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ABSTRACT
Quantum annealers offer an efficient way to compute high quality
solutions of NP-hard problems when expressed in a QUBO (qua-
dratic unconstrained binary optimization) or an Ising form. This
is done by mapping a problem onto the physical qubits and cou-
plers of the quantum chip, from which a solution is read after a
process called quantum annealing. However, this process is subject
to multiple sources of biases, including poor calibration, leakage
between adjacent qubits, control biases, etc., which might nega-
tively influence the quality of the annealing results. In this work, we
aim at mitigating the effect of such biases for solving constrained
optimization problems, by offering a two-step method, and apply
it to Graph Partitioning. In the first step, we measure and reduce
any biases that result from implementing the constraints of the
problem. In the second, we add the objective function to the result-
ing bias-corrected implementation of the constraints, and send the
problem to the quantum annealer. We apply this concept to Graph
Partitioning, an important NP-hard problem, which asks to find a
partition of the vertices of a graph that is balanced (the constraint)
and minimizes the cut size (the objective). We first quantify the bias
of the implementation of the constraint on the quantum annealer,
that is, we require, in an unbiased implementation, that any two
vertices have the same likelihood of being assigned to the same or to
different parts of the partition. We then propose an iterative method
to correct any such biases. We demonstrate that, after adding the
objective, solving the resulting bias-corrected Ising problem on the
quantum annealer results in a higher solution accuracy.
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1 INTRODUCTION
Quantum annealers of D-Wave Systems, Inc., offer a viable approach
to compute high quality solutions of NP-hard problems that can be
expressed as minimization of a quadratic form, i.e., as minimization
of a function of the form

𝐻 (𝑥1, . . . , 𝑥𝑛) =
𝑛∑
𝑖=1

ℎ𝑖𝑥𝑖 +
∑
𝑖< 𝑗

𝐽𝑖 𝑗𝑥𝑖𝑥 𝑗 , (1)

where ℎ𝑖 ∈ R and 𝐽𝑖 𝑗 ∈ R are specified by the user and define the
problem under investigation. The variables 𝑥1, . . . , 𝑥𝑛 are discrete
and unknown and need to be determined in order to minimize 𝐻 . If
𝑥𝑖 ∈ {0, 1} then eq. (1) is called a QUBO (quadratic unconstrained
binary optimization) problem, and if 𝑥𝑖 ∈ {−1, +1}, then eq. (1) is
called an Ising problem. Both the QUBO and Ising formulations are
equivalent [7]. Many important NP-hard problems can be expressed
as minimization of a function of the form of eq. (1), see [13].

Problems expressed in QUBO or Ising form, that is via eq. (1),
belong to the class of unconstrained optimization problems. This
means that the formulation in eq. (1) contains both the objective
function which is to be minimized, as well as a penalty term to
enforce the constraints. Typically, this is realized by adding the
penalty, scaled by some fixed prefactor, to the objective function.
The prefactor of the penalty is chosen large enough such that it
is never favorable to break the constraints in order to achieve a
further reduction in the objective. An example of an unconstrained
optimization in the form of eq. (1), with the scaled constraint added
to the objective, is given in Section 2.1.

In order to obtain an approximate solution of the minimization
of eq. (1) with the D-Wave 2000Q device, the problem under investi-
gation has to be mapped onto the annealer so that linear coefficients
ℎ𝑖 are mapped onto qubits and quadratic coefficients 𝐽𝑖 𝑗 are mapped
onto couplers connecting pairs of qubits. After a process called quan-
tum annealing, a solution is read off the annealer. This operation
is subject to a variety of sources of bias, which might negatively
influence the annealing accuracy, for instance:

(1) Although the coefficients ℎ𝑖 and 𝐽𝑖 𝑗 in eq. (1) can be chosen
arbitrarily, they need to be rescaled to ℎ𝑖 ∈ [−2, 2] and
𝐽𝑖 𝑗 ∈ [−1, 1] and rounded to 8 bits in order to be mapped
as currents onto the chip by a digital-to-analog converter.
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Both the resolution reduction to 8 bits and the conversion
potentially introduce biases.

(2) Variations in manufacturing can lead to some qubits behav-
ing slightly differently than others.

(3) The physical qubits on the D-Wave quantum chip are ar-
ranged in a particular graph structure, called Chimera graph
[7, 8]. However, the structure of the non-zero couplers in
eq. (1) does not necessarily match the Chimera architecture,
thus requiring a minor embedding of the QUBO or Ising
connectivity onto the Chimera graph. Moreover, in the em-
bedding, several physical qubits are often identified to act
as one logical qubit, called a chain. Since the embedding
and thus the chains stay fixed during annealing, their choice
potentially impacts the solution quality.

(4) So called leakage on the physical chip from a coupler connect-
ing to its incident qubits can modify their intended behavior,
thus changing the effective value of the weight assigned
to them [22]. This effect is reported to be more severe for
chained qubits.

As a result, various works in the literature have already showed
that the D-Wave annealers are biased samplers [1, 4, 10, 14].

In this contribution, we try to mitigate the effect of such biases
with the aim to improve annealing results of constrained mini-
mization problems, and apply our concept to Graph Partitioning,
an important NP-hard problem. Briefly, let 𝐺 = (𝑉 , 𝐸) be a graph
consisting of a vertex set𝑉 = {1, . . . , 𝑛} and an edge set 𝐸 ⊆ 𝑉 ×𝑉 .
The Graph Partitioning problem asks us to divide the set of ver-
tices 𝑉 into two disjoint and balanced sets 𝑉1 and 𝑉2, satisfying
𝑉 = 𝑉1 ∪ 𝑉2 and 𝑉1 ∩ 𝑉2 = ∅, such that the size of 𝑉1 and 𝑉2 dif-
fers by at most one (the balance constraint) and the number of cut
edges {𝑒 = (𝑣,𝑤) : 𝑣 ∈ 𝑉1,𝑤 ∈ 𝑉2} between the two partitions
is minimized (the objective). An Ising formulation of the Graph
Partitioning problem, given in [13], is considered in Section 2.1.

We attempt a reduction of hardware biases with the help of a
two-step method. In the first step, we aim at quantifying the biases
that result from implementing the constraint of the problem. In
the case of Graph Partitioning, these are the biases resulting from
mapping the balance constraint onto the annealer. To be precise, if
no objective function (the number of cut edges between the two
partitions) is given, we would expect any assignment of vertices
satisfying the balance constraint to be returned equally likely from
the annealer. However, we will show that this is not the case. We
propose an algorithm to iteratively modify the coefficients of the
constraint only, with the aim to reduce the measured biases. Once
the biases of the constraint are corrected, in the second step, we
add the objective function to the corrected constraint and send the
new formulation to the D-Wave annealer.

Having an unbiased implementation of a constraint is an im-
portant factor in getting optimal or high-quality solutions of con-
strained optimization problems. If the implementation is biased
towards some combinations of variables, then such samples can
be preferred even if the value of the objective function for them
is suboptimal. On the other hand, a feasible solution with opti-
mal value of the objective may be neglected by the annealer if the
implementation of its constraint is biased against it.

Using Erdős–Rényi graphs as an example, our work shows that
for Graph Partitioning the mapped constraint is considerably bi-
ased, and that our iterative algorithm is able to correct those biases.
After adding the objective, we show that submitting the corrected
problem to the D-Wave annealer results in more accurate solu-
tions after annealing than obtained with the original formulation,
measured in terms of a lower cut value of the partitioning (while
satisfying the balance constraint).

This article is structured as follows. After a detailed literature
review in Section 1.1, we introduce a method to measure biases
occurring in the constraint of the Graph Partitioning problem as
well as an algorithm to correct them (Section 2). In Section 3, we
apply our methodology to random instances of the Graph Parti-
tioning problem, and show that mapping the problem onto the
D-Wave quantum chip indeed incurs biases. We demonstrate that
after correcting the constraint, those biases can be significantly
reduced. Finally, we show that solving the corrected formulation
(with added objective) instead of the original Ising problem yields
more accurate solutions. The article concludes with a discussion in
Section 4.

1.1 Literature review
Quantifying and correcting sources of biases/errors of a quantum
annealer is an active area of research. Several approaches pursued in
the literature are worth mentioning. First, some works aim for phys-
ical shortcomings of a device. For instance, [20] attempt to correct
for decoherence in quantum annealing, which causes quantum su-
perpositions to decay into mutually exclusive classical alternatives,
thereby losing accuracy. According to [16], analog control noise
can make the probability that the implemented Hamiltonian shares
a ground state with the intended Hamiltonian exponentially small
in the problem size and the magnitude of the noise. The authors
counteract this by showing empirically that the simple method of
[20] to correct errors brings down the TTS (time-to-solution) to
below the one of classical solvers.

Second, some approaches address the problem of error correc-
tion of a quantum device by viewing it essentially as a decoding
problem. For instance, the problem of interpreting the output of a
quantum error correction code is considered in [21], known as "de-
coding". In their paper, the authors consider the use of a quantum
annealer for decoding, and they introduce a quantum error correc-
tion protocol based on the coherent parity check (CPC) framework
for quantum error correction. Two heuristics, called "single qubit
heuristic" and "multi qubit correction" are introduced in [2] with
the aim to virtual tunnels, that is, pairs of qubits which, if changed
simultaneously, can result in a new state of lower energy. To guard
against single-qubit errors, [9] proposes to use a Hamiltonian con-
sisting of sums of the gauge generators from so-called Bacon–Shor
codes for error correction. In [12], the authors address the increased
effective temperature of a physical quantum device, which will neg-
ative influence the distributions from which a quantum annealer
draws samples. The authors aim to address this by error correc-
tion schemes which can reduce the effective temperature, which is
achieved by mapping the input Hamiltonian to an error correcting
"repetition code" Hamiltonian, which in turn is then mapped onto
the physical hardware qubits.
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Third, another strategy to correct errors relies on the introduc-
tion of energy penalties [5]. Here, a constant (time-independent)
term is added to the Hamiltonian which penalizes states that have
been corrupted by e.g. single-qubit errors, in the hope that the
penalty will impose an energy barrier that must be surpassed for
an error to occur. In [19], the authors attempt a similar objective
as we do, that is "to determine and correct persistent, systematic
biases between the actual values of the programmable parameters
and their user-specified values". However, they follow a different
approach, in which a thermal model for only the linear or quadratic
contributions in eq. (1) is assumed, and measurements from the
D-Wave annealer are fitted to the model in order to quantify their
biases.

Finally, reducing the hardware bias has been realized by care-
fully choosing appropriate annealing control parameters. Reverse
annealing [6, 15] was proposed to change the standard annealing
schedule so that to allow a local search in a neighborhood of a pre-
viously known suboptimal solution. Alternative schedules for local
search based on the h-gain feature of D-Wave were proposed in
[17]. Optimizing annealing parameters linked to a fixed embedding
was investigated in [3] and shown to improve the accuracy of the
solutions.

On a related note, in [11] the authors provide indications that
complex driver Hamiltonians beyond transverse fields are not able
to mitigate sampling biases, thus suggesting that quantum anneal-
ing machines are not well suited for sampling applications unless
postprocessing techniques to improve the sampling are applied, see
for example [18].

2 METHODS
In this section we describe our approach. First, we detail our method
for quantifying the biases occurring in the implementation of the
constraint of the graph partitioning problem (Section 2.1). Second,
we propose an iterative algorithm for reducing those biases by
modifying the coefficients of the Ising problem representing it (Sec-
tion 2.2). Third, after having corrected the constraint, we assemble
a new Ising model by adding the objective function to the modified
constraint (Section 2.3).

2.1 Quantifying biases
Since a constraint in an optimization problem is implemented in
an Ising model as a penalty function with energy (value) zero if
the assignments of the variables (samples) is feasible, or positive
energy if the samples are infeasible, all feasible samples have the
same constraint energy. Therefore, in the absence of an objective
function, all feasible samples should be uniformly represented in an
unbiased sampler. If the sampler is biased, we can measure the bias
of the samples with the help of an appropriate (problem-specific)
metric, which is then used to debias the constraint.

The following illustrates this idea in the case of Graph Partition-
ing (GP). In the Ising formulation of GP [13], a variable 𝑥𝑖 ∈ {−1, 1}
is assigned to each vertex 𝑖 , and depending on whether 𝑥𝑖 takes
value +1 or −1, vertex 𝑖 is assigned to either the "+" or the "–"
partition. With no objective present, samples from the annealer
satisfying the constraint should have the property that any pair of
logical variables (𝑥𝑖 , 𝑥 𝑗 ), where 𝑖, 𝑗 ∈ {1, . . . , 𝑛} and 𝑖 < 𝑗 , should be

allocated equally likely to either the same or to different partitions.
Therefore, if we denote by 𝑛𝑖 𝑗 how many times 𝑥𝑖 and 𝑥 𝑗 share
the same partition (i.e., 𝑥𝑖 = 𝑥 𝑗 ) among 𝑁 anneals, the fraction 𝑛𝑖 𝑗

𝑁
should approach 0.5 for all variable pairs as 𝑁 → ∞. This holds
true if the sampling was indeed unbiased. We call 𝑏𝑖 𝑗 =

𝑛𝑖 𝑗
𝑁
− 0.5

for 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑖 < 𝑗 , the quadratic bias.
For a given set of couplers 𝐽 = {𝐽𝑖 𝑗 : 𝑖 < 𝑗}, we will denote with

calculate_bias(J) the function computing the set of all 𝑏𝑖 𝑗 , 𝑖 < 𝑗 ,
according to the definition above.

According to [13], the Ising formulation for GP (with two parti-
tions) is given as

𝐻 (𝑥1, . . . , 𝑥𝑛) = 𝐴

(
𝑛∑
𝑖=1

𝑥𝑖

)2
+ 𝐵

∑
(𝑖, 𝑗) ∈𝐸

1 − 𝑥𝑖𝑥 𝑗
2

, (2)

where 𝐺 = (𝑉 , 𝐸) is the graph to be partitioned, 𝑛 = |𝑉 |, 𝑥𝑖 ∈
{−1, +1} are the spin indicators which specify if vertex 𝑖 is allocated
to either the "+" or "–" partition. The first term with prefactor 𝐴 is
the balance constraint, whereas the second one with prefactor 𝐵 is
the objective, which is the number of cut edges between the two
partitions that we aim to minimize. According to [13], any choice of
𝐴 and 𝐵 satisfying 𝐴/𝐵 ≥ 𝑛/8 ensures that it is never favorable to
break the balance constraint in order to achieve a further reduction
in the number of cut edges. Without loss of generality, we can
choose 𝐵 = 1 and 𝐴 = 𝑛/8. Since the largest graph with arbitrary
connectivity that can be embedded onto D-Wave 2000Q contains
𝑛 = 65 vertices (variables), we fix 𝐴 = 9 and 𝐵 = 1 in the remainder
of the article to guarantee that𝐴/𝐵 ≥ 𝑛/8. Tomeasure the quadratic
bias, we consider the quadratic constraint

(∑𝑛
𝑖=1 𝑥𝑖

)2 of eq. (2) only.
2.2 Bias correction procedure
After having computed the bias 𝑏𝑖 𝑗 for all 𝑖 < 𝑗 , we modify the
quadratic terms

∑
𝑖< 𝑗 𝐽𝑖 𝑗𝑥𝑖𝑥 𝑗 of the GP constraint implementation

in eq. (2), where 𝐽𝑖 𝑗 = 2𝐴 (multiplying out the constraint in eq. (2)
shows that each quadratic coupler is 2𝐴), as follows.

Obviously, larger biases should require more correction. There-
fore, the magnitude with which the quadratic term 𝐽𝑖 𝑗 in the con-
straint (coupling variables 𝑖 and 𝑗 ) is modified should depend on
the bias between the variables 𝑥𝑖 and 𝑥 𝑗 . Furthermore, if 𝑏𝑖 𝑗 > 0
for a pair (𝑖, 𝑗), the two vertices 𝑖 and 𝑗 evidently appear too often
in the same partition, which is due to their weight 𝐽𝑖 𝑗 being too
small. This is because terms of the form 𝐽𝑖 𝑗𝑥𝑖𝑥 𝑗 with large 𝐽𝑖 𝑗 > 0
increase the objective value if 𝑥𝑖 = 𝑥 𝑗 , thus making an assignment
𝑥𝑖 = 𝑥 𝑗 less favorable. Therefore, for each variable pair (𝑖, 𝑗), we
use the update rule

𝐽 ′𝑖 𝑗 = 𝐽𝑖 𝑗 + 𝑘𝑏𝑖 𝑗 , (3)

where 𝑏𝑖 𝑗 is the empirical bias for the pair (𝑖, 𝑗), 𝐽𝑖 𝑗 is the original
quadratic weight, 𝐽 ′

𝑖 𝑗
is the bias-corrected weight, and 𝑘 > 0 is a

scaling constant to be determined.
Note that, as with all quantum computers, D-Wave is a proba-

bilistic sampler, meaning that we would expect deviations of 𝑏𝑖 𝑗
from 0 even if the annealer were unbiased. It is thus sensible to only
correct a bias once it surpasses a given threshold 𝜏 > 0 (that is, only
when |𝑏𝑖 𝑗 | > 𝜏). The parameter 𝜏 is likewise chosen in advance.

With the function update_terms we will denote the application
of the aforementioned correction to all terms 𝐽𝑖 𝑗 , 𝑖 < 𝑗 , of an input
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Algorithm 1: Iterative quadratic bias reduction
input : Ising quadratic terms 𝐽 , scaling constant 𝑘 > 0,

noise cutoff 𝜏 > 0, stopping threshold 𝜎 > 0;
output : Quadratic terms 𝐽 of optimized Ising;

1 𝑏 ← calculate_bias(𝐽 );
2 while min(𝑏) < −𝜎 or max(𝑏) > 𝜎 do
3 𝐽 ← update_terms(𝐽 , 𝑏, 𝜏, 𝑘);
4 𝑏 ← calculate_bias(𝐽 );
5 end
6 return 𝐽 ;

quadratic model 𝐽 = {𝐽𝑖 𝑗 : 𝑖 < 𝑗}, using the biases 𝑏 = {𝑏𝑖 𝑗 : 𝑖 < 𝑗}
and the parameters 𝑘 and 𝜏 . The function returns a set of updated
couplers 𝐽 ′ = {𝐽 ′

𝑖 𝑗
: 𝑖 < 𝑗} for all 𝑖 < 𝑗 computed according to

eq. (3).
A pseudo-code of our method is given as Algorithm 1. Its input

are the quadratic terms 𝐽 = {𝐽𝑖 𝑗 : 𝑖 < 𝑗} to be corrected, the scaling
constant 𝑘 > 0 in eq. (3), the aforementioned noise cutoff 𝜏 > 0,
and some stopping threshold 𝜎 > 0.

After calculating the biases with the help of the function cal-
culate_bias, we iteratively correct the quadratic terms using the
function update_terms and recalculate the biases with the function
calculate_bias. The algorithm stops if the all biases are less than
𝜎 in absolute value, for some stopping threshold 𝜎 > 0 chosen
in advance. This is to avoid an infinite loop in case the updated
couplers diverge. The smaller 𝜎 , the more the algorithm will try
to correct biases, and the longer it will run. While setting 𝜎 = 𝜏

would work in most cases, our experience shows that choosing
𝜎 slightly larger than 𝜏 , e.g., 𝜎 = 0.2 and 𝜏 = 0.15, leads to a bet-
ter efficiency/accuracy tradeoff, and we therefore keep these two
parameters separate in Algorithm 1.

Algorithm 1 works directly on the logical variables, meaning it
modifies the couplers of all chained qubits simultaneously.

2.3 Adding objective information to the
corrected Ising

After having run Algorithm 1 to completion, the resulting couplers,
which we denote as 𝐽 ′ = {𝐽 ′

𝑖 𝑗
: 𝑖 < 𝑗}, have the property that the

associated Ising model (which contains only quadratic terms) yields
unbiased samples, in the sense that any pair of variables in those
samples is roughly equally likely to appear in either the same or
opposing partitions.

To arrive at a corrected Ising model for GP, we only need to add
the objective function information of GP to the modified constraint.
To this end, we first normalize the corrected couplers 𝐽 ′ by dividing
each coefficient with themaximum coefficient, and call the resulting
set 𝐽 ′′. This yields the bias-corrected constraint

𝐶 (𝑥1, . . . , 𝑥𝑛) =
∑
𝑖< 𝑗

𝐽 ′′𝑖 𝑗 𝑥𝑖𝑥 𝑗 .

We then multiply the normalized constraint by 2𝐴 again (see Sec-
tion 2.1) and substitute it in lieu of the original constraint

(∑𝑛
𝑖=1 𝑥𝑖

)2
in the Ising model of eq. (2). This yields the bias-corrected Ising

model of GP as

𝐻 ′(𝑥1, . . . , 𝑥𝑛) = 2𝐴 ·𝐶 (𝑥1, . . . , 𝑥𝑛) + 𝐵
∑
(𝑖, 𝑗) ∈𝐸

1 − 𝑥𝑖𝑥 𝑗
2

. (4)

We investigate 𝐻 ′ in the experiments of Section 3.

3 EXPERIMENTS
In this section, we apply Algorithm 1 to correct the constraint
of GP as outlined in Section 2.2, showing that indeed there is a
considerable initial bias, which we are able to correct (Section 3.1).
Importantly, we demonstrate that the new formulation 𝐻 ′ of GP in
eq. (4) allows one to find better partitions (in the sense that they
have a smaller edge cut while still satisfying the balance constraint)
compared to the original Ising formulation of eq. (2).

In the following, we always solve GP on Erdős–Rényi random
graphs with |𝑉 | = 65 vertices and an edge probability 𝑝 uniformly
sampled in [0.05, 0.95]. We use 100 anneals when running Algo-
rithm 1 to debias the constraint, and evaluate the final Ising model
that includes the objective using 10000 anneals. The annealing time
is set to 1 microsecond on D-Wave 2000Q. The chain strength is
always determined with the help of D-Wave’s unform torque com-
pensation feature, see [23], using a prefactor of 1.5. However, our
experiments show that the constraint also exhibits a bias for longer
annealing times, and that Algorithm 1 is also able to correct that
bias for longer annealing times.

3.1 Debiasing the constraint of Graph
Partitioning

We assume we are given an arbitrary graph 𝐺 = (𝑉 , 𝐸) of |𝑉 | = 65
vertices, the maximum size of a fully connected graph embeddable
on the D-Wave 2000Q. To run Algorithm 1, we use the following
set of parameters. We fix 𝑘 = 10 to correct the quadratic couplers
according to eq. (3), a choice which turned out to be advantageous
in our simulations. A scheme in which 𝑘 varies over time is equally
possible and remains a topic for further investigation. The bias
threshold is set empirically at 𝜏 = 0.05. Clearly, choosing 𝜏 too
small will lead to an overcorrection of biases that actually result
from random fluctuations, whereas too large values of 𝜏 will result
in biases not being corrected, although they are large enough to
affect the annealing outcome. Similarly, regarding the stopping
parameter 𝜎 , if 𝜎 is too small, Algorithm 1 might never terminate,
while if 𝜎 is too large, it will result in Algorithm 1 finishing faster,
but at the expense of not correcting all singnificant biases. We set
𝜎 = 0.2 for the experiments in this article.

Results for biases before and after their correction are shown in
Figure 1 based on a single run of Algorithm 1. We focus first on the
quadratic biases (left plot), containing 65 · 64/2 = 2080 datapoints
(one for each pair of vertices). Several observations are noteworthy.
First, after implementing the constraint of GP onto the D-Wave
2000Q, it is indeed not the case that any two random vertices share a
partition with probability 0.5, even though we would expect such a
behavior in the absence of an objective (red histogram). Instead, we
observe that the bias distribution is bimodal and varies from −0.5
to 0.5, meaning many pairs of vertices are consistently in the same
partition or consistently in different partitions even without having
an objective term in the Ising model. After running Algorithm 1,
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Figure 1: Left: distribution of quadratic biases at the first (red) and after the last (blue) iteration of Algorithm 1 (total of 224
iterations). Right: distribution of linear biases at the first (red) and after the last (blue) iteration in the same run of Algorithm 1.

we see that the quadratic biases are mostly corrected, yielding a
new Ising model having the property that most pairs of variables
indeed share a partition with probability 0.5 and, equivalently, a
bias of zero (blue histogram).

Though we do not correct linear biases, i.e., the coefficients ℎ𝑖
in eq. (1), we can define a linear balance bias measure 𝑏𝑖 as follows.
For a given vertex 𝑖 ∈ {1, . . . , 𝑛}, we count how many times it
comes out as +1 and how many times it is −1 after annealing when
considering the constraint only. Letting𝑚𝑖 be the count of +1 states
among 𝑁 anneals for vertex 𝑖 , we define 𝑏𝑖 = 𝑚𝑖/𝑁 − 0.5. This
metric should approach 0 for all variables if the assignment of each
vertex to one of the two partitions is truly random.

Figure 1 (right) shows the linear bias among all 65 variables.
We observe a similar picture as the one of the quadratic biases,
even though we do not directly correct linear biases in Algorithm 1.
Before the correction, most linear biases seem to be either -0.5 or
0.5, meaning that each of the corresponding variables is assigned
the same value in almost all samples, rather than the values +1
and −1 with roughly the same frequency. After the quadratic bias
correction, most linear biases seem to get fixed as well as they
cluster around the zero.

Though not displayed, we observe more outliers to the right for
larger values of 𝜎 (the stopping threshold for Algorithm 1).

For the same experiment depicted in Figure 1, Figure 2 shows
the progression of the iterations of Algorithm 1, plotting the sum
of all quadratic biases as a function of the iteration number (left).
We observe that, as expected, the quadratic bias quickly decreases
(within the first 50 iterations), and stabilizes afterwards. Since the
measurements from D-Wave 2000Q are noisy, we do not expect the
quadratic bias to go to zero, and indeed it stabilizes at around 100
(for the 2080 pairs of variables, meaning an average bias of around
0.05 per pair).

Figure 2 (right) shows the progression of the individual quadratic
couplers as Algorithm 1 progresses.We observe thatmany quadratic
couplers remain roughly unchanged (those in the range [0, 160]).

However, it seems that a handful of quadratic couplers cannot be
corrected (these couplers have weights in the range [400, 800] after
bias correction). Those are the ones which consistently appear in
the same partition, in which case Algorithm 1 will increase their
values to penalize such an assignment (see Section 2.2). Apparently,
it is not possible to fully correct their biases in this way. It is notable
that this bias is asymmetrical, i.e., we do not see variables which
also consistently do not appear in the same partition. The precise
reason of this phenomenon is unknown, but could be related to
their proximity on the D-Wave chip, or other hardware specifics.

3.2 Solving a Graph Partitioning problem after
the bias correction

After having corrected the constraint of GP with the help of Algo-
rithm 1, we proceed by adding back in the objective function (the
edge cut), see Section 2.3. The following experiments are performed
using the debiased Ising model 𝐻 ′ of eq. (4), using the debiased
constraint 𝐶 we calculated in the previous section.

For the experiments reported in this section, we use the same
annealing parameters as in the previous section, with the only
exception being that we now use 10000 anneals for each D-Wave
call.

We assess whether the bias-corrected Ising model 𝐻 ′ for GP pro-
duces better solutions compared to the original one 𝐻 . We generate
1000 random instances of GP and solve them on D-Wave 2000Q
using both Ising formulations. For each instance, we find the best
cut size found using each of the two formulations, and record their
difference. We discard any sample that does not satisfy the balance
constraint, since otherwise a comparison in terms of the cut size
is not sensible. Hence, we end up with 1000 data points, one per
instance, each showing the difference between the best cut size
found using the original formulation, and the one found using the
bias-corrected one. Since the objective of GP is to minimize the
edge cut, a positive difference implies that the average cut value of
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Figure 2: Left: total quadratic bias as a function of the iteration number. Right: the magnitude of the 𝐽 coefficients in the
bias-corrected Ising model as a function of the iteration number. Each line corresponds to one coefficient.
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Figure 3: Difference in cut value of the original Ising model
for GP and the bias-corrected one from Section 2.3. Since the
objective is to minimize the edge cut, a positive mean of the
distribution implies that the average cut value of the bias-
corrected Isingmodel of Algorithm 1 is smaller than the one
of the original formulation.

the bias-corrected Ising model of Algorithm 1 is smaller than the
one of the original formulation.

Figure 3 shows the results. We observe that the histogram of edge
cut differences is indeed shifted to the right, thus demonstrating
that the bias-corrected Ising model for Graph Partitioning does
yield lower (i.e., better) edge cuts. To be precise, the mean of the
histogram depicted in Figure 1 is 2.8 (the improvement of our bias-
corrected Ising over the original formulation in eq. (2) in the average
case), out of a mean edge cut of 496 for the original formulation

alone. Out of the 1000 random problem instances we submitted to
D-Wave, 621 had an improved cut value with the bias-corrected
Ising (compared to the original Ising model), and 343 had a worse
cut value.

4 DISCUSSION
In this work, we show that samples obtained with D-Wave 2000Q
are biased, even in the absence of the objective function of the Ising
model being solved. We attempt to quantify the biases occurring
when implementing the constraint and propose an algorithm to
modify the quadratic couplers in order to arrive at an unbiased
version of it.

Adding back the objective function of the problem instance un-
der consideration, that is, the edge cut in the case of GP considered
in this article, allows us to arrive at a bias-corrected Ising model.
We empirically show that, indeed, the bias-corrected constraint
performs more in line with what would be expected for a random
assignment of +1 and −1 to all variables. Importantly, we demon-
strate that the bias-corrected Ising formulation for GP allows us
to obtain samples of higher quality, meaning balanced partition-
ings with a lower edge cut, than the ones obtained by solving the
original formulation of GP on the D-Wave 2000Q.

An advantage of our approach is that, in the case of GP, the
constraint does not depend on the structure of the input graph,
but only on the number of its vertices. That means that, once we
find an unbiased implementation of the constraint for some graph
of 𝑛 vertices, we can directly use the same implementation of the
constraint for solving GP on any 𝑛-vertex graph.

This work is a first step towards iterative bias correction and
leaves scope for several avenues of future work:

(1) As a first step, we only correct quadratic biases in this con-
tribution, as this turned out to be most effective in our exper-
iments. Extending our approach to linear bias corrections
remains for future work.
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(2) Though our approach is more general, we only present re-
sults for GP in this article.We plan to considermore problems
beyond GP in subsequent works.

(3) Further work is necessary to understand why some variables
are more biased than others. Likewise, the role of the fixed
embedding we use deserves a closer look.

(4) The selection of the tuning parameters 𝑘 , 𝜎 , and 𝜏 of Algo-
rithm 1 was done in a rather ad-hoc fashion. Optimizing
them with the help of, e.g., a genetic optimization algorithm,
could lead to both a more effective bias reduction and better
annealing solutions of the bias-corrected Ising problems.

(5) For GP, experimental observations suggest that the bound
𝐴/𝐵 ≥ 𝑛/8 stated in Section 2.1 can be relaxed. This would
allow us to have less extreme weights in the Ising model,
which typically results in higher quality samples returned
by D-Wave 2000Q. The optimal choice of 𝐴 and 𝐵 remains
to be investigated.

(6) There are other ways to manipulate the bias of a chained
problem on D-Wave which remain to be explored. In partic-
ular, methods such as annealing offsets, spin reversals, and
varying how the weights across chains are distributed, are
all potential alternative methods.
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