results on synthetic
data and the classical Swimmer data set demonstrate the accuracy of model
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determination while scaling nearly linearly across multiple processors for large
data. Further, we employ DnMFk to determine the number of hidden features
from a tera byte (TB) matrix.

Keywords NMF, latent features, distributed processing, clustering, parallel
programming, silhouette, big data.

1 Introduction

Extracting useful information from big datasets requires understanding of the
processes generating the data [24]. While such datasets are formed through
recording observable quantities, the underlying processes and variables often
are not known and not directly observable, i.e., they are hidden, or latent.
The latent variables can be seen as the hidden causes for the resulting set of
observed variables. Many types of statistical models contain latent variables,
including factor analytic models and finite mixture models. The methods for
inferring latent variables include Hidden Markov Models [9], Partial Least
Squares Regression [59], Latent Semantic Analysis [18], and Factor Analysis
[51], while the unsupervised learning methods [7] aim to extract hidden pat-
terns and groups based on defined similarities without prior training.

The most common unsupervised method is clustering [27], while other un-
supervised methods approximate the low-rank factors of input data (usually,
subject to various constraints). These methods include Principal Component
Analysis (PCA) [30], Singular Value Decomposition (SVD) [26], Independent
Component Analysis (ICA) [6], Non-Negative Matrix Factorization (NMF)
[48], and their high-dimensional tensor variations [15]. The latent variables
(aka latent or hidden features) can be computed from the observables of a
low-rank matrix factorization that maps the columns of the initial data (the
observables) to a smaller set of columns (the latent features). There is always
uncertainty in determining the number of these latent variables, most often,
heuristic methods answer the question of latent feature identification.

Nonetheless, PCA/SVD/ICA have limitations in relating the extracted la-
tent features to physically interpretable quantities. In contrast, NMF extracts
features that are parts of the original data, which are easy to understand
and interpret. This makes NMF invaluable for various applications, such as
features extraction, dimensionality reduction, blind source separation, image
recognition, text categorization and many others (see [17]). However, while
non-negative factorization algorithms with determining the correct number of
latent features can extract extremely valuable information from the data, it is
also computationally very demanding task that requires fast and distributed
implementation, especially for large datasets.

In this paper, we present an efficient distributed algorithm for non-negative
matrix factorization, DnMFk, that determines the number of latent features in
large dense datasets. DnMFk contains several distributed algorithms. To that
end, the main contributions of this paper are:
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– The first distributed model determination (number of latent feature iden-
tification) algorithm for large and dense non-negative matrices.

– A distributed implementation to create an ensemble of non-negative ma-
trices from a original matrix through a resampling technique.

– Parallelizing a custom clustering required to group the factorized solutions
that are already distributed across multiple processors.

– Evaluate the stability of the obtained clusters in a distributed manner,
which, in turn, determines the number of latent variables in the data.

We evaluate our approach on a number of synthetic matrices, and show that in
all cases, the predicted factor matrices are highly correlated with the known so-
lutions. The scalability results of DnMFk show that the distributed algorithm
scales nearly linearly for large datasets across multiple processors. Further-
more, we apply DnMFk to identify the number of hidden features in large
dense data. We find the latent features of 1TB matrix in almost 14 hours
using 4096 processors (Intel Xeon E5-2695 with 2.1GHz speed) with a recon-
struction error rate of 6.1%. To the best of our knowledge, DnMFk is the first
to identify the hidden features in 1TB data.

The remainder of the paper is organized as follows: Section 2 describes
NMF, the importance of model determination, and the existing parallel NMF
implementations; Section 3 explains the preliminary concepts; Section 4 presents
our distributed algorithm; Section 5 shows the cost analysis; Section 6 validates
the DnMFk; and Section 7 concludes and suggests future directions.

2 Background

2.1 Non-Negative matrix factorization (NMF)

Non-Negative matrix factorization (NMF) [48] is a well-known unsupervised
method that approximates a given non-negative data-matrix, A ∈ Rm×n

+ ,

with a product of two factor matrices, W ∈ Rm×k
+ and H ∈ Rk×n

+ , such that
A ≈ WH. The factor matrices, W and H, are both non-negative with one
small dimension, k. The usual interpretation of NMF is as a method for a
low-rank decomposition that minimizes a given divergence or distance metric,
||...||dist, i.e., for finding minW ,H ||A −WH||dist constrained with the non-
negativity of W (W ≥ 0) and H (H ≥ 0).

Fig. 1: NMF decomposition of a non-negative matrix.
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Fig. 1 shows the decomposition of the input matrix A into low dimen-
sional factors W and H. This also shows, expressing a sample (ai) as a linear
combination of the latent variables in W and H. Importantly, NMF is under-
pinned with a statistical model of superimposed components (the number of
these components is equal to the size of the small dimension, k) that can be
treated as latent features in Gaussian, Poisson, or other mixture models [23].
NMF minimization is equivalent to the expectation-minimization (EM) algo-
rithm [19]. In this probabilistic interpretation of NMF, the manifested variables
are the columns a1, . . . ,an of the matrixA generated from the latent variables,
h1, . . . ,hk, that are the columns of the matrix H. Specifically, each observable
ai is generated from a probability distribution with mean 〈ai〉 =

∑k
s=1Wshs,i,

where k is the number of the latent variables [40]. Thus, the influence of hs,i

on ai is through the basis patterns represented using the columns w1, ...,wk

of the matrix W (see Fig. 1). A mathematically rigorous formalism of the
probabilistic NMF can be found in [37].

2.2 Solving the NMF minimization problem

The NMF problem is, given a matrix A, to find non-negative factors, W and
H, that solve the optimization problem in Eq. 1

Minimize O(W ,H) =
1

2
‖A−WH‖2dist , W>0; H>0. (1)

Here we use the Frobenius norm, ‖X‖F =
√∑

i

∑
j x

2
ij , to measure the dis-

tance between two matrices. The NMF optimization problem, (Eq. 1.), can
be solved using various algorithms such as Multiplicative Update (MU) [40],
Alternating Non-negative Least Squares (ANLS) based Block Principal Piv-
oting (BPP) algorithm that uses Karush-Kuhn-Tucker (KKT) conditions to
estimate the optimal factors [33,34], Hierarchical Alternating Least Squares
(HALS) [16], alternating direction method of multipliers (ADMM) [54], AO-
ADMM [28], and others. These algorithms alternatively update the low rank
factors (W and H) as in Eq. 2

W ← arg min
W>0

‖A−WH‖2F

H ← arg min
H>0

‖A−WH‖2F ,
(2)

where each of the Non-negative Least Squares (NLS) sub-problems is opti-
mized to produce a better reconstruction. For initial values of W and H, one
can use random guesses, although there are other available methods [56].

2.3 Model determination: estimating the number (k) of latent features

One of the prerequisites of the NMF algorithm is the need to have prior knowl-
edge of the number of latent features, k, or a method to estimate that number.
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A broadly accepted method to estimate the latent dimensionality in NMF is a
Bayesian modeling method that exemplifies the concept of relevance, namely,
Automatic Relevance Determination (ARD). ARD was originally introduced
for neural networks NMF [44], then for Bayesian PCA [12], and later for NMF
[55,57]. For NMF, ARD requires knowledge of the prior distributions of W ,
H and their variances. However, the prior distributions of the variances of
W and H are not directly connected with the observation data and guessing
them can strongly influence the estimation of the number of latent factors.
Thus, the Bayesian model selection approaches [55,57] introduce additional
hyper-parameters, which in practice are generally unknown. The method we
use in our implementation, NMFk, is discussed in the next subsection.

2.4 NMFk: NMF with custom clustering to find the number of latent features

A recent model determination technique, NMFk [3,5], complements classical
NMF with custom k-means clustering and Silhouette statistics [49]. NMFk
works on the principle of finding a trade-off between the stability of the ex-
tracted features (from several NMF-minimizations at a given k) and the ac-
curacy of the minimization in order to estimate the optimal number of latent
features. Brunet et al. [13] showed a similar method to identify the number
of clusters in the observational matrix A using NMF. However, recent find-
ings [60] demonstrate the inability of that method to find the correct number
of features.

Compared to the method of Brunet et al. [13], the NMFk method works by
(i) determining the stability of the main patterns (the columns of W ), rather
than clustering stability of A, and (ii) using a specific random resampling of
the initial data matrix, A, Fig. 2, consistent with the latent features models.

Input
A

Resample





A1

A2

...
Ar





Rank-k factor with NMF
Wq,Hq = min

W≥0,H≥0
||Aq −WH||

for 1 ≤ q ≤ r

Collect
Solutions





W1

W2

...
Wr





Cluster Solutions
into k clusters

#1

#2

#3

. . .#k

Check Cluster
Stability

increase k

Fig. 2: NMFk with resampling of initial matrix, A.

Specifically, NMFk creates an ensemble of matrices: A1, A2,..., Ar such
that Aq = A � ∆q, q = 1, ..., r, where, for example, ∆q is a random sample
from uniform distribution, and then it computes clusters of the NMF solutions
of the ensemble while � stands for element-wise multiplication. Laurberg et
al. [39] proved that when the NMF of a matrix A = WH is unique, small
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noise perturbations of A result in small perturbations in the factors W and
H. Hence, we expect that the NMF solutions of the ensemble A1, A2,..., Ar,
namely, the column vectors of the matrices Wi, where Ai = WiHi, are well
clustered into k clusters, at the correct value of k. Based on this observation,
NMFk analyzes, for each k in an acceptable range, the quality of the corre-
sponding clustering as well as the error of approximation of Ai by its factors,
to determine the correct value of k.

NMFk has been successfully applied to decompose the largest available
dataset of human cancer genome [4]; for extraction of subsurface pressure
transients [3] and contaminants [58] originating from an unknown number
of sources that may propagate with a finite speed in nondispersive [29] or
dispersive media [53], as well as to extract original crystal structures and
phase diagram of X-ray spectra of material combinatorial libraries [52].

2.5 Existing parallel NMF implementations

Existing parallel NMF algorithms exploit shared memory processors (such
as multi (CPU) or many (GPU) core) and distributed memory processors.
Of these algorithms, Battenberg and Wessel [8] implemented multiplicative
update (MU) based parallel NMF with OpenMP (on CPUs) and CUDA (on
GPUs), which were used independently for audio source separation. Fairbanks
et al. [22] developed a BPP based OpenMP implementation of NMF that
analyzed the temporal behavior of graphs through clustering of vertices.

Other MU based GPU implementations include the following. Lopes and
Ribeiro [43] exploited all the cores of a single GPU for the task of face recog-
nition, while the parallel implementations used both Euclidean and Kullback-
Leibler (KL) divergence objective functions; Mej́ıa-Roa et al. [45,46] proposed
NMF-mGPU that exploited both single and multiple GPUs using MPI in
order to cluster large gene expression data. Other GPU implementations of
NMF were used in information extraction from text [38], and Koitka et al. [35]
presented an R implementation. Recently, Moon et al. [47] introduced PL-
NMF for both GPUs and CPUs, minimizing the data movement through local
matrix-matrix computations.

The distributed NMF algorithms in literature use MPI or Hadoop. Dong et
al. [20] proposed an MPI based NMF that partitioned the factors into smaller
blocks, where multiple threads operated on each sub-block. At the end, MPI
collective communication performed a reduction operation on the result of
threads. Liu et al. [42] partitioned the factor matrices along the lower rank
(k) rather than other dimensions (m, n), which improved the data locality and
reduced the communication costs across MPI processes. Recently, Kannan et
al. [32] presented an MPI based generic framework for NMF algorithms with
alternating updates. Their implementation partitioned the data into blocks on
a virtual processor grid. This reduced the communication costs through the
use of MPI collectives.
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Hadoop based implementations include the following. Gemmula et al. [25]
implemented a scalable, fast converging distributed stochastic gradient based
NMF for large scale datasets. Later, FlexiFact in [11] employed MapReduce for
distributing the decomposition of matrices and tensors using stochastic gradi-
ent descent. Liao et al. [41] introduced CloudNMF, a MapReduce implemen-
tation of MU updates, which was eventually applied on large scale biological
datasets. Yin et al. [61] implemented a scalable NMF using Hadoop MapRe-
duce framework, where the matrix operations were performed on blocks.

All of the previous distributed NMF implementations require an explicit
knowledge of the number of latent features k, which, in general, is unknown.
For large datasets, the task to find k is especially cumbersome. Therefore, the
distributed NMF with model determination, DnMFk, is the first distributed
implementation to offer the functionality of NMFk for model determination.
We are using alternating update framework introduced in [32] along with a dis-
tributed AO-ADMM optimization algorithm for NMF optimization. Finally,
we demonstrate that DnMFk is able to extract the correct number of hidden
features from synthetic matrices with predetermined number of factors and
from the well-known Swimmer dataset [21].

3 Foundations

We describe the notations, MPI collectives, NMFk algorithm and the AO-
ADMM optimization used in the paper.

3.1 Preliminaries

Table 1 summarizes the notations used in this paper. We denote a cube (three-
dimensional tensor) with bold upper case script letter, matrices with bold upper
case letters, and vectors with bold lower case letters. For example, X is a
cube, X is a matrix, and x is a vector. Ai is the ith perturbation of input
matrix A.W and H denote cubes with each slice representing a matrix.Wi

represents the left low rank of k for ith perturbation. The median low rank

matrices are W̃ and H̃. W(i)
q is the sub slice (W (i)) of qth perturbation on

ith processor. Finally, s represents the Silhouette statistics of each data point
in all the clusters. The vector e stands for the reconstruction error for a given
perturbation at a given k.

3.2 MPI terminology

In our distributed implementation, we use MPI specific collective communi-
cation operations, specifically, all gather, all reduce and reduce scatter.
For example, let a be a vector with n elements distributed across p processes,
that is, n/p elements per process. The all gather collective gathers all the
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Table 1: Notations

Notation Dimensions Description

A m× n Input matrix
W m× k Left low rank factor
H k × n Right low rank factor
Xi m× 1 ith column of matrix X
X i m× n ith slice (matrix) of cube X
m scalar Number of rows of a matrix
n scalar Number of columns of a matrix
k scalar Low rank
kl scalar Lower bound of low rank
ku scalar Upper bound of low rank
p scalar Count of parallel processes
pr scalar Count of rows in processor grid
pc scalar Count of columns in processor grid
r scalar Number of perturbations
W m× k × r A cube of left low rank factors (W )
H m× k × r A cube of right low rank factors (H)
Wq m× k × 1 The qth slice of cube W.

W(i) m
p
× k × r sub cube of W on the ith processor.

W(i)
q

m
p
× k The qth sub slice of W on ith processor.

H k × n× r All right low rank factors for r perturbations

W̃ m× k Median left low rank factor

H̃ k × n Median right low rank factor
s k × 1 Average silhouettes of each cluster
e k × 1 Average reconstruction error

local data vectors to all the processes, thereby each process holds a copy of
the entire vector, a. For a vector of size n on each process, the all reduce per-
forms an element-wise sum across all processes, where a copy of the resultant
n dimensional vector is present in all the processes. The reduce scatter col-
lective performs the addition as in all reduce, but then the resultant vector
is spread across the processes, where each process holds a sum vector of size
n/p. A detailed description of MPI collectives is in [14].

3.3 Generic NMFk algorithm

In order to identify k, we compute r (r > 30) NMF-minimizations for each
candidate value for k. Moreover, we let k ∈ (kl, ku) for suitable values of kl
and ku. Finally, we apply cluster analysis to determine the optimal candidate.
In the worst case, (kl, ku) = [1,min(m,n)), but in practice ku � min(m,n).

Specifics are given in Algorithm 1, which describes the generic (sequential)
NMFk implementation. For each k in the interval (kl, ku), we execute NMF
for r runs. Before each run of NMF (line 4), we perturb the original input A
(line 3) using a random sample from a distribution (for example, uniform).
Note that each NMF run uses different random initial conditions. As a result,
we get a set of r solutions at each k, which we store in cubes (tensors) W
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Algorithm 1 NMFk(A, kl, ku, r) – Generic NMFk

Require: A ∈ Rm×n+ , kl, ku, r
1: for k in kl to ku do
2: for q in 1 to r do
3: A′ = Perturb(A, δ) . Resampling to create ensembles
4: Wq ,Hq = NMF(A′, k)
5: end for
6: W′,H′ = customCluster(W,H) . Custom clustering of factor solutions

7: W̃ , H̃ = mediansWH(W ′,H′)
8: save(W̃ , H̃) . Save medians at k
9: sk = clusterStability(W′) . Quality of clusters

10: ek = reconstructErr(A, W̃, H̃)
11: end for
12: kopt = optRank({(sk, ek) | k ∈ [kl, ku]})
Ensure: k = kopt, W̃ [k] ∈ Rm×k+ , H̃[k] ∈ Rk×n+ , A ≈ W̃[k] H̃[k]

= (W , W , . . . , W ) and H = (H, H, . . . , H). Each left low-rank matrix,
Wi, i = 1, . . . , r contains k columns, and each of these columns are treated as
points in an m-dimensional space. If the perturbation (line 3) is not too large,
then each vector of the matrix W will be close to a corresponding vector in
the solution space of the unperturbed matrix. Therefore, we can define k such
groups C1, . . . , Ck.

In order to cluster the r NMF solutions, we use a variation of k-means
clustering [27] to reorder the columns of Wq ,∀q, so that the first column of
each matrix belongs to one cluster, all the second columns belong to another,
and so on. The optimal reordering is the permutation that maximizes the
cosine similarities (a metric to find the similarity between two non-zero vectors)
between the columns of Wq and the columns of the current centroid. The
rows of each Hq are simultaneously reordered so that the product WqHq is
invariant. Our clustering is detailed later in section 4.3.

In order to determine the correct rank kopt, we compute sk and ek at each
k. Here, sk (line 9) quantifies the quality of the clusters while ek (line 10)
quantifies the quality of reconstruction, which is the relative error defined

as ‖A−WH‖F
‖A‖F . Using sk and ek, optRank (line 12) determines the number

of latent features, kopt, in the input matrix, A. In the case k > kopt, the k
clusters are not separated well and the average cluster quality s will be low
(bad). On the other hand, for k < kopt, the reconstruction error (e) will be too

high since the product of W̃ [k] and H̃[k] (k columns and k rows, respectively)
will not approximate close to A. Therefore, k = kopt when the cluster quality
sk is high and relative error ek is low. Distributed implementations of the
procedures used in lines 3, 4, 6–9 are described later in section 4.5.

3.4 Optimization algorithm (AO-ADMM)

AO-ADMM [28] is an alternating optimization algorithm that solves the sub-
problems in Eq. 2 using ADMM. Since these two sub-problems are identical
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up to a transpose, we limit our discussion to the H sub-problem,

arg min
H>0

‖A−WH‖2F .

ADMM incorporates the non-negative constraint by splitting the variable H
with an auxiliary variable R, thus the sub-problem becomes,

arg min
H,R

1

2
‖A−WH‖2F + g(R)

subject to H = R ,

where

g(X) =

{
0 if X ∈ Rk×n

+

∞ otherwise

is an indicator function for the non-negative orthant. ADMM iterates updating
the primal H, auxiliary R, and dual variables S,

H ← arg min
H

1

2
‖A−WH‖2F +

ρ

2
‖H −R+ S‖2F

R ← arg min
R

g(R) +
ρ

2
‖H −R+ S‖2F

S ← S +H −R ,

until converged. While ADMM is proven to converge under mild constraints,
proof of convergence with AO-ADMM is less certain. In practice, AO-ADMM
converges rapidly, especially when only a few iterations of the inner ADMM
loops are executed.

4 DnMFk

We present the distributed algorithms for various components in generic NMFk,
consisting of: perturbations, NMF algorithm, custom clustering, median factor
matrices, and cluster stability (Silhouette statistics).

4.1 Distributed NMF

One of the main components of our implementation is the distributed NMF
algorithm. Kannan et al. [32] proposed a state-of-the-art efficient distributed
implementation of NMF, which we use in this paper. We follow their data
partitioning scheme reported in [32]. Fig. 3 shows the distribution of an in-
put matrix A onto a virtual 2D grid of processors. The output factors W
and H are partitioned into a 1D grid. A is distributed across a pr × pc grid
of processors, where p = pr × pc. The resultant factor matrices W and H
are partitioned into m/p × k and k × n/p matrices. We use the open-source
distributed AO-ADMM [31] for NMF minimization.
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W (p)

...

W (3)

W (2)

W (1)
m
p

k

H(1)H(2)H(3) . . . H(p)k

n
p

A(1) A(2)

. . . . . .

A(p−1) A(p)

m
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n
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Fig. 3: The input matrixA distributed in a virtual 2D grid, the factor matrices
W and H in a 1D grid of processors.

Algorithm 2 Perturb(A, δ): Distributed resampling (perturbation) of input
matrix

Require: A(i) ∈ R
m
pr
× n
pc

+ , δ ∈ R+

1: Initialize ∆ ∈ uniformRandom(dim(A), δ) . Uniform random from [1− δ, 1 + δ]

2: A′(i) = A(i) �∆ . Element-wise product

Ensure: A′(i) ∈ R
m
pr
× n
pc

+ resampled representative of A(i)

4.2 Perturbation

For a fixed k, at each perturbation A′ (total r) of A, we resample A′ from a
distribution determined by A. Algorithm 2 presents this resampling, termed
perturbation hereafter. A common distribution is a uniform multivariate distri-
bution that perturbs each element (for example, Aq = A±10%, line 1). Since
the matrix A, and the resultant Aq are distributed in a 2D grid of processors,
the perturbation step does not require communication among different MPI
ranks. The local (per MPI process) matrices are of size m

pr
× n

pc
. A different

random seed is used to generate uniform random numbers per MPI process.
Hereafter, the MPI process specific matrices are preceded with a superscript;
for example, W (i) is the size m

p × k matrix on the ith processor.

4.3 Distributed clustering with equal cluster size

We store all the low-rank factors (of r NMF perturbation runs), W and H at
a given low rank approximation, k (see line 4 in Algorithm 1,W). Fig. 4 shows
the distribution of all the W and H matrices at a given k for r perturbations.
The W is a distributed (row-wise, across p processors) cube with r number



12 Gopinath Chennupati1† et al.
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W(p−1)
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W(3)
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W(1)
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...
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1 H(p)

1

n
p

k

r

Fig. 4: The distributed W and H across p processors for r perturbations,
where W(i) is an m/p × k × r cube and W(i)

q is an m/p × k left low-rank

matrix corresponding to the qth resampling. Similarly, H(i) is a cube of size
k × n/p× r, and H(i)

q is a k × n/p right low-rank factor corresponding to the

qth resampling.

of slices, where each slice represents a perturbation (Wq). Similarly, H cube
is a distributed column-wise. Since the cube is distributed, each MPI process
has access toW(i) with m/p× k × r dimensions. In fact, the non-distributed

W cube is of size m× k× r, where the distributed slice per process (W(i)
q ) is

of size m/p× k. Similarly, H cube is of size k × n× r, where the distributed

slice per process (H(i)
q ) is of size k × n/p.

Algorithm 3 describes our custom clustering (a variation of k-medians clus-
tering) technique in a distributed manner. Note that the clustering actually
rearranges the columns ofW . The reordering happens in a distributed manner
per MPI process on local matricesW(i)

q andH(i)
q across all perturbations. We

initialize centroid (M (i)), with the solution of the first perturbation (line 1).
We iterate the clustering algorithm for n iter (lines 2–14) or the convergence
criteria (stable clusters) is met. The distance function we are using here is the
cosine similarity, which measures the cosine of the angle between two vectors
projected in a multi-dimensional space [36] (per ith processor, D(i)

q at line 4)

between the centroids and the NMF solutions (W(i)
q , q = 1, . . . , r). With MPI

all reduce, we measure the global cosine similarity (G, line 6)) across all the
processors in the MPI communication world. We have r such similarity matri-
ces (for r perturbations), all of which are stored in a cube (G) with dimensions
k × k × r. This G cube is same across all MPI processes.

In clustering the columns of W , we employ a greedy approach (line 8)
on the cosine similarities. For each cosine similarity matrix (for each value of
q, lines 7–11), we determine the column of W that has a maximum cosine
similarity with the columns of the current centroid. This greedy algorithm
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Algorithm 3 W ′(i),H′(i) = customCluster(W(i),H(i)) – distributed clus-
tering to reorder the columns of factors.

Require: W(i) ∈ Rm/p×k×r+ and H(i) ∈ Rk×n/p×r+ are processor specific cubes

1: M (i) =W(i)
1 . initialize centroid (M) on ith processor

2: for iter in 1 to n iter do
3: for q in 1 to r do . for each perturbation

4: D(i)
q = M (i)T ×W(i)

q . compute partial similarity D on ith processor

5: end for . D(i) is a k × k × r cube per processor
6: G =

∑p
i=1D(i) . compute total similarity G on all processors with all reduce

7: for q in 1 to r do . for each perturbation
8: porder = permOrder(G(q)) . Fig. 5

9: W′(i)
q =W(i)

q [porder]

10: H′(i)
q =H(i)

q [porder]
11: end for
12: W̃ (i), H̃(i) = mediansWH(W′(i),H′(i)) . computes medians of clusters on ith

processor

13: M (i) = W̃ (i) . update centroid on ith processor
14: end for

Ensure: W̃ (i) ∈ R
m
p
×k

+ , H̃(i) ∈ R
k×n

p
+ distributed in p processors and columns of each

W′
q are clustered, reordered H′

q .


0.81 0.96 0.70 0.62
0.75 0.61 0.54 0.97
0.95 0.78 0.71 0.65
0.62 0.69 0.92 0.44


(a) kj = 1


0.81 0.96 0.70 0.00
0.00 0.00 0.00 0.00
0.95 0.78 0.71 0.00
0.62 0.69 0.92 0.00


(b) kj = 2

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.95 0.00 0.71 0.00
0.62 0.00 0.92 0.00


(c) kj = 3


0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.92 0.00


(d) kj = 4

Fig. 5: The greedy approach (line 8) to determine the row and column indices of
maximum elements in a Gq matrix for r perturbations. The example describes
when k = 4 (a) in the first iteration (kj), the maximum cosine similarity is in
2nd row and 4th column, in bold. For the permutation index, we consider the
column, thus porder = [4]. (b) we ignore those columns and rows by assigning
all the corresponding elements to zero. The next maximum is in 1st row and
2nd column, thus porder = [4, 2] (c) the process is repeated until we find the
final maximum, porder = [4, 2, 1] and (d) shows all previous maxima indices
are being zeroed out, while the current maximum value is in bold. Finally, the
permutation indices for this example are porder = [4, 2, 1, 3]. which are used

to reorder the columns ofW(i)
q and rows of H(i)

q .

is iterated k times, and in each of these k iterations, we ignore the columns
and rows of the previous maximum elements. Fig. 5 describes the process
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of ignoring the rows and columns. The greedy method returns a 1× k vector
(porder) of permutation indices. Using these indices, the columns ofW(i)

q and

the rows of H(i)
q are reordered. Note that the reordering is per process, while

the permutation indices are same across all the processes. Next, the centroids
are updated using the median of the clusters and the process is repeated until
converged.

4.4 Distributed median

The final factors (W̃ , H̃) are the solution matrices at a given k, found through
the median of all the r factors. Algorithm 4 shows the distributed implemen-

Algorithm 4 W̃ (i), H̃(i) = mediansWH(W ′(i),H′(i)) – Distributed median
of factors

Require: W′(i) ∈ Rm/p×k×r+ and H′(i) ∈ Rk×n/p×r+ are the processor specific cubes

1: W̃ (i) = median(W′(i)) . median along perturbation axis on ith processor

2: H̃(i) = median(H′(i)) . median along perturbation axis on ith processor

Ensure: W̃ (i) ∈ Rm/p×k+ , H̃(i) ∈ Rk×n/p+ distributed in p processors

tation for finding the median factors using the processor specific W ′(i) and

H′(i) cubes. We find the median across the columns along the perturbation
axis (which is the r NMF perturbations). Therefore, we gather all rows of a

given column across different NMF runs to get W̃ (i) (line 1). Similarly, we

measure H̃(i) (line 2) per processor. Since both the low rank factor matrices
are distributed in 1D processor grid, without partitioning on the k dimension,
each MPI process computes the local median factors. Therefore, the commu-
nication overheads among MPI processes is zero. This advantage is because of
our distribution strategy, where we distributeW row-wise andH column-wise.

4.5 Distributed silhouette statistics

Silhouette statistics is a measure of the stability of clusters, which helps in
determining the correct k, the number of latent features. Silhouette statistic
returns r data points (one per perturbation) and k clusters. We then measure
the mean Silhouette width at a given k, which results in a scalar quantity that
ranges in the interval [-1, 1]. Similarly, we can find the minimum Silhouette
width, which in addition to the relative error and mean Silhouette width helps
in determining the correct k. In order to measure the stability, we rely only
on the set of left low rank factors (W).

Algorithm 5 describes the distributed implementation of Silhouette statis-
tic for each data point. In estimating the Silhouette statistic, we measure two
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Algorithm 5 s = clusterStability(W ′(i)) – Distributed cluster stability
through Silhouette analysis

Require: The clustered left low-rank factors, W(i) ∈ R
m
p
×k×r

+ distributed row-wise
1: for kα in 1 to k do
2: U (i) = getMat(W′(i), kα) . gets m/p× r matrix for a given cluster

3: D(i)
kα

= U (i)T ×U (i) . Matrix-matrix product

4: end for . D(i) is r × r × k tensor of partial similarities on ith processor.
5: G =

∑p
i=1D(i) . compute total similarity G on all processors with all reduce

6: I = mean(G) . mean along one perturbation axis for k clusters, I is r × k
7: for kα in 1 to k do
8: U (i) = getMat(W′(i), kα) . gets m/p× r matrix for a given cluster
9: for kβ in 1 to k do

10: if kα != kβ then

11: V (i) = getMat(W′(i), kβ) . gets m/p× r matrix for a given cluster

12: D(i)
kβ

= U (i)T × V (i) . r × r × (k − 1)

13: end if
14: end for
15: Zkα =

∑p
i=1D

(i)
kβ

using all reduce . ith processor has r × r × (k − 1) cube

16: Y = mean(Zkα ) . r × (k − 1)
17: Jkα = min(Y )
18: end for . ith processor owns a copy of J of size r × k

19: sk = mean

(
mean

(
J − I

max(J , I)

))
. sk ∈ [−1, 1], the inner mean is column-wise

Similarly we can find the minimum Silhouette width
Ensure: sk ∈ R

different parameters: the average similarity of all the data points within a
given cluster (I, see lines 1–6) and the average dissimilarity between clusters
(J , see lines 7–18). Specifically, we define I as the average distance between
all the data points in a given cluster, and J is the smallest average distance of
a data point from all the points in all the clusters except the cluster that the
current data point is a member. For distance one can use any distance metric
such as the Euclidean, Manhattan, or cosine distances. We chose to use the
cosine similarity distance. Using I and J , we estimate the average Silhouette
value at a given k (see line 19).

The r number of distributed left low rank matrices,W , is the input to the
distributed Silhouette algorithm. Note that the input cube, W , is clustered
by Algorithm 3. We first compute I, where we distribute the cosine similarity
between different data points in a cluster. Process i calculates the local co-
sine similarity (D(i)) between the data points for all the clusters (lines 1–3).

Using the local cosine similarity, compute the global similarity (G(i)) from all
processes (line 5) using MPI all reduce. All the MPI processes have an exact

same copy of the resultant G(i), which is of size r × r × k. We then compute
the cohesion between data points in a given cluster (I, line 6) as the mean,
the result of which is an r × k matrix.

Next, we calculate J for a data point in each cluster. We measure the cosine
similarity between the current data point and the rest of the data points in
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other clusters, where the current data point is not a member. Similarly to I,
we calculate the process-specific cosine similarity and the final cosine similarity
(Z(i)) (line 15), which is of size r×r×k−1. We compute the minimum average
distance for a data point in a given cluster (J), which is of size r× k. Finally,
we calculate the average Silhouette width (line 19) from the Silhouette values
of each data point in the cluster, which ranges in [–1, 1]. Note the same copy
of s is found across all the processes, we return S from one of the processes.
Similarly, we compute the reconstruction error ek at given k. This procedure
is repeated for different k values of NMFk algorithm, which results in average
Silhouette width and reconstruction errors. The k at which these two statistics
have clear separation is treated as the correct number of latent features.

5 Cost analysis

We analyze the compute, communication, and memory costs of DnMFk algo-
rithm. Although the algorithm is distributed across multiple processors, that
does not achange the actual complexity of the algorithm. However, we analyze
the complexity per processor. Note, Algorithm 1 calls the distributed parts.

5.1 Time analysis

The computational complexity of DnMFk is the sum of the time complexities
of all the function calls in Algorithm 1.

The function Perturb in Algorithm 2 (line 3 in Algorithm 1) takes O(mn
p )

per call, and O(mnr
p ) for r perturbations.

The time for running the distributed version of NMF from [32] on line 4

of Algorithm 1 for a fixed k is O(mnk
p + (m+n)k2

p ) + CADMM(m+n
p , k) [32],

where CADMM(m,n) denotes the time for solving a Non-negative Least Squares
(NLS) problem using ADMM optimization.

Algorithm 3, customCluster (line 6 of Algorithm 1) finds the inner product
for cosine similarity, multiplying matrices of sizes k × m

p and m
p × k in line 4

takes O(k2m
p ) time. The time taken for all reduce (line 6) reduction operation

across p processors on k×k× r cube is O(k2rp). The greedy algorithm to find
the maxima of a k×k matrix (lines 8) takes O(k2), which is iterated for k times,
thus the complexity for permOrder is O(k3). Time taken for reordering the

columns ofW(i) and rows of H(i) (lines 9–10) is O(m+n
p k). The mediansWH

(Algorithm 4) takes O(m
p kr+ n

p kr) = O(m+n
p kr) time, that includes the time

to find the factor matrices, W̃ and H̃. The total time for running Algorithm

customCluster: O

(
n iter

(
k2mr

p +k2rp+k3r+ m+n
p kr+ m+n

p kr
))

. Assuming

m ≥ n the time taken for customCluster is O

(
n iter

(
k2mr

p + k2rp+ k3r
))

.
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Algorithm 5 (clusterStability) requires O( r2m
p ) time for each execution of

line 3, or in totalO( r2mk
p ) time for the loop on lines 1–4. The time for all reduce

(line 5) reduction operation is O(r2kp). To calculate the mean (line 6) is
O(r2k). Similarly, the time for the loop on lines 7–18 is dominated by the time

to execute line 12, which is O( r2m
p ), so the total time for the loop is O( r2k2m

p ).

The time taken for all reduce (line 15) is O(r2k2p). For the mean (line 16) is
O(r2k2) and the min (line 17) is O(k2r). The total time of clusterStability:

O

(
r2mk

p + r2k2m
p + r2k2p+ r2k2 +k2r

)
. Since the line 12 is more dominating,

the total time for Algorithm clusterStability is O( r2k2m
p ).

Adding together all time bounds and taking into account that k ≤ min{m,n}
and the number of perturbations of NMF, we get a bound on the time for one k-

iteration of Algorithm 1 as O

(
mnkr

p +rCADMM

(
m+n

p , k
)
+n iter

(
k2mr

p +k2rp+

k3r
)
+ r2k2m

p

)
. Assuming the number n iter of iterations in customCluster

does not exceed r, which is true in our case, and setting kl = 1 to simplify

the formula, we get a time bound for DnMFk as O

(
mnk2

ur
p +

r2k3
um
p + k3ur

2p+

k4ur
2 + kurCADMM

(
m+n

p , ku
))

.

5.2 Communication cost

We have three occurrences of an all reduce MPI operation, and use the cost
model of [14], where an all reduce operation on a vector of length n and p
processors is O(log p + n). In line 6 of Algorithm 3, the length of the vector
is k2r and all reduce is executed n iter times, so the communication cost is
O(n iter(log p+ k2r)).

In Algorithm 5, we have all reduce in lines 5 and 15, but the latter cost
dominates due to the fact that the operation is executed k times. The cost for
all k executions is O(k log p+ k2r2).

Adding these communication cost bounds, we get a bound the three all reduce
calls as

O(n iter(ku log p+ k3ur) + k2u log p+ k3ur
2).

Finally, the communication cost for one call to Algorithm DnMFk, from
[32], is O(

√
mnk2/p), assuming p ≥ m/n, and the algorithm is called r(ku −

kl + 1) times.

Assuming as before that n iter ≤ r and ignoring the logarithmic factors,
which are of lower complexity, we get a final communication cost bound of

O(k3ur
2 + k2ur

√
mn/p) = O(k2ur(kur +

√
mn/p)).
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5.3 Memory analysis

We next analyze the memory needed to store the (local) dense matrices,A, W̃ ,

H̃, and dense cubes,W and H, at each processor. For A, the space bound is
mn/p words. Although we perturb A r times, we only store one perturbation
(Aq) at a time, therefore the above memory bound for A does not depend

on the number r of perturbations. For the output factor matrices (W̃ , H̃),
the memory requirement is m+n

p k words. We store these factor matrices for

r perturbations therefore the cubes (W and H) need m+n
p kr words. The

memory required to store the temporary matrices is 2r2k for G and Z (in
Algorithm 3), and 2rk for I and J (in Algorithm 5). Note that the temporary
matrices have the same size across all processors, therefore, we do not divide by
p. Putting everything together, we get a bound on the memory per processor

mn+ (m+ n)kr

p
+ (r + 1)2rk.

For small values of k and p compared to m and n, which is typical for most
real-application matrices and machines we have dealt with, the memory needed

per processor is approximately mn+(m+n)kr
p words.

6 Experiments

Our experiments are two types: first, we validate the correctness of DnMFk on
100 synthetic matrices with predetermined k, and on the well-know Swimmer
dataset; second, we evaluate the time performance of DnMFk. Our scaling
experiments are conducted on two dense synthetic matrices. We then perform
a scaling study on custom clustering and Silhouette statistics.

6.1 Parameter settings

We run the experiments on the HPC cluster Grizzly, located at Los Alamos
National Laboratory (LANL). Grizzly has Intel Xeon Broadwell (E5-2695v4)
processors with a total of 1490 compute nodes, where each node has 18-core
dual socket Ivy Bridge processor. Each of the 36 processors has a clock speed
of 2.1 GHz with a private L1 and L2 caches of sizes 64KB and 256KB. Both
the sockets share an L3 cache of size 45MB, where each node contains 128GB
of memory. Grizzly uses Tri-Lab Operating System Stack (TOSS) version 3,
while the interconnect is Intel OmniPath that uses a fat tree topology.

Our source code is in C++, where we extended the open-source distributed
NMF library, Planc [31]. Planc depends on Armadillo [50] (a C++ linear
algebra library), LAPACK, and BLAS. While Planc supports both dense and
sparse matrices, in this paper, our DnMFk implementation supports dense
matrices, and we leave the sparse implementations for future releases. We use
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the default GNU C++ (v7.4.0) compiler and the OpenMPI (v2.1.2) library
available on Grizzly.

We use AO-ADMM for all the experiments in this paper, however, DnMFk
works for any of the distributed implementations of MU, BPP, and HALS,
e.g., ones contained in the Planc library. In our experiments, we randomly
initialize both W and H using a different seed at each perturbation. Every
processor uses a unique prime seed to generate the random matrix and the
noise for perturbation. In scheduling the MPI jobs, we follow the constraint
pr ≥ pc where the matrices are spread across a virtual 2D grid topology. To
the best of our knowledge, DnMFk is the first large scale NMF algorithm that
determines the number of latent features (k) in the dense input data, therefore,
we can not compare the performance with other similar methods.

6.2 Model determination

6.2.1 Synthetic data

We generate synthetic data, say Am×n, with known number of latent features
k, and selected dimensions m and n. The columns of Wm×k are feature vectors,
where each vector is sampled from a normal distribution with random mean
and variance. The elements of the mixing matrix, Hk×n are sampled from
exponential distribution with scale 1. The matrix A is generated as a product
of W and H with added uniform noise and a standard deviation of 10%.

With this procedure, we generate 100 matrices, which belong to four sets
of dimensions: a) 576×384 b) 1024×256 c) 2160×1080 d) 1440×720. Each of
the 100 matrices have a randomly chosen k from 2 to 25. DnMFk is evaluated
on how accurately it finds the correct number of hidden features of these 100
matrices. The columns of W span the feature space and the quality of their
reconstruction is important when estimating the accuracy of the algorithm.
In order to compare the predicted W with that of the original one, we use
Pearson correlation coefficient [10], which determines the correctness of the
prediction.

We analyze the correctness of DnMFk model determination on two data
matrices (Data 1 and Data 2) selected randomly from the 100 matrices. Data
1 is of size 2160× 1080 with predetermined k = 7 and Data 2 is (1024× 256)
with k = 17. Fig. 6(a) and 6(b) shows the identification of hidden features
through Silhouette statistics. To determine the correct number of features,
DnMFk needs to compute the accuracy of reconstruction (relative error), and
the minimum and the average Silhouette width at a given k. For k clusters,
we have k Silhouettes. The mean and minimum width are used to quantify
the stability of the clusters. At the correct k, the Silhouettes are expected to
be close to 1 and the corresponding relative error to be low. In the case of
k > kopt, NMF actually over-fits the original data with noise, thereby results
in less stable clusters, hence the drop in average Silhouette width. We can see
the sudden drop in Data 1 at k = 8 and for Data 2 at k = 18. At the correct
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Fig. 6: Estimation of number of hidden features for sets a) Data 1 (k = 7)
and b) Data 2 (k = 17), through Silhouette analysis. The bottom two plots
demonstrate the W reconstruction. c) columns of original W (blue line) and
predicted W (red dashed) for Data 1. d) Pearson correlation between the
columns of ground truth W with that of reconstructed one for Data 2.

value of k, the distance between average Silhouette width and the relative error
is maximum. Thus the analysis helps to find the number of hidden features in
the two data sets to be 7 and 17, respectively, which agrees with the ground
truth.

The significance of NMF is in its physically interpretable features after fac-
torization. Hence, reconstructing the features is as important as finding how
many hidden components are present in the data. For lower actual k, we can vi-
sualize the components of the factorized data with that of groundtruth, which
is shown in Fig. 6(c). Seven columns of W obtained from DnMFk (dashed red
curves) are plotted with Ground truth W (solid blue lines). For the Data 2
with larger ground truth k(=17), as shown in 6(d) we demonstrated the better
reconstruction of latent features by DnMFk using Pearson correlation coeffi-
cient. The results indicate a close match. We found that the average Pearson
coefficient for the 100 matrices is 0.995 with a standard deviation of 0.003,
which demonstrates the ability of DnMFk to accurately recognize the number
of hidden features.
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Fig. 7: Estimating the number of hidden features in Swimmer data by relative
error and Silhouette statistics

6.2.2 Latent feature identification in Swimmer dataset

We applied DnMFk on Swimmer dataset [57] to find the number of hidden
features. Swimmer is a well-known dataset for which the standard rank and
the non-negative rank are unequal, because of which, finding the number of
hidden components is non trivial. The data is an image library, which consists
of 256 images of 32 x 32 pixels, each image contains torso at the center with
different limbs positions, is converted to a column vector. Size of this dataset
is 1024 × 256. DnMFk correctly identifies 16 latent features in the Swimmer
dataset that corresponds to the limbs’ positions, which is same as the number
of latent features found with the Bayesian approaches [57]. Identifying the
latent features in large scale real-world datasets is one of the future directions
to explore. DnMFk takes 220 seconds on a Grizzly node with 16×16 processor
grid while exploring through a range k values from 2 to 20.

6.3 Scalability

In the second set of experiments, we evaluate the scalability of DnMFk, using
both strong and weak scaling. We analyze the scaling behavior with respect to
the latent dimension, k. For both the scaling experiments, we keep the number
of processors/cores to be in {36, 144, 324, 576, 900}, which corresponds to {1,
4, 9, 16 and 25} nodes. Since we study the scaling behavior, we fix the number
of perturbations to 10, the number of AO-ADMM iterations to 5 for both W
and H updates, while we execute NMF for 100 iterations.

We report the performance on compute and communication costs of Dn-
MFk. The computation costs are: gram – to calculate the local computations
of gram matrix (WTW or HHT ), which is of size k×k; mm – matrix-matrix
multiplications with the local (MPI rank specific) input matrix and factor ma-
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trices; and nnls – solving the non-negative least squares. The communication
cost include: all gather – time taken for global matrix-matrix multiplications
while distributing the results across all processors; all reduce time required
to compute global gram matrices; and reduce scatter – to compute global
matrix-matrix multiplications and scatter them across multiple ranks.
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Fig. 8: Strong Scaling – The runtimes across 10 perturbations of DnMFk for
Data 3 (left) and Data 4 (right). The number of latent features in both the
matrices are fixed at k = 10 and k = 50.

6.3.1 Strong scaling

We conduct the strong scaling experiments on two random matrices of different
sizes. Both the matrices are synthetically generated (using the procedure in
section 6.2.1), and dense. Data 3 matrix is of size 57600 × 38400, Data 4
dimensions are 129600×51840, and both matrices are generated from a uniform
random distribution while adding Gaussian noise. For both datasets, we fix
the number of hidden features (k) to be 10 and 50 respectively. Each of the
data matrices is too large to fit in the memory of a single node, therefore we
report the strong scaling results on {4, 9, 16 and 25} nodes.

Table 2: The run times (in seconds) per perturbation (average) and across
all 10 perturbations (total) with 100 NMF iterations of DnMFk for both the
matrices in strong scaling.

Cores
Data 3 Data 4

Perturb Total Perturb Total

144 12.58 125.84 63.16 631.69
324 06.19 061.93 30.98 309.87
576 03.94 039.42 21.08 210.86
900 03.31 033.16 16.93 169.40



Distributed Non-Negative Matrix Factorization with Model Determination 23

Fig. 8 shows the strong scaling results for both matrices. Table 2 shows
the average per perturbation runtimes at different number of processors. The
parallel speedups of 25 nodes over 4 nodes are 3.79 times for Data 3 and 3.73
for Data 4. The results indicate that the scaling in both the matrices is almost
linear. There exists unnecessary communication overheads (clearly evident in
Data 4), which refrain DnMFk from reaching ideal scaling.

6.3.2 Weak scaling

The number of processors for the weak scaling experiments are the same as
for the strong scaling experiments, 36, 144, 324, 576, 900, which correspond
to 1, 4, 9, 16 and 25 nodes with 36 cores per node, respectively. In the weak
scaling study, we run experiments on two different sets of data, with matrices
of dimensions as follows: for Data 5 the matrices are 7200 × 7200 on 36 cores
up to 36000 × 36000 on 900 cores with a fixed k = 10, and for Data 6 the
matrices vary from 10,800 × 10,800 up to 54,000 × 54,000 with a fixed k = 50,
respectively. For both the matrices, the local matrices per core always have
block dimensions of 1200×1200 (Data 5) and 1800×1800 (Data 6), respectively.
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Fig. 9: Weak Scaling – The runtimess of DnMFk on Data 5 (left) and Data
6 (right). The latent feature are fixed for both the matrices as k = 10 and
k = 50. Data 5 dimensions are ranging from 7200 × 7200 on 36 cores up to
36000×36000 on 900 cores, that of Data 6 are 10800×10800 to 54000×54000.

Fig. 9 shows the weak scaling results for both input matrices. The local
input matrix dimensions are fixed as in the case of [32] so that the number
of matrix multiplications per processor is fixed. Fig. 9 suggests that, in both
matrices, most of the time is spent in matrix multiplications, while the runtime
remains almost the same in all the processor configurations. The weak scaling
results suggest that the scaling is almost linear with some negligible effects in
communication times. In Data 6, all reduce and nnls contribute significantly
to the runtime, while the latter decreases for higher number of processors. This
behavior is due to the fact that we are fixing the number of multiplications
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Fig. 10: k scaling at 900 processors using the strong scaling (Data 3 and Data
4) matrices. For both the matrices the k values are changed as {2, 4, 8, 16, 32,
64, 128, 256} while the reported runtimes are for 10 perturbations of DnMFk.

only, rather than the size of the factor matrices, which helps in better scaling
of nnls at higher number of processors.

6.3.3 Scaling at k

For both the datasets in strong scaling, we fix the number of processors to
be 900 and vary k in order to study the effect of k on scaling. Fig. 10 shows
the scaling results, where we vary k in {2, 4, 8, 16, 32, 64, 128, 256}. The
results indicate similar trends in the execution times for both datasets. For k
between 32 and 64, there is a sudden jump in the overall runtime, which is
due to the fact that communication overheads increased significantly. These
overheads are predominately resulting from all reduce. However, if we neglect
the smaller k values ({2, 4, 8, 16}), the scaling with k is nearly linear in terms
of computation time.

In all the scaling experiments, the effect of communication at higher num-
ber of processors can be minimized with a reduced precision. Currently, we
are using double procession making that single floating point can reduce the
communication effects.

6.4 Performance of distributed clustering and silhouette

We conduct a different study on the performance of distributed clustering and
Silhouette algorithms. Fig. 11 shows the speedups of both the clustering and
silhouette calculation on 144, 324, 576 and 900 processors for both the datasets
that are used in the strong scaling experiment. The reported speedups are to
cluster the DnMFk factorized matrices from 10 perturbations. Therefore, the
two input cubes for both clustering and Silhouettes (from Data 3 and Data 4)
are 57600×10×10 and 129600×50×10. The speedups are measured against the
runtimes on single core. The maximum speedup for clustering Data 3 factors
is 115.98x on 900 processors while that of Data 4 is 150.82x.
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Fig. 11: Speedup – The speedup of clustering and Silhouette calculation across
10 perturbations of DnMFk for Data 3 (left) and Data 4 (right). The number
of latent features in both the matrices are fixed at k = 10 and k = 50.

For Silhouettes, Data 3 has 40.35x and Data 4 contains 339.32x speedup.
Table 3 (in Appendix) shows the corresponding runtimes of both clustering
and Silhouette for these matrices. The performance results indicate significant
gains as the number of cores increase. Although the performance gains are
promising, the gains are far from the ideal speedups on these two matrices.
The main reason for such performance trends is due to the fact that the input
data 57600× 10× 10 and 129600× 50× 10 for the distributed clustering and
silhouette algorithms is small compared to the number of processors. Note that
NMF is a dimensionality reduction method, thus the resultant factor matrices
W and H are much smaller than the size of input matrix, A. In order to clearly
study the performance of distributed clustering and silhouette, we conducted
a different set of experiments with different data sizes, presented in Fig. 14 (in
Appendix) and Table 4 (in Appendix). In summary, the clustering speedups
on these datasets (2097152× 10× 10 and 1048576× 50× 10) are 663.84x and
284.93x. The Silhouette speedups are 1187.98x and 594.34x, which shows that
DnMFk clustering and Silhouettes scale better for large data.

We further study the effect of k on the performance of clustering and Sil-
houettes. Fig. 12 shows the performance trends for the above two matrices at
900 processors. We observe that the execution time increases with the increase
in the k value. Similar experiments on different large datasets are in Fig. 15
(Appendix), that shows similar patterns. The results indicate that the execu-
tion time increases linearly with k for a fixed number of processors. Overall,
our distributed implementations of custom K-medians clustering and Silhou-
ette calculations scale for large data, and increasing k on higher number of
MPI processors. Finally, our implementation of DnMFk scales nearly linearly
at higher number of processors.
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Fig. 12: k scaling for clustering and Silhouette – The runtimes of clustering
and silhouette across 10 perturbations of DnMFk for Data 3 (left) of size
57600 × 10 × 10 and Data 4 (right) of size 129600 × 50 × 10. The number of
latent features in both the matrices vary as {2, 4, 8, 16, 32, 64, 128, 256}.
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Fig. 13: Estimating the number of hidden features in 1TB data, DnMFk finds
k as 7, which is same as the ground truth.

6.5 Model determination in large data

We determine the number of latent features in a single tera byte (TB) ma-
trix with dimensions 16777216 × 8192 with k = 7 known latent features. We
synthetically generate the 1TB matrix using the data generation algorithm
from section 6.2.1. Fig. 13 shows the silhouette analysis used to determine
the number of hidden feature, which shows that it finds that k = 7. Fig. 16
(in Appendix) identifies k = 5 in a dataset of 0.5 TB size. DnMFk takes 14
hours on 4096 processors to determine the number of hidden features in the
1TB matrix, while, for the 0.5 TB matrix, DnMFk takes 13.6 hours on 2048
processors. The average error in reconstruction for 1TB is 6.1% while that of
half a TB is 5.8%. To the best of our knowledge, DnMFk is the first approach
that determines the number of latent features in 1TB data.
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7 Conclusions

We introduced DnMFk, a distributed non-negative matrix factorization with
determination of the latent dimensionality of the data. The method for deter-
mining the number of latent features is based on resampling the initial data
and comparing the accuracy and stability of a set of NMF solutions at each
explored number of latent features, k. DnMFk requires building of a group of
uniformly (or Poissonian, or half-Gaussian) distributed datasets with a mean
same as the initial dataset. Our method needs custom k-means/medians clus-
tering with same size clusters [1] and Silhouette statistics [49], both of which
we developed in a distributed manner and integrated with the parallel NMF
library introduced in [31].

DnMFk can determine the unknown number of latent variables in large
datasets and extract them, which has not been addressed yet in previous par-
allel implementations of NMF. We provided the cost analysis for computation,
communication time, and memory usage, as well as analysis of the accuracy
and scalability of DnMFk. We demonstrated that our method is able to recover
the latent dimensionality of synthetic and real datasets (which are dense) in a
distributed and scalable manner. Our algorithm scales nearly linearly for large
datasets, while the communication overheads, at higher number of processors,
can be reduced through the reduction of double precision to single floating-
point, one of the desired future endeavors. We found the number of latent
features in a TB matrix. Moreover, in future, we propose to extend DnMFk to
sparse matrices. We further apply DnMFk to non-negative tensor factorization
(similar to [2]) to find the latent features in large tensors.
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Appendix

Table 3: Execution times for distributed clustering and Silhouette calcula-
tion using DnMFk on two data matrices: Data 3 (57600× 38400) and Data 4
(129600 × 51840). These two matrices does not fit in the memory of a single
node therefore the execution times for 36 cores is ignored.

Data
Processors

144 324 576 900

Clustering Time (s)

Data 3 1.941 0.896 0.324 0.251
Data 4 3.674 1.190 0.591 0.371

Silhouette Time (s)

Data 3 1.051 0.650 0.341 0.251
Data 4 1.980 1.030 0.631 0.481

Table 4: Execution times for distributed clustering and Silhouette calculation
using DnMFk on two data matrices: Data 1 (221× 10× 10) and Data 2 (220×
50× 10). The reported runtimes are for a different number of processors with
10 perturbations and 100 NMF iterations in each perturbation. The runtimes
are clearly decreasing as the number of processors increase.

Input
Processors

1 18 32 144 324 576 900

Clustering Times (s)

Data 221 × 10× 10 74.351 5.325 2.934 0.851 0.502 0.362 0.112
Data 220 × 50× 10 190.046 13.440 7.349 1.985 1.060 0.710 0.667

Silhouette Times (s)

Data 221 × 10× 10 117.610 6.488 5.396 1.609 0.988 0.768 0.099
Data 220 × 50× 10 1555.399 87.653 56.140 19.697 12.390 2.780 2.617
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Fig. 14: Speedups for clustering and silhouette – The results are across 10
perturbations of DnMFk for Data (221×10×10, left) and Data (220×50×10,
right). The speedups are with respect to the runtimes of DnMFk execution on 1
processor. We can clearly witness the performance scales linearly as the number
of processors increase. Especially, Data 221×10×10, shows a speed of 663.84x
for clustering while that of silhouettes is 1187.98x. For Data 220 × 50 × 10,
the speedups are 594.34x and 284.93x for clustering and silhouettes.
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Fig. 15: k scaling for clustering and silhouette – The runtimes of clustering and
silhouette across 10 perturbations of DnMFk. The matrices are 221×k×10 and
220 × k × 10, where the k vary as {2, 4, 8, 16, 32, 64, 128, 256}. The execution
time increases linearly with k at a fixed processor count.
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Fig. 16: Find the number of hidden features in 0.5 TB matrix of 8388608×8192.
DnMFk find k as 5, which agrees with the ground truth. DnMFk takes 13.6
hours on 2048 processors with an average reconstruction error of 5.8%.


