Mechanical Behavior of *In-Situ*-Formed Bulk Metallic Glass Matrix Composites

B. Clausen[†], S.-Y. Lee[†], E. Üstündag[†], C.P. Kim[†], D.W. Brown[‡] and M.A.M. Bourke[‡]

[†]Department of Materials Science, California Institute of Technology

[‡]Materials Science and Technology Division, Los Alamos National Laboratory

Supported by DARPA and NSF-MRSEC

Outline

- *In-situ*-formed BMG matrix composites
- Neutron diffraction
- Self-consistent modeling
- Results
- Conclusion

In-situ-formed BMG matrix composites

F. Szuecs, C. P. Kim and W. L. Johnson, Acta Mater. Vol. 49, 1507-1513, 2001

Mechanical properties of the BMG composites

- Monolithic BMG fails catastrophic due to formation of macroscopic shear bands
- Monolithic β phase is very ductile but has a lower yield strength
- The in-situ composite show almost the same yield strength as the monolithic BMG, but it is ductile
- Load sharing and transfer in composite
 - Origin of increased ductility?
 - Phase transformation from BCC to HCP

SZUECS et al.: BULK METALLIC GLASS COMPOSITE

Neutron diffraction

- Neutron Powder Diffractometer (NPD) at LANSCE
- Schematic set-up for *in-situ* compression loading measurements
- Measurement time is about 2 hours per load level
- Measure elastic strains in two directions simultaneously
- Bulk measurements contrary to conventional X-ray measurements

 $\lambda = 2dsin\theta$

- Fixed λ ; Reactor (steady state). Measure intensity as function of angle
- Fixed θ : TOF (spallation). Measure intensity as function of time-of-flight

• Differences in lattice spacing => Only Elastic Lattice Strain of Crystalline Phase

$$\varepsilon_{hkl}^{el} = \frac{d_{hkl} - d_{hkl}^{0}}{d_{hkl}^{0}} = \frac{d_{hkl}}{d_{hkl}^{0}} - 1$$

Monolithic β -phase sample

Parallel

Perpendicular

- Diffraction patterns from monolithic β-phase sample (BCC)
 - Negligible texture
- $R_{wp} \approx 8 9\%$, strain error bar $\approx 20 \ \mu\epsilon$ (40 85 $\mu\epsilon$ for single peak fits)

BMG/ β -phase sample

Parallel

Perpendicular

- Diffraction patterns from BMG/β-phase composite sample
 - Negligible texture
- Steel peaks due to short sample only in the parallel data (red tick marks)
- $R_{wp} \approx 7 10\%$, strain error bar $\approx 30 \ \mu\epsilon$ (50 200 $\mu\epsilon$ for single peak fits)

In-situ loading measurements

- 2 unloads per sample
- "Flat spots" where stress kept constant for neutron measurement

Measured lattice strains, monolithic β phase sample

- Large elastic anisotropy
- 110, 211 and 321 are elastically identical, but after yield they split up due to the plastic anisotropy

Measured lattice strains, composite sample

- Large elastic anisotropy
- The β phase behaves perfectly plastic in the composite
 - Vertical after yield in the glass

Self-consistent model (Eshelby)

- Model Assumptions
 - Eshelby inclusion theory
 - Homogeneous equivalent medium (HEM) with properties equal to the appropriate weighted average of all the grains (inclusions)

- Input
 - Single crystal stiffnesses and hardening behavior
- Output
 - Direct comparison with neutron diffraction measurements
 - Averages over grains sets representing reflections
 - Information about material behavior on a microscopic scale

Self-consistent model (Eshelby)

- Determine single crystal stiffnesses from diffraction data
- Call SCM from least squares refinement routine
- Use values calculated from E and v assuming isotropy as initial guess
- C₁₁ = 92±2
- C₁₂ = 70±2
- $C_{44} = 33 \pm 1$

Anisotropy factor = 3.0

Young's modulus = 59 ± 3 GPa (63.3)

```
Poisson's ratio = 0.37 \pm 0.02 (0.401)
```

F. Szuecs, C. P. Kim and W. L. Johnson, Acta Mater. Vol. 49, 1507-1513, 2001

Model comparison, β phase monolith

- Ensure good agreement macroscopically
 - Choose yield stress. Hardening set to zero
- Also good agreement for lattice strains
 - Elastic stiffnesses show accurate determination of single crystal stiffnesses

Model comparison, BMG/ β phase composite

- Ensure good agreement macroscopically
 - Choose yield stress for BMG. Hardening set to zero for both phases
- Model captures the "perfectly plastic" behavior of the β phase after yield in the BMG parallel to the loading direction

BMG/ β phase composite

- Calculated in-situ yield strength (Von Mises phase stress at yield)
 - Matrix: 1340 MPa
 - β phase: 670 MPa
- Measured monolithic yield strength
 - Matrix: 1700 MPa
 - β phase: 600 MPa

TEM of BMG/ β phase composite

- Multiple shear bands
- Shear bands penetrate β phase

E. Pekarskaya, C. P. Kim, and W. L. Johnson, J. Mater. Res., vol. 16(9), pp. 2513-2518, 2001

Conclusions

- Indirectly determine the mechanical behavior of the BMG matrix
 - The in-situ yield stress of the matrix is lowered to 1340 MPa compared to the monolithic yield stress of 1700 MPa
 - In-situ yield stress of the β phase is 670 MPa compared to 600 MPa for the monolith
- Yielding initially in the β phase
 - Initiates multiple shear bands in glass that penetrates β phase
 - Improved ductility over the monolithic BMG
- No evidence of phase transformation in β phase
- Single crystal stiffnesses from diffraction data using SCM
 - Relatively strong elastic anisotropy in the β phase

