

Deformation of Fiber Reinforced Bulk Metallic Glass Matrix Composites

B. Clausen^{† ‡}, S.-Y. Lee[‡], E. Üstündag[‡], and M. A. M. Bourke[§]

[†] Lujan Center (LANSCE-12), Los Alamos National Laboratory
[‡] Department of Materials Science, California Institute of Technology
§ Materials Science and Technology (MST-8), Los Alamos National Laboratory

Supported by: DARPA, NSF-MRSEC and DOE-BES contract #W-7405-ENG-36 with UC

- BMG matrix fiber composites
 - Why BMG and why composites
- Neutron diffraction
 - Technique and capabilities
- Finite element modeling
 - Assumptions
- Results
- Conclusions

BMG matrix tungsten fiber composites

- Vitreloy 106: Zr₅₇ Nb₅ Al₁₀ Cu_{15.4} Ni_{12.6}
 - Properties similar to maraging steel, except for the low ductility
 - Macroscopic shear bands cause catastrophic failure in unconstrained loading
 - Very high elastic limit (2%)
 - Good formability: BMG's can be processed thermomechanically into intricate components – like polymers – yet with much superior mechanical properties

BMG matrix tungsten fiber composites

- BMG matrix fiber composites
 - Second phase interacts with shear bands and prevents formation of macroscopic shear bands that lead to catastrophic failure
 - This study: Molybdenum, Tantalum, Tungsten and Steel (SS302) fibers in Vitreloy 106 matrix (Zr₅₇ Nb₅ Al₁₀ Cu_{15.4} Ni_{12.6})
 - Large increase in ductility
 - Here shown for W and Steel Vitreloy 1 composites, Conner et al. Acta Mater. 1998

Fig. 16. Comparison of 40% V_T tungsten and steel reinforced metallic glass matrix composite compressive stress-strain properties. Ultimate strength is the same, and is not significantly different than unreinforced Zr4125T11375CU125Nip0Be225.

Neutron diffraction

Neutron diffraction

- Spectrometer for MAterials Research at Temperature and Stress (SMARTS)
- Schematic set-up for *in-situ* compression loading
 - Measurement time is about 10-20 minutes per load level
 - Measure elastic strains in two directions simultaneously

 $\lambda = 2dsin\theta$

- Fixed λ ; Reactor (steady state). Measure intensity as function of angle
- Fixed θ : TOF (spallation). Measure intensity as function of time-of-flight

• Differences in lattice spacing \Rightarrow Only Elastic Lattice Strain of Crystalline Phase

$$\varepsilon_{hkl}^{el} = \frac{d_{hkl} - d_{hkl}^{0}}{d_{hkl}^{0}} = \frac{d_{hkl}}{d_{hkl}^{0}} - 1$$

Neutron diffraction; Vitreloy 106/SS302 • Los Alamos

- Diffraction pattern
 - Rietveld refinement. Lattice elastic mean phase strain.
 - Fit quality: Rwp = 6-8%, χ^2 = 2.4-3.1
 - Strong texture from wiredrawing of the fibers

Finite element model

Finite element model

- Full 3D model due to loading along fibers
 - Unit cell model
 - Plane strain by keeping planes perpendicular to fibers plane
 - Brick 2nd order elements
- Hexagonal stacking in all models to accommodate high volume fractions
 - Same as used for high volume fractions
- Thermal cooling cycle
 - A ∆T of 380°C, i.e. from the glass transition temperature of Vitreloy 106 to room temperature, have been used in all calculations

Samples

 Vitreloy 106 with 40% Tantalum fibers • $CTE_{Ta} < CTE_{Vit106}$ • $E_{Ta}/E_{Vit106} = 2.2$

- Vitreloy 106 with 40% SS302 fibers
 - $CTE_{SS302} > CTE_{Vit106}$
 - $E_{SS302}/E_{Vit106} = 2.5$
- Vitreloy 106 with 40% Molybdenum fibers
 - $CTE_{MO} < CTE_{Vit106}$
 - $E_{Mo}/E_{Vit106} = 3.9$
- Vitreloy 06 with 40% Tungsten fibers
 - $CTE_W < CTE_{Vit106}$
 - $E_W/E_{Vit106} = 4.8$

5	Material	E [GPa]	ν[-]	CTE [10 ⁻⁶]
	Vit106	85	0.38	8.7
	Та	186	0.34	6.3 – 7.2
	SS302	211	0.29	17.2 – 18.4
	Мо	329	0.31	4.8 – 5.7
	W	411	0.28	4.5 – 5.0

Results; Measurements

Results; Measured data. BMG/Ta

- Macro curve looks linear from the start, indicating elastic loading
- However, ND data clearly show plastic deformation in fibers from the start
- Large hysteresis loops due to reverse yielding upon unloading

Results; Measured data. BMG/SS302

- Linear elastic region up to about 200 MPa
 - Elastic region expected to be larger due to the tensile residual stresses in fibers
- Large hysteresis loops due to reverse plasticity upon unloading

Results; Measured data. BMG/Mo

- Similar to SS302
- More pronounced time dependent relaxation during ND measurements
- Large hysteresis loops due to reverse plasticity upon unloading

Results; Measured data. BMG/W

- Larger elastic region
- Visible time dependent relaxation during ND measurements from 800MPa
- Linear unloading
 - Ambiguity at 2nd unload only a hint of nonlinearity in neutron data

Results; FEM of 40% Ta fiber composite • Los Alamos

- Reasonable agreement with fiber elastic strain data (neutron diffraction data)
 - Hardening in fibers during unloading leads to step upon reloading
- The calculated macroscopic data does not show as much plasticity as measured
 - Difference in plastic slope and macroscopic yield point

Results; FEM of 40% Mo fiber composite • Los Alamos

- Good agreement with the loading part of the elastic strain data
 - Bauschinger effect underestimated by the models, even using kinematic hardening
- Macroscopic data (extensometer) in good agreement with the loading part
 - Time dependent relaxation at high loads not included in the model

Conclusions

• Experimental

- 10-20 minute count times gives adequate statistics
- Very different macroscopic behavior and load sharing depending on fiber material
 - Full reverse plasticity in fibers upon unloading (Ta, SS302, Mo)
- Time dependent relaxation during ND measurements at constant stress
 - More pronounced for the BCC fibers (Ta, Mo, W)
- Modeling
 - FEM is struggling to match measured macro and phase data
 - Much better agreement between FEM and neutron measurements was previously found for Vitreloy 1/W fiber composites
 - Neither isotropic or kinematic hardening can accurately account for the observed large reverse plasticity upon unloading.
 - No time dependent mechanisms included in model

- Including deformation mechanisms in the BMG
 - Shear band formation (Ortiz *et al.*)
- Better description of reverse plasticity in fibers
 - Possibility of geometrical effects from fiber bending/buckling
- Measurements of residual stresses
 - BMG/SS302 sample did not show large elastic region as expected from tensile residual stresses in fibers. Relaxation?
- Determine what phase is relaxing at high loads
 - Relaxation seen in all composites, but at different rates.
- PDF study to measure strains directly in BMG
 - Total scattering analysis, nearest neighbor peaks changes

