
Embedding Algorithms for Quantum Annealers
with Chimera and Pegasus Connection

Topologies?

Stefanie Zbinden1,2, Andreas Bärtschi2,
Hristo Djidjev2, and Stephan Eidenbenz2

1 Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland
2 CCS-3, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

zbindens@student.ethz.ch, baertschi@lanl.gov

Abstract. We propose two new algorithms – Spring-Based MinorMiner
(SPMM) and Clique-Based MinorMiner (CLMM) – which take as in-
put the connectivity graph of a Quadratic Unconstrained Binary Opti-
mization (QUBO) problem and produce as output an embedding of the
input graph on a host graph that models the topology of a quantum
computing device. As host graphs, we take the Chimera graph and the
Pegasus graph, which are the topology graphs of D-Wave’s 2000 qubit
(first introduced in 2017) and 5000 qubit (expected 2020) quantum an-
nealer devices, respectively. We evaluate our algorithms on a large set
of random graph QUBO inputs (Erdős-Rényi Gn,p, Barabási-Albert and
d-regular graphs) on both host topologies against other embedding algo-
rithms. For the Pegasus topology, we find that CLMM outperforms all
other algorithms at edge densities larger than 0.08, while SPMM wins
at edge densities smaller than 0.08 for Erdős-Rényi graphs, with very
similar transition densities for the other graph classes. Surprisingly, the
standard D-Wave MinorMiner embedding algorithm – while also getting
slightly outperformed by SPMM for sparse and very dense graphs on
Chimera – does not manage to extend its overall good performance on
Chimera to Pegasus as it fails to embed even medium-density graphs on
175–180 nodes which are known to have clique embeddings on Pegasus.

1 Introduction

Quantum annealers such as the D-Wave 2000Q offer high quality solutions to
hard optimization problems, and have a relatively large number of (currently
up to 2000) qubits, while the next-generation D-Wave Advantage (due in 2020)
will have more than 5000 qubits. Because of the technological challenges in con-
necting qubits, existing qubit connectivity topologies are far from the desirable
all-to-all topology, as a result limiting the sizes of the problems that can be solved
? Research presented in this article was supported by the Laboratory Directed Re-
search and Development program of Los Alamos National Laboratory under project
numbers 20180267ER / 20190065DR. Los Alamos report number LA-UR-20-22259.

2 Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz

Embedding Method QUBO Class Host Graph

MinorMiner (MM) [9,13] Erdős-Rényi Gn,p Chimera C16
Layout-Aware MinorMiner (LAMM) [29,28] Barabási-Albert Pegasus P16
Spring-based MinorMiner (SPMM) random d-regular
Clique-based MinorMiner (CLMM)

Table 1. Study Parameters: We compare the performance of four embedding methods
for three different QUBO graphs on the two main D-Wave host graph topologies.

on these devices. In fact, the currently used Chimera has degree 6 [7], while the
Pegasus topology (available in 2020 with D-Wave Advantage) has degree 15 [5].
The programming model for the D-Wave quantum annealer consists of setting
the coefficients of a quadratic optimization function on binary variables (called a
Quadratic Unconstrained Binary Optimization (QUBO) problem) so that linear
terms map to qubits and quadratic terms map to couplers between the corre-
sponding qubits. In practical applications, we are given an input QUBO whose
set of linear and quadratic weights does not directly map onto the physical topol-
ogy of the D-Wave device, so we have to represent each variable by a set of qubits
(chain) and decide how to map variables onto chains. This problem is usually
modeled as a graph theoretic problem: Finding a minor embedding of the input
QUBO graph into an input topology host graph, a classical algorithmic problem
that is generally NP-hard [25]. The ability to embed practical QUBOs at larger
and larger size directly correlates to the success and operational applicability of
D-Wave devices when competing with classical devices.

In this paper, we propose and test two new embedding algorithms – Spring-
based MinorMiner (SPMM) and Clique-based MinorMiner (CLMM). We study
the performance of these algorithms as compared to two previously proposed
methods: MinorMiner (MM) [9,13] and a recent adaptation, Layout-Aware Mi-
norMiner (LAMM) [29,28]. All four algorithms are benchmarked on a large set
of random input QUBO graphs that need to be embedded onto the Chimera
and Pegasus topologies. As random graph classes, we study Erdős-Rényi Gn,p

graphs, Barabási-Albert graphs, and random d-regular graphs. Each of these
graph classes has a density parameter and a graph order (size) that we vary
in our experiments. We assess the performance of the four algorithms based on
whether they are able to embed graphs. The parameters of our experimental
study are given in Table 1. Our main findings are:

– On the Pegasus host graph, our Clique-based MinorMiner (CLMM) is a clear
winner with our alternative Spring-Based MinorMiner (SPMM) algorithm
edging out both CLMM and MM for very sparse graphs only. The relative
ranking of the algorithms is the same across all three QUBO input classes
with SPMM’s advantage at sparse graphs most pronounced for d-regular
graphs. Somewhat surprisingly, a threshold edge density exists that is very
similar for all three random graph classes (at about |E|/

(|V |
2

)
≈ 0.08) such

Embedding Algorithms for Quantum Annealers 3

that CLMM and SPMM win at edge densities larger and smaller than the
threshold, respectively (E, V denote edges and nodes of the QUBO graph).

– On the Chimera host graph, SPMM wins over MM and LAMM at sparse and
dense graphs, whereas MM and LAMM perform slightly better at medium
density graphs. Again, SPMM’s advantage at large sparse graphs is most
pronounced for d-regular graphs.

– On the Chimera host graph, all algorithms easily manage to embed the
previously largest known embeddable clique (at 65 vertices), whereas on
Pegasus only CLMM finds embeddings of cliques with more than 180 nodes.
In fact, using SPMM for Chimera and CLMM for Pegasus we find largest
embeddable cliques at sizes 65 and 185 respectively.

The paper is organized as follows: We introduce the concepts of QUBOs,
embeddings, host graphs and other background material including related work
in more detail in Section 2. We describe the embedding algorithms in Section 3,
and give details about the experimental design in Section 4. We present our
results for the Pegasus host graph in Section 5 and for the Chimera host graph
in Section 6, before concluding in Section 7.

2 Background

2.1 Quadratic Unconstrained Binary Optimization (QUBO)

Quadratic Unconstrained Binary Optimization (QUBO) is the problem of min-
imizing a quadratic function of binary variables, in one of the forms

min
x

n∑
i=1

aixi +
∑
i<j

bijxixj , xi ∈ {0, 1} (QUBO formulation),

or min
z

n∑
i=1

hizi +
∑
i<j

Jijzizj , zi ∈ {−1,+1} (Ising formulation).

The two formulations are equivalent via bijective relations hi = 1
2 (ai +

∑
jbij),

Jij =
bij
4 . Note that Jij is nonzero if and only if bij is nonzero. Hence QUBO

problems are naturally represented by a graph P = (VP , EP), where in VP each
variable zi is represented as a node zi with weight hi, and in EP we have for
every pair i < j with nonzero Jij an edge e = {zi, zj} with edge weight Jij .

We remark that QUBOs are a class of NP-hard optimization problems; as we
can use QUBOs to optimize the number of satisfied constraints in an instance of
0/1 Integer Programming – one of Karp’s original 21 NP-complete problems [21].

2.2 Solving QUBOs on Quantum Annealers

Quantum Annealers such as D-Wave’s 2000Q and the upcoming D-Wave Advan-
tage [5] have quantum processors with a set of qubits Q and a set of couplers C

4 Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz

QUBO

Ising Formulation

Minor Embedding

Quantum Annealing

Postprocessing

Solution

⇓⇓

↓

↓

↓

↓

0

1

2

3

4

5

6

7

8

9

10

11

0
1

2
3

4
5

6
7

8
9

10
11

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

3

15 1

11
7

10
6

4

9

8
5

14

13 0

2

12

Parameter Setting

↓

↓

Fig. 1. Schematics of solving a QUBO instance with a Quantum Annealer (cf. [32])
(left) Full workflow (center) Clique minor embedding of a clique K12 on a Chimera
graph C3 (right) Heuristic minor embedding of a 16-node 7-regular graph on host C3.

between some pairs of qubits. If we identify the qubits with a node set VH and
the couplers with an edge set EH , the resulting connected structure is a graph
H = (VH , EH), called the host graph. The D-Wave programming model lets us
set weights hi for every qubit qi ∈ Q and weights Jij for every coupler cij ∈ C.
In an actual D-Wave calculation, the device uses quantum annealing to sample
from low-energy eigenstates of the Hamiltonian

H =

n∑
i=1

hiσ
(i)
z +

∑
{i,j}∈EH

Jijσ
(i)
z σ(j)

z ,

with Pauli-Z operators σ(i)
z acting on qubit qi.3 As such, the spin configura-

tion of a groundstate corresponds to an optimum solution of a QUBO in Ising
formulation with the same weights hi, Jij .

However, most users will have QUBO problems from their application do-
mains with corresponding QUBO graphs that are far from being subgraphs of
the host graph. In order to be able to solve QUBOs using a quantum annealer,
the standard approach (see Figure 1) is to find a minor embedding of the QUBO
graph into the host graph [11] and to set the hi, Jij parameters accordingly [10];
i.e. one chains multiple qubits of the host graph with ferromagnetic couplings
Jij � 0 to represent a single variable of a QUBO (indicated by shared colors
in Figure 1 (center)/(right)). The better the embedding algorithm, the more

3 We have σz = (1 0
0 -1), Id = (1 0

0 1), and tensor product σ(i)
z = Id⊗i−1 ⊗ σz ⊗ Id⊗n−i.

Embedding Algorithms for Quantum Annealers 5

QUBO problems can be solved by an annealer. Designing and testing capable
embedding algorithms that are able to embed a large set of QUBO graphs is thus
crucial to expand the set of applications for a quantum device such as D-Wave.
The same holds true for CMOS annealers, such as those of Hitachi [36,33].

We note in passing that adiabatic quantum computing [15] – the theoretical
inspiration for quantum annealer technology – is equivalent in power to standard
gate-based quantum computing [2] that implements arbitrary unitary operations.
However, the mapping challenge on gate-based quantum devices differs substan-
tially from quantum annealers as logical variables are mapped only to single
qubits and not to chains. To implement a gate between two non-neighboring
qubits in a gate device, qubit states are swapped along paths of the host topol-
ogy, giving a “time-dependent mapping”, sometimes called routing. Depending
on the application, this can be done heuristically [12], with exact solvers [35],
or using a swap network [26]. Comparing state-of-the-art approaches to equal-
ity constraints implementation on a quantum annealer [34] and on a gate-based
quantum computer [8] shows, on a concrete application, how different the map-
ping problem is for the two platforms.

2.3 Minor Embeddings

A minor embedding of a pattern graph P = (VP , EP) into a host graph H =
(VH , EH) is a mapping ϕ of each node in VP to a subset of nodes in VH :

ϕ : VP → 2VH ,

where 2VH is the set of all subsets of VH , such that

1. For each node v in VP , the set of nodes ϕ(v) induces a connected subgraph
in H, called the chain of v.

2. For every edge e = {u, v} in EP , there exist nodes ũ ∈ ϕ(u) and ṽ ∈ ϕ(v)
such that {ũ, ṽ} ∈ EH .

3. ϕ(v) ∩ ϕ(u) = ∅ for all u 6= v ∈ VP , i.e., each node ṽ of the host graph H
appears in the mapping of at most one node of the pattern graph P .

We call a mapping ϕ a chain mapping if it satisfies Condition 1. A chain map-
ping ϕ is called a semi-valid embedding if it satisfies Condition 2 and is called
a chain placement if it satisfies Condition 3. Only if all three conditions are
satisfied do we have a minor embedding. Colloquially, we abbreviate minor em-
bedding with just embedding.

Finding a minor-embedding is NP-complete [25] except for (small) fixed pat-
tern graphs [30], and the best known algorithms [1] are exponential in |VP | and
the branch-width or tree-width of H (which is Ω(

√
|VH |) for current anneal-

ers). Research on minor-embedding for annealers has therefore focused on find-
ing fast and hiqh-quality heuristics. Existing approaches can best be described
along one of two trajectories: (i) iteratively modify a semi-valid embedding to
reduce the number of multiply used nodes ṽ ∈ VH (the approach shared by the
algorithms benchmarked in this paper), (ii) iteratively modify a chain placement

6 Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz

Fig. 2. (left) Chimera topology (D-Wave 2000Q): intersecting axis-parallel rectangles
gives rise to a grid of K4,4 tiles with vertical/horizontal connections. (right) Pegasus
topology (D-Wave Advantage): non-bipartite graph & increased connectivity achieved
through longer, shifted rectangles and couplers for pairs of neighboring parallel qubits.
Rectangle drawings courtesy of Kelly Boothby (D-Wave Systems, Inc.).

to increase the number of represented edges e ∈ EP (recently proposed [32] for
King’s graphs, the topology of Hitachi CMOS annealers [33]).

Furthermore, good minor embeddings are known for highly structured pat-
tern graphs such as cliques [24,6], cartesian products thereof [37], bicliques [19],
cubic grids [20] and cylindrical lattices (square-octogonal and triangular) [23].

2.4 Chimera and Pegasus Topologies

The host graphs of current and upcoming D-Wave annealers can be understood
starting from an intersection graph of axis-parallel rectangles (the qubits):

In Chimera [7], 4×4 intersecting orthogonal qubits with internal couplers give
rise to biclique K4,4 tiles. External couplers to adjacent horizontal respectively
vertical qubits arrange these in a grid, where neighboring tiles are connected by
4 edges. All qubits (except those on the border) have degree 6, see Figure 2 (left).
The Chimera graph C16, such as in the D-Wave 2000Q, has 16 × 16 tiles for a
total of 2048 qubits. We illustrate a smaller C3 in Figure 1.

In Pegasus [5], qubit rectangles are longer and connect to 12 orthogonal
qubits. Furthermore, horizontal and vertical qubits are shifted asymmetrically,
and have additional odd couplers that connect pairs of neighboring parallel
qubits, such that qubits have degree 15. This results in cells that are connected
by 4, 8, or 16 edges, see Figure 2 (right). The Pegasus graph P16, such as in the
upcoming D-Wave Advantage, has 15 × 15 × 3 cells, plus some partial cells on
the border, for a total of 5640 qubits. We illustrate P4 in Figure 3.

2.5 QUBO Random Graph Classes

To extend the range of embeddable QUBOs on current and next-generation de-
vices, we benchmark embedding algorithms based on their performance in find-
ing embeddings. Other metrics such as average or maximum chain lengths [29]
are not a focus of this paper; hence the actual values of non-zero QUBO terms
do not matter. Similarly, we only consider connected graphs (as one can always

Embedding Algorithms for Quantum Annealers 7

solve connected components independently) and do not consider any divide-and-
conquer strategies [27]. We use three classes of random graphs as benchmarks:

(i) Erdős–Rényi graphs Gn,p [18], where edges are included in the graph i.i.d
with probability p, (ii) Barabási–Albert graphs BAn,m [4,3], in which, starting
from m isolated nodes, we insert m−n nodes one by one, connecting each to m
existing nodes with preferential attachment proportional to the current degree
distribution, (iii) random d-regular graphs, in which each node has degree d. By
varying p, d and m, respectively, we generate graphs of various densities.

We chose these three graph classes in order to test our algorithms on a di-
verse set of graphs: Erdős–Rényi graphs have a binomial (Poisson for small p) de-
gree distribution, Barabási–Albert graphs have a power-law degree distribution
(modeling networks), and d-regular graphs have a constant degree distribution.

In the following Section, we briefly present existing algorithms that we either
compare to or use as a subroutine in our algorithms, which then follow next.

3 Minor Embedding Heuristics

3.1 Existing Embedding Algorithms

MinorMiner The MinorMiner algorithm (MM), proposed in 2014 [9], is ar-
guably the most prominent embedding algorithm, given its inclusion in D-Wave’s
Ocean software stack [13]. Given any QUBO graph P and host graph H as an
input, it tries to find an embedding; and if not successful after a certain number
of steps it returns an empty embedding. The MM algorithm starts from an ini-
tial chain mapping (with chains empty by default) and repeatedly loops over the
nodes of P , to determine for each node v ∈ VP a (preliminary) chain as follows:

1. Remove the chain ϕ(v) ⊆ EH from the existing chain mapping.
2. Compute a node-weighted shortest paths tree in H from each non-empty

chain ϕ(u), where u is a neighbor of v in P ({u, v} ∈ EP). The node weights
in H come with a high penalty term for using nodes in multiple chains.

3. Choose an optimal node ṽ ∈ VH that minimizes the sum of distances ac-
cording to the computed shortest paths trees. Extend ṽ to a chain ϕ(v) by
backtracking along the shortest paths trees, and re-add ϕ(v) to the chain
mapping.

This naturally splits MinorMiner into two phases: First, MM completes a single
loop over the vertices VP , after which the chain mapping ϕ is in fact a semi-valid
embedding (in which chains might still share qubits).

Secondly, MM enters a fixing phase, where consecutive loops over nodes in
VP have the goal of fixing this semi-valid embedding. The algorithm restarts
when there has been no progression for too many steps in a row4, with limiting
parameters on the total number of steps and number of restarts allowed. Thus,

4 Even if the algorithm is already in a state with a valid embedding, progression is
measured for example in having a smaller maximal chain size.

8 Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz

Fig. 3. Minor embedding of a K36 on Pegasus P4. Horizontal/vertical edges are mainly
used to connect chains internally; other edges act as couplers between different chains.

when the algorithm terminates, it might either return a valid embedding when
it found one, or an empty embedding if it did not.

MM has a few other controls, such as the initial_chain parameter. This
parameter can be used to feed the algorithm an initial chain mapping, which
is then used in the first phase of finding a semi-valid embedding. However, the
algorithm still iterates over all nodes. When it reaches a node which was as-
signed an initial non-empty chain, it still deletes and replaces that chain with
the procedure outlined above.

Layout-Aware MinorMiner A recent contribution to MinorMiner [29] has
as its main focus QUBOs that come with a natural graph layout in the plane
(think, e.g., of lattices in the simplest case). The implementation [28] takes a
QUBO graph and its layout together with the host graph and a plane host graph
layout as an input. The algorithm maps each variable node of the QUBO graph
layout to the closest (in Euclidean metric) qubit node of the host graph layout.
An additional diffusion phase shifts this mapping to achieve an even spreading
of initial chains across tiles/cells of the topology, and then starts MinorMiner
with the computed initial_chain mapping. However, not all QUBOs come
with a natural layout; if the graph comes without a layout, their algorithm runs
a Fruchterman-Reingold spring embedding algorithm to generate such a layout.

Clique Embedding D-Wave has a host-specific clique embedding algorithm [6],
which can quickly embed any clique up to a certain size chost into the Pegasus
or the Chimera graph (this also implies an embedding algorithm for any graph
with up to chost nodes). For Pegasus P16, the maximal clique size embeddable
this way is chost = 180, for Chimera C16 it is chost = 64. Chains gained from this

Embedding Algorithms for Quantum Annealers 9

embedding have a very special shape: they are all paths which are “L-shaped” if
drawn into the 2D-layout of the respective host graph, see Figure 3.

3.2 Our contribution

We propose, implement and compare two new algorithms: Clique-based Mi-
norMiner (CLMM) and Spring-based MinorMiner (SPMM).

For CLMM, we construct an initial chain mapping for a subset of QUBO
nodes, able to implement a coupling between any two chains of this node subset.
For SPMM, we give an initial chain mapping for all QUBO nodes VP , based
on a force-directed graph drawing of P . In the second approach, there are no
guarantees for existing couplings between chains. We then pass this initial chain
mapping to MinorMiner with the initial_chain parameter.

Clique-based MinorMiner (CLMM) For CLMM, we construct an initial
chain mapping as follows: We run D-Waves clique embedding algorithm for a
clique of size k = min(|VP |, chost). The k chains found this way are assigned to k
nodes of the QUBO graph, with the assignment depending on the density of P : If
|EP |/

(|VP |
2

)
≥ 0.55, they are assigned to the k nodes of lowest degree, otherwise

to k random nodes. The remaining QUBO nodes are mapped to empty chains.
We also tested a wide variety of other density- and degree-based assignments,

as well as a splitting or a multi-assignment of chains in exploratory runs. In
contrast to these approaches, the presented (albeit simpler) settings performed
significantly better and were thus used in the final experiments.

Spring-based MinorMiner (SPMM) For SPMM, we construct an initial
chain mapping as follows: (i) We use standard D-Wave layout functions to get
a drawing of the Pegasus/Chimera host graph in the plane (cf. the host graphs
in Figure 2), and a tuned Fruchterman-Reingold algorithm (see below) to get
a QUBO graph layout as well. (ii) We rescale both plane layouts to fit into a
[-1, 1] × [-1, 1] square. (iii) We map each of the QUBO nodes v to the closest
qubit node in Euclidean metric.

Fruchterman-Reingold [16] is a force-directed graph drawing algorithm that
computes a plane layout based on two principles: nodes pairwise repel each other,
but nodes connected by an edge at the same time attract each other. The strength
with which the latter takes place can be set for each edge individually; smaller
weights implying a smaller attraction. For an edge e = {u, v} we set weight(e) =
(2|EP |/|VP |)2 · (deg(u) deg(v))−1, where the weighting by node degrees ensures
that neighboring nodes with high degrees are not too close to each other (as,
intuitively, their chains need more space in the host graph) and where the first
term is a normalization factor (normalizing weights in regular graphs to 1).

While SPMM and LAMM have some similarities, we find a significant per-
formance difference on Pegasus graphs due to SPMM’s improved use of edge
weights for node attraction, substituting LAMM’s consecutive diffusion phase.

10 Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz

4 Experimental Design

We present the results of a large factorial-design experiment to compare our two
algorithms Clique-based MinorMiner (CLMM) and Spring-Based MinorMiner
(SPMM) with the established MinorMiner (MM) and the recently proposed
Layout-Aware MinorMiner (LAMM). We test the algorithms on the random
QUBO graph classes Gn,p, Barabási-Albert, and d-regular. As host graphs, we
use the D-Wave Pegasus host graph (used in the 5000 qubit model first out in
2020) as well as the previous Chimera topolgy (used until the 2000 qubit model).

For the Erdős–Rényi Gn,p graph model, we generate five random graphs for
each combination of values n = {1, . . . , 425} and p = {.01, .02, . . . , 1.00}. While
this would result in a total of 5 ·450 ·100 = 212, 500 graphs, we actually reduced
this number to around 26, 000 graphs by carefully pruning the set of graphs for a
specific algorithm once it has become clear – based on results for smaller/larger
values of n or p – that the algorithm will always/never find an embedding. Gn,p

graphs have a sharp threshold of n · p > lnn of being connected [14].
For the d-regular graph model (on Pegasus), we generate five graphs each

for all combinations of n = {1, . . . , 1200} and d = {3, . . . , 183}, employing again
a pruning mechanism. On Chimera, we also use five graphs and cut off at 380
vertices and maximum d = 64 to account for the smaller host graph. Random d-
regular graphs can be sampled quickly for d ≤ n/2 [31] and uniformly at random
for d ∈ O(n1/3−ε) [22]; we sample (n − d)-regular graphs as complements of d-
regular graphs. d-regular graphs only exist for 2|E| = n · d even and d < n.

For the Barabási-Albert graph model, we generate five graphs each for n =
{1, . . . , 1200} and m = {1, . . . , 110} and employ pruning. The number of edges
in BAn,m is (n − m) · m ≤ (n−m+m

2)2 = n2/4 by AM-GM, with equality for
m = n/2. Hence we get increasing graph density for m up to n/2, and we restrict
ourselves to this regime. All graphs are constructed with Python’s networkx.

Our experiments were executed on LANL’s Darwin Cluster [17] using a triv-
ially parallel approach. Running times for individual graphs ranged from millisec-
onds to more than 10 minutes per graph, largely proportional to graph vertex
and edge counts. Overall, the study consumed around 100, 000 core hours. We
assess the different algorithms on whether they succeed in finding an embed-
ding with the default parameters of MinorMiner, and not by running times, but
overall we observed that running times were very comparable for all the tested
algorithms.

5 Embeddings on the Pegasus Host Graph

Embedding Erdős–Rényi Graphs on Pegasus. Figure 4 shows our results
for Gn,p graphs on Pegasus for the four algorithms MM, LAMM, CLMM, and
SPMM. The plot structure is as follows: The blue area on the bottom shows
where n ·p < ln(n), the region of disconnected QUBOs excluded from this study.
The red vertical line displays chost = 180. Heatplot areas are colored using
the green-to-white color scheme on the right of the plot. The color assigned to

Embedding Algorithms for Quantum Annealers 11

100 125 150 175 200 225 250 275 300 325 350 375 400 425
graph order n

0

20

40

60

80

100

ed
ge

 p
ro

ba
bi

lit
y

p
[%

]

n p < ln(n)

embeddings
always found

embbedings never found

Performance of MM

0

1

2

3

4

5

nu
m

be
r o

f e
m

be
dd

in
gs

 fo
un

d

100 125 150 175 200 225 250 275 300 325 350 375 400 425
graph order n

0

20

40

60

80

100

ed
ge

 p
ro

ba
bi

lit
y

p
[%

]

n p < ln(n)

embeddings
always found

embbedings never found

Performance of LAMM

0

1

2

3

4

5

nu
m

be
r o

f e
m

be
dd

in
gs

 fo
un

d

100 125 150 175 200 225 250 275 300 325 350 375 400 425
graph order n

0

20

40

60

80

100

ed
ge

 p
ro

ba
bi

lit
y

p
[%

]

n p < ln(n)

embeddings
always found

embbedings never found

Performance of CLMM

0

1

2

3

4

5

nu
m

be
r o

f e
m

be
dd

in
gs

 fo
un

d

100 125 150 175 200 225 250 275 300 325 350 375 400 425
graph order n

0

20

40

60

80

100

ed
ge

 p
ro

ba
bi

lit
y

p
[%

]

n p < ln(n)

embeddings
always found

embbedings never found

Performance of SPMM

0

1

2

3

4

5

nu
m

be
r o

f e
m

be
dd

in
gs

 fo
un

d

Fig. 4. Embedding performance of all algorithms for Erdős–Rényi graphs on Pegasus:
(top left) MM, (top right) LAMM, (bottom left) CLMM, (bottom right) SPMM.

a point (n, p) corresponds to the number of times the algorithm succeeds at
finding an embedding for the five Gn,p graphs tested at point (n, p). The large
darker-green area on the left are pruned points, as we can be reasonably sure
that the algorithm would always find an embedding since it does find embeddings
reliably for larger graphs. Similarly, the light gray area on the right side of the
plot represents pruned points, where we are reasonably sure that the algorithm
would not find an embedding as it did not find embeddings on smaller and
less dense graphs. More precisely, if an algorithm manages to embed a Gn,p

QUBO with high probability, it is even more likely that it will manage to embed
a Gn−k,p QUBO graph. Therefore, after testing for each p where the transition
from embeddable QUBO to non embeddable QUBO is, we tested a cone of width
at least 10 on both sides around them as interesting points before pruning.

Contrasting the performance of the four algorithms, we note the following:
The LAMM algorithm does not perform particularly well, perhaps unsurprisingly
as Gn,p graphs do not have a natural layout that would play to LAMM’s core
design element; LAMM does show a fairly quick transition from being able to
embed all graphs (dark green) to no graphs (white). This transition is in fact
more spread-out in the overall better performing SPMM algorithm. The standard
MM algorithm sees an even farther spread-out transition when compared to
both LAMM and SPMM and clearly outperforms LAMM and SPMM on dense
graphs, while being outperformed by SPMM on very sparse graphs. However,
MM is remarkably far off from being able to embed a clique of size 180 (the red

12 Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz

100 125 150 175 200 225 250 275 300 325 350 375 400 425
graph order n

0

20

40

60

80

100
ed

ge
 p

ro
ba

bi
lit

y
p

[%
]

CLMM
SPMMn p < ln(n)

embeddings
always found

embbedings never found

Comparison of CLMM/SPMM versus max(Clique,MM)

5
4
3
2
1

0
1
2
3
4
5

m
ax

(C
liq

ue
,M

M
) (

pu
rp

le
)

vs
 C

LM
M

/S
PM

M
 (g

re
en

)

Fig. 5. A combination of CLMM/SPMM outperforms existing methods (host-specific
clique and heuristic MinorMiner embeddings) on embedding Erdős–Rényi graphs into
Pegasus at every value of p, with a sharp transition from CLMM to SPMM at p = 0.08.

vertical line). CLMM easily outperforms MM on dense graphs and interestingly
shows a very cleanly defined transition from embeddable to non-embeddable.

We get a more in-depth understanding of performance difference by looking
at the difference plot in Figure 5. Its structure is similar to the individual per-
formance plots, except the color bar ranges from green (positive) to white (zero)
to purple (negative). A point (n, p) above (below) the blue line at p = 0.08 is
assigned a color based on the number of embeddings found by CLMM (SPMM,
respectively) minus the maximum of the number of embeddings found by the
clique embedding algorithm or by MM. This way we capture the improvement
SPMM gains for sparse graphs and the improvement CLMM gains on dense
graphs in one plot. The transition between areas where CLMM and where SPMM
are the respective best performing algorithms is sharp, around an edge density
value of |EP |/

(|VP |
2

)
u p = 0.8. In combination, our algorithms manage to out-

perform the already existing algorithms at every value of p, gaining the most
around p = 0.20, and for p = 0.02 where the graphs get sparse enough such that
SPMM’s advantage over MM starts to get significant.

Embedding Barabási–Albert and d-regular Graphs on Pegasus. Fig-
ure 6 (top) shows a similar picture as Figure 5, with CLMM outperforming
MM on dense graphs and SPMM taking the lead on sparse graphs. However, as
Barabási–Albert graphs for small m are sparser than the sparsest Erdős–Rényi
graphs we tested, the improvement of SPMM over MM is much more pronounced,
being largest for m = 2. We again observe a sharp transition threshold between

Embedding Algorithms for Quantum Annealers 13

25 125 225 325 425 525 625 725 825 925 1025 1125 1225
graph order n

25

50

75

100
gr

ow
th

 m

CLMM
SPMM

m > n/2

embeddings
always found

embbedings never found
Comparison of CLMM/SPMM versus max(Clique,MM)

5
4
3
2
1

0
1
2
3
4
5

m
ax

(C
liq

ue
,M

M
) (

pu
rp

le
)

vs
 C

LM
M

/S
PM

M
 (g

re
en

)

50 150 250 350 450 550 650 750 850 950 1050 1150
graph order n

25

50

75

100

125

150

175

re
gu

la
r d

eg
re

e
d

CLMM
SPMM

d n

embeddings
always found

embbedings never found

Comparison of CLMM/SPMM versus max(Clique,MM)

5
4
3
2
1

0
1
2
3
4
5

m
ax

(C
liq

ue
,M

M
) (

pu
rp

le
)

vs
 C

LM
M

/S
PM

M
 (g

re
en

)

Fig. 6. (top) Performance comparison of CLMM/SPMM vs max(Clique, MM) for
Barabási–Albert graphs on Pegasus, transitioning from CLMM to SPMM at m = 12.
(bottom) Performance comparison of CLMM/SPMM vs max(Clique, MM) in embed-
ding d-regular graphs into Pegasus, transitioning from CLMM to SPMM at d = 18.
The plot omits odd columns to prevent distraction by empty data points for n · d odd.

CLMM and SPMM atm = 12 around n = 240, corresponding to an edge density
of (n−m)m/

(
n
2

)
≈ 0.095.

Figure 6 (bottom) shows that on d-regular graphs, performance of CLMM,
SPMM and MMmirrors their performance on Erdős–Rényi and Barabási–Albert
graphs. Since d-regular graphs only exist for even n · d, we omit odd n columns
from the plot (but not from the experiments, see the concluding data in Sec-
tion 7). SPMM again gains the biggest advantage on the sparsest graphs, namely
d = 3, while CLMM outperforms MM on dense graphs, with a transition thresh-
old at d = 18, n = 233, corresponding to an edge density of d/(n− 1) ≈ 0.078.

Discussion. We first discuss MM’s poor performance on Pegasus, where the
picture is quite bleak: Here, graphs have to be very sparse until MM manages
to embed a graph of order 180 nodes, even though there exists a host-specific

14 Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz

25 50 75 100 125 150 175 200
graph order n

0

20

40

60

80

100

ed
ge

 p
ro

ba
bi

lit
y

p
[%

]

n p < ln(n)

embeddings
always found

embbedings
never found

Performance of MM

0

1

2

3

4

5

nu
m

be
r o

f e
m

be
dd

in
gs

 fo
un

d

25 50 75 100 125 150 175 200
graph order n

0

20

40

60

80

100

ed
ge

 p
ro

ba
bi

lit
y

p
[%

]

n p < ln(n)

embeddings
always found

embbedings
never found

Performance of LAMM

0

1

2

3

4

5

nu
m

be
r o

f e
m

be
dd

in
gs

 fo
un

d

25 50 75 100 125 150 175 200
graph order n

0

20

40

60

80

100

ed
ge

 p
ro

ba
bi

lit
y

p
[%

]

n p < ln(n)

embeddings
always found

embbedings
never found

Comparison of SPMM versus MM

5
4
3
2
1

0
1
2
3
4
5

ad
va

nt
ag

e
M

M
 (p

ur
pl

e)

vs
 a

dv
an

ta
ge

SP
M

M
 (g

re
en

)
25 50 75 100 125 150 175 200

graph order n

0

20

40

60

80

100

ed
ge

 p
ro

ba
bi

lit
y

p
[%

]

n p < ln(n)

embeddings
always found

embbedings
never found

Comparison of SPMM versus LAMM

5
4
3
2
1

0
1
2
3
4
5

ad
va

nt
ag

e
LA

M
M

 (p
ur

pl
e)

vs

 a
dv

an
ta

ge
SP

M
M

 (g
re

en
)

Fig. 7. Performance in embedding Erdős–Rényi graphs on Chimera (top left) for MM
and (top right) for LAMM. (bottom) Respective improvements made by SPMM.

embeddable clique of size 180.5 In trying to find out why MM fails on instances
which are still easy embeddable via a host-specific clique embedding, we look at
the characteristic pattern given by such a clique embedding. Recall that each
QUBO node is mapped to a chain, where the qubit nodes in the chain form a
path, linked mostly by edges that are horizontal or vertical in the graph (see
Figure 3). Looking at the layout of Pegasus, these are both the sparsest con-
nections between neighboring cells as well as the edges which have the longest
length. Therefore, the chains are able to “spread through the graph” using as
few qubits as possible, leaving many unused edges suitable as couplers between
different chains. However, MM does not distinguish between different types of
cell-connecting edges when re-computing a chain of the chain mapping, possibly
resulting in a worse solution at the end. In contrast, the edges between tiles of
Chimera are all equivalent, so this kind of misstep cannot happen.

Secondly, we look at the link between CLMM and SPMM’s performance and
the sparsity of the graph. In embeddings for dense graphs, chains often form a
path through a large part of the host graph, with few or no nodes of induced
degree larger than two. We believe that providing initial “L-shaped” chains such
as in CLMM may promote newly built chains to take on such shapes as well. On
the other hand, for sparse graphs a well-chosen initial single-qubit chain such as
in SPMM can enable short connections to neighboring chains, reducing the qubit
footprint of a semi-valid embedding created after the first phase of MinorMiner.

5 Especially compared to Chimera, where MM manages to find an embedding for K65,
the largest embeddable clique, given that treewidth(K65) = 64 = treewidth(C16).

Embedding Algorithms for Quantum Annealers 15

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
graph order n

10

20

30

40
gr

ow
th

 m
m > n/2

embeddings
always found

embbedings never found

Comparison of SPMM versus MM

5
4
3
2
1

0
1
2
3
4
5

ad
va

nt
ag

e
M

M
 (p

ur
pl

e)

vs
 a

dv
an

ta
ge

 S
PM

M
 (g

re
en

)

20 60 100 140 180 220 260 300 340 380
graph order n

10

20

30

40

50

60

re
gu

la
r d

eg
re

e
d

d n

embeddings
always found

embbedings never
found

Comparison of SPMM versus LAMM

5
4
3
2
1

0
1
2
3
4
5

ad
va

nt
ag

e
LA

M
M

 (p
ur

pl
e)

vs

 a
dv

an
ta

ge
 S

PM
M

 (g
re

en
)

Fig. 8. Embedding performance of SPMM compared to its closest (QUBO graph type
specific) competitor on Chimera: (top) SPMM vs MM for Barabási–Albert graphs,
(bottom) SPMM vs LAMM for d-regular graphs, with odd n columns omitted.

6 Embeddings on the Chimera Host Graph

On Chimera, we only compare the three algorithms MM, LAMM and SPMM.
We did not test CLMM in great detail, as MM performs very similar, and since
preliminary observations could not find any improvements of CLMM over MM.

Embedding Erdős–Rényi Graphs on Chimera. For each non-pruned pa-
rameter combination (n, p), we generated five Gn,p graphs which we tried to
embed using MM, LAMM and SPMM. Figure 7 shows the performance of both
MM (left) and LAMM (right) as well as the relative improvements made by
SPMM (bottom). Perhaps a bit surprisingly, all algorithms manage to embed
cliques of size 65, the largest embeddable clique and one node larger than the
maximal clique found by the host-graph specific clique embedder.

SPMM performs better than MM on graphs with p ≥ 0.8 and graphs with
p ≤ 0.3. However, for 0.3 < p < 0.8, both algorithms perform comparably well.
The performance difference between SPMM and LAMM is similar to the one

16 Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz

Ranking Erdős–Rényi Barabási–Albert d-regular

Pegasus (dense)

0.08 < p ≤ 1.00

12 < m ≤ n/2

18 < d ≤ n− 1

1. CLMM 86,159 38,256 54,937
2. MM 78,230 31,206 44,229
3. SPMM 70,512 24,435 35,375
4. LAMM 68,349 23,248 32,998
Clique 81,530 30,420 49,410

Pegasus (sparse)

0.01 ≤ p ≤ 0.08

2 ≤ m ≤ 12

3 ≤ d ≤ 18

1. SPMM 6,150 23,334 37,210
2. MM 6,039 21,814 35,866
3. CLMM 5,964 21,803 35,490
4. LAMM 6,047 18,681 35,374
Clique 2,700 10,985 12,470

Chimera 1. SPMM 33,793 10,874 16,506
2. LAMM 33,688 10,217 16,132
3. MM 33,530 10,367 15,972
Clique 27,860 5,445 8,060

Table 2. Summary of all experiments: We rank Algorithms based on the total number
of found embeddings. Pegasus experiments are split into a sparse and a dense QUBO
graph regime, given by the observed transition parameters for p,m, d. For comparison,
we also give the number of possible embeddings via host-specific cliques.

between SPMM and MM. However, while SPMM still beats LAMM for p ≤ 0.2,
for larger p LAMM outperforms SPMM slightly.

Embedding Barabási–Albert and d-regular Graphs on Chimera. While
SPMM delivers the best overall performance in embedding both Barabási–Albert
and d-regular graphs on Chimera, the second place depends on the graph class
(MM for Barabási–Albert, LAMM for d-regular graphs). In Figure 8 (top), we
show the performance difference between SPMM and MM on Barabási–Albert
graphs. While MM outperforms SPMM slightly on m ≥ 20, the advantage of
SPMM on small m is much more apparent, especially at m = 2.

Figure 8 (bottom) shows the difference between embedding performances
of SPMM and LAMM on d-regular graphs. For 15 ≤ d ≤ 64, both algorithms
perform comparably well, with a slight advantage to LAMM. For smaller degree,
SPMM starts to clearly outperform LAMM (and MM), with the most significant
improvement at d = 3. Again, we omit odd n columns in the plot.

7 Conclusion

We studied the performance of two new embedding algorithms, Spring-based
MinorMiner (SPMM) and Clique-based MinorMiner (CLMM), and contrasted
these to existing embedding heuristics for the two different D-Wave host graph

Embedding Algorithms for Quantum Annealers 17

20 40 60 80 100
parameter: edge probability p

0

4

8

12

16

20

im
pr

ov
em

en
t i

n
ab

so
lu

te
 n

um
be

rs
 [+

n]

CLMM vs max(Clique, MM)
SPMM vs max(Clique, MM)

0

2

4

6

8

10

im
pr

ov
em

en
t i

n
pe

rc
en

t [
+%

]

overall improvement

20 40 60 80 100
parameter: growth m

0

20

40

60

80

100

120

140

160

im
pr

ov
em

en
t i

n
ab

so
lu

te
 n

um
be

rs
 [+

n]

CLMM vs max(Clique, MM)
SPMM vs max(Clique, MM)

0

20

40

60

80

100

im
pr

ov
em

en
t i

n
pe

rc
en

t [
+%

]

overall improvement

25 50 75 100 125 150 175
parameter: regular degree d

0

20

40

60

80

100

im
pr

ov
em

en
t i

n
ab

so
lu

te
 n

um
be

rs
 [+

n]

CLMM vs max(Clique, MM)
SPMM vs max(Clique, MM)

0

20

40

60

80

100

im
pr

ov
em

en
t i

n
pe

rc
en

t [
+%

]

overall improvement

Fig. 9. Improvement of our two algorithms SPMM (orange) and CLMM (blue) com-
pared to the maximal possible embeddability range with a host-specific clique or a
heuristic MM embedding algorithm on Pegasus. Results for (top) Erdős–Rényi graphs,
(bottom left) Barabási–Albert graphs, (bottom right) random d-regular graphs.

topologies Pegasus and Chimera. To the best of our knowledge, this is the first
such study on the upcoming Pegasus topology. While we observed that the ex-
isting MinorMiner heuristic does not extend its overall good performance on
Chimera to Pegasus, we show how to remedy the situation with our Clique-
based and Spring-based MinorMiner variants, see Table 2.

We found that for certain values of the density parameters p,m, d (used
in Erdős–Rényi, Barabási–Albert and d-regular graphs, respectively) our algo-
rithms significantly outperform the existing methods, increasing the number of
embeddable QUBO graphs by double-digit percentages and enlarging the range
of embeddable sparse graphs to graphs with over a hundred additional nodes.
Detailed statistics are given in Figure 9, where for each studied value of p,m
and d, we show the number of additionally embeddable graphs, both in absolute
numbers (bar plots) as well as a percentage increase (line plot). We note that ab-
solute numbers are normalized by the number of sampled graphs per data point
(i.e. 5), and that for d-regular graphs, the bar plots show the expected factor
2 difference between odd and even values of d (with the exception of 3-regular
graphs, on which SPMM shows an exceptionally massive increase).

18 Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz

In conclusion, we studied different random graphs to represent a wide variety
of possible QUBO graphs and gave a detailed analysis of the performance of
CLMM, SPMM, MM and the recent LAMM. A relative ranking of the algorithms
based on the total number of found embeddings is given in Table 2. While SPMM
and CLMM are the clear winners in their respective density domains, the order
of the competitors can change depending on the graph class studied.

Though SPMM and CLMM outperform the standard algorithm MM, their
simplicity is somewhat remarkable and of course they build upon the work of
both the original MinorMiner paper [9] and its implementation [13] as a subrou-
tine. We suggest that the MinorMiner parameter initial_chain be extended
with ‘clique’ and ‘spring’ parameters to serve as calls to the respective CLMM
and SPMM algorithms presented in this work.

Future Work. Future research directions are three-fold: First, we intend to add
case studies of real-world QUBO instance graphs to include them in a full version
of this paper, together with plots and results of all our experiments.

Secondly, we would like to study other (CMOS) host graphs [36] and compare
our algorithms to simulated annealing-based approaches which were recently
proposed in the literature [32] but not yet published as software.

Finally, applying various embedding algorithms to the same QUBO problem
will result in embeddings with different characteristics, such as the distribution
of chain lengths. These characteristics, in turn, will influence the chance of suc-
cess and hence the overall time-to-solution of solving QUBO problems with a
quantum annealer. Once the Pegasus architecture becomes available, it will be
useful to compare embedding algorithms with respect to these metrics, as was
done for Chimera before [29].

References

1. Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Faster parameterized
algorithms for minor containment. Theoretical Computer Science 412(50), 7018–
7028 (2011). https://doi.org/10.1016/j.tcs.2011.09.015

2. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adi-
abatic Quantum Computation is Equivalent to Standard Quantum Computation.
SIAM Journal on Computing 37(1), 166–194 (2007). https://doi.org/10.1137/
S0097539705447323

3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74(1), 47–97 (2002). https://doi.org/10.1103/RevModPhys.74.47

4. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science
286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

5. Boothby, K., Bunyk, P., Raymond, J., Roy, A.: Next-Generation Topology of D-
Wave Quantum Processors. Tech. Rep. 14-1026A-C, D-Wave Systems (2019), https:
//www.dwavesys.com/resources/publications?type=white

6. Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in chimera qubit
connectivity graphs. Quantum Information Processing 15(1), 495–508 (2016).
https://doi.org/10.1007/s11128-015-1150-6

https://doi.org/10.1016/j.tcs.2011.09.015
https://doi.org/10.1137/S0097539705447323
https://doi.org/10.1137/S0097539705447323
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1126/science.286.5439.509
https://www.dwavesys.com/resources/publications?type=white
https://www.dwavesys.com/resources/publications?type=white
https://doi.org/10.1007/s11128-015-1150-6

Embedding Algorithms for Quantum Annealers 19

7. Bunyk, P.I., Hoskinson, E.M., Johnson, M.W., Tolkacheva, E., Altomare, F.,
Berkley, A.J., Harris, R., Hilton, J.P., Lanting, T., Przybysz, A.J., Whittaker,
J.: Architectural Considerations in the Design of a Superconducting Quantum An-
nealing Processor. IEEE Transactions on Applied Superconductivity 24(4), 1–10
(2014). https://doi.org/10.1109/TASC.2014.2318294

8. Bärtschi, A., Eidenbenz, S.: Deterministic Preparation of Dicke States. In: Funda-
mentals of Computation Theory. pp. 126–139. FCT’19 (2019). https://doi.org/10.
1007/978-3-030-25027-0_9

9. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors.
https://arxiv.org/abs/1406.2741 (2014)

10. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter
setting problem. Quantum Information Processing 7(5), 193–209 (2008). https:
//doi.org/10.1007/s11128-008-0082-9

11. Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal
graph design. Quantum Information Processing 10(3), 343–353 (2011). https://doi.
org/10.1007/s11128-010-0200-3

12. Cowtan, A., Dilkes, S., Duncan, R., Krajenbrink, A., Simmons, W., Sivarajah, S.:
On the Qubit Routing Problem. In: 14th Conference on the Theory of Quantum
Computation, Communication and Cryptography, TQC’19. pp. 5:1–5:32 (2019).
https://doi.org/10.4230/LIPIcs.TQC.2019.5

13. D-Wave Systems: minorminer. https://github.com/dwavesystems/minorminer
(2017), a heuristic tool for minor embedding.

14. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297
(1959), https://www.renyi.hu/~p_erdos/1959-11.pdf

15. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum Computation by Adi-
abatic Evolution. https://arxiv.org/abs/quant-ph/0001106 (2000)

16. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Software: Practice and Experience 21(11), 1129–1164 (1991). https://doi.org/10.
1002/spe.4380211102

17. Garrett, C.K.: The Darwin Cluster. Tech. Rep. LA-UR-18-25080, Los Alamos Na-
tional Laboratory (2018). https://doi.org/10.2172/1441285

18. Gilbert, E.N.: Random Graphs. Annals of Mathematical Statistics 30(4), 1141–
1144 (1959). https://doi.org/10.1214/aoms/1177706098

19. Goodrich, T.D., Sullivan, B.D., Humble, T.S.: Optimizing adiabatic quantum pro-
gram compilation using a graph-theoretic framework. Quantum Information Pro-
cessing 17(5), 118 (2018). https://doi.org/10.1007/s11128-018-1863-4

20. Harris, R., Sato, Y., Berkley, A.J., Reis, M., Altomare, F., Amin, M.H., Boothby,
K., Bunyk, P., Deng, C., Enderud, C., Huang, S., Hoskinson, E., Johnson, M.W.,
Ladizinsky, E., Ladizinsky, N., Lanting, T., Li, R., Medina, T., Molavi, R., Neufeld,
R., Oh, T., Pavlov, I., Perminov, I., Poulin-Lamarre, G., Rich, C., Smirnov, A.,
Swenson, L., Tsai, N., Volkmann, M., Whittaker, J., Yao, J.: Phase transitions in a
programmable quantum spin glass simulator. Science 361(6398), 162–165 (2018).
https://doi.org/10.1126/science.aat2025

21. Karp, R.M.: Reducibility among Combinatorial Problems, pp. 85–103. Springer US
(1972). https://doi.org/10.1007/978-1-4684-2001-2_9

22. Kim, J.H., Vu, V.H.: Generating Random Regular Graphs. In: 35th ACM Sympo-
sium on Theory of Computing. pp. 213–222. STOC’03 (2003). https://doi.org/10.
1145/780542.780576

23. King, A.D., Carrasquilla, J., Raymond, J., Ozfidan, I., Andriyash, E., Berkley, A.,
Reis, M., Lanting, T., Harris, R., Altomare, F., Boothby, K., Bunyk, P.I., Enderud,

https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1007/978-3-030-25027-0_9
https://doi.org/10.1007/978-3-030-25027-0_9
https://arxiv.org/abs/1406.2741
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1007/s11128-010-0200-3
https://doi.org/10.1007/s11128-010-0200-3
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://github.com/dwavesystems/minorminer
https://www.renyi.hu/~p_erdos/1959-11.pdf
https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.2172/1441285
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1007/s11128-018-1863-4
https://doi.org/10.1126/science.aat2025
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/780542.780576
https://doi.org/10.1145/780542.780576

20 Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz

C., Fréchette, A., Hoskinson, E., Ladizinsky, N., Oh, T., Poulin-Lamarre, G., Rich,
C., Sato, Y., Smirnov, A.Y., Swenson, L.J., Volkmann, M.H., Whittaker, J., Yao, J.,
Ladizinsky, E., Johnson, M.W., Hilton, J., Amin, M.H.: Observation of topological
phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460
(2018). https://doi.org/10.1038/s41586-018-0410-x

24. Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: mi-
nor embedding with hard faults. Quantum Information Processing 13(3), 709–729
(2014). https://doi.org/10.1007/s11128-013-0683-9

25. Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Mathematics 108(1), 343–364 (1992). https://doi.org/
10.1016/0012-365X(92)90687-B

26. O’Gorman, B., Huggins, W.J., Rieffel, E.G., Whaley, K.B.: Generalized swap net-
works for near-term quantum computing. https://arxiv.org/abs/1905.05118 (2019)

27. Pelofske, E., Hahn, G., Djidjev, H.: Solving large minimum vertex cover problems
on a quantum annealer. In: 16th ACM International Conference on Computing
Frontiers. pp. 76–84. CF’19 (2019). https://doi.org/10.1145/3310273.3321562

28. Pinilla, J.P.: embera. https://github.com/joseppinilla/embera (2019), a collection
of minor-embedding methods and utilities.

29. Pinilla, J.P., Wilton, S.J.E.: Layout-Aware Embedding for Quantum Annealing
Processors. In: High Performance Computing. pp. 121–139. ISC’19 (2019). https:
//doi.org/10.1007/978-3-030-20656-7_7

30. Robertson, N., Seymour, P.: Graph Minors .XIII. The Disjoint Paths Problem.
Journal of Combinatorial Theory, Series B 63(1), 65–110 (1995). https://doi.org/
10.1006/jctb.1995.1006

31. Steger, A., Wormald, N.C.: Generating Random Regular Graphs Quickly. Com-
binatorics, Probability and Computing 8(4), 377–396 (1999). https://doi.org/10.
1017/S0963548399003867

32. Sugie, Y., Yoshida, Y., Mertig, N., Takemoto, T., Teramoto, H., Nakamura, A.,
Takigawa, I., Minato, S.I., Yamaoka, M., Komatsuzaki, T.: Graph Minors from
Simulated Annealing for Annealing Machines with Sparse Connectivity. In: Theory
and Practice of Natural Computing. pp. 111–123. TPNC’18 (2018). https://doi.
org/10.1007/978-3-030-04070-3_9

33. Takemoto, T., Hayashi, M., Yoshimura, C., Yamaoka, M.: A 2x30k-Spin Multi-
chip Scalable Annealing Processor Based on a Processing-In-Memory Approach
for Solving Large-Scale Combinatorial Optimization Problems. In: IEEE Interna-
tional Solid-State Circuits Conference. pp. 52–54. ISSCC’19 (2019). https://doi.
org/10.1109/ISSCC.2019.8662517

34. Vyskocil, T., Djidjev, H.: Embedding Equality Constraints of Optimization Prob-
lems into a Quantum Annealer. Algorithms 12(4), 77 (2019). https://doi.org/10.
3390/a12040077

35. Wille, R., Burgholzer, L., Zulehner, A.: Mapping Quantum Circuits to IBM QX
Architectures Using the Minimal Number of SWAP and H Operations. In: 56th
Annual Design Automation Conference 2019, DAC’19. p. 142 (2019). https://doi.
org/10.1145/3316781.3317859

36. Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H., Mizuno, H.: A
20k-Spin Ising Chip to Solve Combinatorial Optimization Problems With CMOS
Annealing. IEEE Journal of Solid-State Circuits 51(1), 303–309 (2016). https:
//doi.org/10.1109/JSSC.2015.2498601

37. Zaribafiyan, A., Marchand, D.J.J., Changiz Rezaei, S.S.: Systematic and determin-
istic graph minor embedding for Cartesian products of graphs. Quantum Informa-
tion Processing 16(5), 136 (2017). https://doi.org/10.1007/s11128-017-1569-z

https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/10.1007/s11128-013-0683-9
https://doi.org/10.1016/0012-365X(92)90687-B
https://doi.org/10.1016/0012-365X(92)90687-B
https://arxiv.org/abs/1905.05118
https://doi.org/10.1145/3310273.3321562
https://github.com/joseppinilla/embera
https://doi.org/10.1007/978-3-030-20656-7_7
https://doi.org/10.1007/978-3-030-20656-7_7
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1017/S0963548399003867
https://doi.org/10.1017/S0963548399003867
https://doi.org/10.1007/978-3-030-04070-3_9
https://doi.org/10.1007/978-3-030-04070-3_9
https://doi.org/10.1109/ISSCC.2019.8662517
https://doi.org/10.1109/ISSCC.2019.8662517
https://doi.org/10.3390/a12040077
https://doi.org/10.3390/a12040077
https://doi.org/10.1145/3316781.3317859
https://doi.org/10.1145/3316781.3317859
https://doi.org/10.1109/JSSC.2015.2498601
https://doi.org/10.1109/JSSC.2015.2498601
https://doi.org/10.1007/s11128-017-1569-z

	Embedding Algorithms for Quantum Annealers with Chimera and Pegasus Connection Topologies

