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Abstract—An acoustic couplant layer plays an integral role 
in many ultrasonic nondestructive testing and material charac-
terization applications. It is important to account for this layer 
for accurate time-delay measurements. In pulse–echo measure-
ments, the couplant layer can be accounted for by modeling 
the frequency dependence of phase delay. In this paper, two 
such models are evaluated for robustness in determining an 
accurate phase velocity: a simple linear relationship and the 
acoustic transmission line with its associated nonlinear expres-
sion. For this evaluation, measurements of acoustic phase delay 
in an aluminum sample were made by the pulse–echo method 
using tone bursts of 1800 different carrier frequencies between 
35 and 125 MHz. The transmission line model was fit to the 
measured data using an unconstrained nonlinear least squares 
fitting routine with two free parameters: the acoustic phase 
velocity in the sample and the couplant thickness. It was found 
that this nonlinear model was extremely sensitive to the ini-
tial parameter guesses and could not unambiguously determine 
both the couplant layer thickness and acoustic phase velocity. 
In contrast, the faster and simpler linear least squares fit to 
the delay data determines a unique phase velocity in agree-
ment with resonant ultrasound spectroscopy, an independent 
measurement technique.

I. Introduction

In ultrasonic pulse–echo (PE) experiments, one mea-
sures the delay between the time when an acoustic ex-

citation (e.g., a tone burst) is launched by a piezoelectric 
transducer and the time when a response is received by 
the same transducer after having reflected off of a bound-
ary or imperfection in the medium being studied [1], [2]. 
Highly accurate ultrasonic time-of-flight (TOF) measure-
ments can play an important role in industrial process 
control, such as in thickness gauging and corrosion de-
tection applications. A primary materials characterization 
application of PE that has been extensively used for over 
60 years is for the determination of the fundamental prop-
erties, such as the elastic moduli, of matter [1]–[6]. When 
used for materials characterization, the measured time-of-
flight is combined with measurements of the path length 
traversed by the acoustic wave to determine the acoustic 
phase velocity, vp, along a given propagation direction. 
From determined phase velocities, one can extract mate-
rial properties such as the elastic moduli and piezoelectric 

constants. The PE technique has been widely used for 
the purpose of extracting material constants and, along 
with resonance techniques, is considered a standard for 
acoustic materials characterization [3]. The vps are related 
to the material density, ρ, and the elastic moduli, C, by  
vp

2 = C/ρ (where C can, in general, be a combination 
of many different elastic and piezoelectric constants). A 
relative error in phase velocity determination, δvp/vp, thus 
leads to a relative error in the elastic moduli of δC/C = 
2 × δvp/vp if the density can be considered to be known 
to negligible uncertainty. Therefore, for accurate elastic 
constant determination, the importance of minimizing the 
relative error in vp is clear.

The precision of a vp extracted through PE measure-
ments is typically ~10−3 for samples of a few millimeters 
in size and is usually limited by measurement precision of 
the physical length of the sample, assuming that the TOF 
can be measured to at least an order of magnitude better 
in precision [4]. If the physical dimensions of the sample 
can be measured without bias, the accuracy of the deter-
mined phase velocity is limited entirely by the accuracy 
with which one can determine the TOF in the sample. In 
this work, a method for determining TOF to one part in 
ten thousand is presented. The present work focuses on 
the effectiveness of the 1-D scalar transmission line model 
commonly used to correct for the acoustic couplant layer 
that is used to enable energy transfer between a transduc-
er or buffer rod and the sample in PE TOF measurements. 
A typical PE setup including the piezoelectric transducer, 
a buffer rod, the couplant, and the sample is shown sche-
matically in Fig. 1. The couplant, exaggerated in thickness 
for clarity in the figure, introduces a phase shift to acous-
tic waves that are reflected from the buffer rod/couplant/
sample interface (i.e., the ray labeled B in Fig. 1) and also 
those that are transmitted through this interface (i.e., the 
ray labeled C in Fig. 1). The phase shifts acquired by 
the acoustic waves upon reflection from and transmission 
through interfaces combine to lead to a difference between 
measured time delay (the delay between the arrival of 
echoes B and C in Fig. 1) and the actual transit time in 
the sample at any given frequency, f [4], [7]–[11]:

	 τ τ ϕ πm s net/= + 2 f ,	 (1)

where τm is the measured TOF and τs is the desired TOF 
in the sample. φnet describes the total phase difference 
between the two echoes being considered that does not 
result from the transit of the acoustic wave through the 
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sample. That is, φnet is a result of the reflection from and 
transmission through the various interfaces in Fig. 1 by 
the acoustic wave. The need to account for this phase 
shift in determining the correct TOF in the sample has 
been recognized for many years [9] and has been addressed 
by several authors [4], [7]–[11]. It is interesting to note 
that the effects of the couplant can be avoided altogether 
through use of an immersion TOF technique such as is 
described in [12]. However, fluids do not support shear 
wave propagation and this limits immersion techniques 
to determination of longitudinal elastic moduli. The tech-
nique described in this work can be used for the determi-
nation of both longitudinal and shear elastic moduli pro-
vided that a shear-transmitting couplant (cyanoacrylate is 
a common choice) is used.

A common method of correcting for the acoustic cou-
plant layer involves treating the buffer rod– couplant–
sample system as a 1-D three-section transmission line, 
as is shown schematically in Fig. 2. In Fig. 2, an acoustic 
wave propagates in the +x direction from the buffer rod, 
medium (1), toward the sample, medium (3). Medium (2) 
represents the couplant of thickness lc. The Aj and Bj are 
the amplitudes of the various displacement waves, the kj 
are the wave numbers of the waves in the various me-
dia, and ω = 2πf is the angular frequency of the wave. 
The complex amplitudes of the associated strain waves,  
Astrain, are found by taking the gradient of the displace-
ment waves: Astrain = Adisplacement × ikj in the plane wave 
approximation. The amplitudes of the stress waves are 
that of the strain wave multiplied by the relevant stiff-
ness, C, for the acoustic mode: Astress = Astrain × C. Using 
these relations and the imposition of continuity of normal 
displacement and strain at each of the two boundaries, 
one can derive the reflection and transmission coefficients 
of the various stress waves received at the transducer [10].

As discussed in Section III, (1) can be fit to experi-
mentally measured PE delay data using the reflection and 

transmission coefficients derived through this transmis-
sion line model to determine the acoustic phase velocity 
in the sample along with the couplant thickness. Because 
the reflection and transmission coefficients contain sev-
eral trigonometric functions, fitting the model to the data 
requires the use of nonlinear least squares (NLLS) mini-
mization routines, which are known to be sensitive to the 
initial guesses provided by the user [13]. It has been tacitly 
assumed in the literature that the accuracy of PE TOF 
determinations is improved by using the nonlinear trans-
mission line model instead of simply fitting a linear model 
to (1) (i.e., to assume φnet is constant at all frequencies). 
Earlier works have focused on fitting the transmission line 
model to data collected over a relatively low and nar-
row frequency range where φnet is largely linear. However, 
the strongest nonlinearities in φnet are present in the fre-
quency ranges corresponding to acoustic resonances in the 
couplant layer. Because the thickness of the couplant layer 
is typically on the order of tens of micrometers or less, ob-
servation of these strong nonlinearities necessitates mea-
suring delays at very high frequencies. The present work 
extends the bandwidth of PE measurements to include 
the strong nonlinearities in φnet. Additionally, we pres-
ent a thorough analysis of the effectiveness and sensitivity 
of NLLS minimizations when used to interpret acoustic 
pulse–echo delay data.

Section II describes the experimental setup and data 
collection procedure used. Section III briefly presents the 
scalar transmission line model and explains the signal pro-
cessing and nonlinear searches used in this work. Section 
IV gives an analysis of the data collected in this work and 
Section V concludes the paper.

II. Experimental Approach

The experimental setup for the PE measurements is 
shown schematically in Fig. 3 and consists of a personal 
computer, an arbitrary function generator (AFG3102, 
Tektronix Inc., Beaverton, OR), a digital oscilloscope 
(DPO4034, Tektronix Inc.), and the transducer/buffer 
rod/sample assembly. The entire experimental setup re-

Fig. 1. A schematic of a typical pulse–echo transducer, buffer rod, cou-
plant, and sample assembly. The incident acoustic wave and two pos-
sible reflections are depicted with arrows. The piezoelectric transducer 
converts the electrical signal into an input acoustic stress wave (labeled 
A) that is partially reflected (labeled B) from the buffer rod/couplant/
sample interface, and partly transmitted (labeled C) into the sample.

Fig. 2. The 1-D transmission line model that is commonly used to treat 
the couplant correction in pulse–echo time-of-flight measurements. A 
displacement wave with amplitude A1 is shown here traveling in the +x 
direction in the buffer rod (medium 1). The wave is partially reflected 
with amplitude B1 and partially transmitted into the coupling layer (me-
dium 2) and eventually into the sample (medium 3).
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sides in a laboratory with an ambient temperature that 
is stabilized to within ±1°C. The computer was used for 
communications with the function generator and oscillo-
scope and also to store the waveforms recorded from the 
oscilloscope. The DPO4034 oscilloscope has a maximum 
sample rate of 2.5 Gsample/s yielding a time resolution 
of ±0.2 ns. The transducer used in this work had a cen-
ter frequency of 125 MHz and came commercially pack-
aged with a built-in fused silica buffer rod that provided 
a 2.5 μs delay (Olympus NDT Inc., Waltham, MA). The 
sample used was a right circular aluminum cylinder ma-
chined from stock Al available in our machine shop. The 
sample dimensions were 5.060 mm in height and approxi-
mately 12 mm in diameter. The diameter of the sample 
was chosen to be larger than the ~8.5 mm diameter of the 
buffer rod to minimize edge guiding effects, but had to 
remain smaller than 12.7 mm, a constraint imposed by the 
polishing equipment. The transmission line model, shown 
schematically in Fig. 2, assumes that the faces of the buf-
fer rod and sample are flat and parallel. To ensure flatness, 
the two end faces of the cylindrical sample were ground 
and polished with successively finer diamond polishing 
compounds (Allied High Tech Products Inc., Compton, 
CA) down to a final grit size of 1 μm.

To efficiently transfer acoustic energy between the buf-
fer rod and sample, the faces of these two parts must be 
nearly perfectly parallel. To ensure parallelism in these 
experiments, a careful alignment procedure was under-
taken before measurements began. The setup for sample 
alignment is shown in Fig. 4. The transducer/buffer rod 
assembly was held stationary using a lab stand and clamp 
system. The sample was held in a separate clamp with 
two-axis tilt capabilities so that the face of the sample 
could be adjusted to be as parallel as possible to the face 
of the buffer rod. The up/down motion of the sample was 
coarsely controlled using the z-axis of an X-Y-Z linear 
positioning stage (NLS4–2-16–1, Newmark Systems Inc., 
Rancho Santa Margarita, CA) and finely controlled using 
a manual micrometer. To align the transducer and sample, 
a drop of water was deposited on the face of the buffer rod 
and the sample was lowered until it was in close contact 
with the buffer rod. A 0.5-μs tone burst with a carrier fre-
quency of 80 MHz was applied to the transducer. This sig-
nal, along with the echoes from the back faces of the buffer 

rod and the sample, was displayed on the oscilloscope. 
The two tilt axes of the sample holder were adjusted until 
the amplitude of the sample back wall echo (ray C in Fig. 
1) was maximized. When the sample and transducer faces 
were as parallel as achievable, the sample was lifted off 
of the transducer and the water was rinsed off both faces 
with isopropyl alcohol and blown dry. The sample was 
then brought just barely into contact with the transducer 
and the zero point on the micrometer was recorded. The 
sample was then lifted up and a small amount of Ultragel 
II ultrasonic couplant (Sonotech Inc., Glenview, IL) was 
applied to the transducer. Finally, the sample was lowered 
onto the trandsducer/couplant to the desired target thick-
ness (~20 μm for the data presented in Section IV) using 
the micrometer. Through this alignment procedure, the 
parallelism of the sample and the buffer rod is estimated 
to be better than ±0.2°. Such deviations from parallelism 
introduce an uncertainty in the round-trip path length of 
the acoustic wave on the order of 10 ppm, well beyond the 
precision that this dimension can be measured.

In the experiments reported here, a tone burst of 0.5 μs 
duration was used. The carrier frequency of the tone burst 
was modulated using a Tukey envelope [14] with an α 
value of 0.4. Alpha is a non-dimensional number between 
0 and 1 and measures how sharply the modulated signal 
increases. An α of zero corresponds to a rectangular mod-
ulation window, whereas an α of unity value corresponds 

Fig. 3. A schematic of the experimental equipment setup used in this 
work. An arbitrary waveform generator creates a tone burst with a user-
defined carrier frequency and modulation envelope which is converted 
into an acoustic stress wave by the piezoelectric transducer. All signals 
are recorded through a digital oscilloscope and stored on a PC which is 
also used for communicating with the instruments.

Fig. 4. The setup for aligning the sample and buffer rod faces. The 
transducer is held stationary using a lab stand and clamp; the sample 
is mounted in a clamp with two-axis tilt capabilities to adjust the plane 
of the sample until it is as parallel as possible to the plane of the buffer 
rod. Up–down motion is coarsely controlled using a linear translation 
stage and finely controlled with a micrometer, as described in the text.
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to a half-period sine wave modulation window. The Tukey 
envelope was used to avoid sharp edges in the modula-
tion which excite high-frequency transients in the trans-
ducer. Data were collected at frequencies between 35 and 
125 MHz in 50 kHz steps for a total of 1800 data points. 
The center frequency of the transducer was used as the 
upper frequency bound of the measurements to avoid ex-
citing the transducer’s resonant frequency in addition to 
the drive frequency, which has been shown to lead to er-
rors in TOF determination [10]. For each value of carrier 
frequency, a waveform that included the reflection from 
the buffer rod (ray B in Fig. 1) and the first reflection 
from the back of the sample (ray C in Fig. 1) was re-
corded. The data acquisition process for 1800 frequencies 
lasted six and one half hours.

The longitudinal sound speed and density of the cou-
plant, two parameters that must be known when using the 
transmission line model, were determined by independent 
measurements. The sound speed was determined to be 
1683 ± 4 m/s using swept frequency acoustic interferom-
etry [15] between 1.0 and 4.0 MHz in a right circular cy-
lindrical lead zirconate titanate (PZT) cavity. The density 
of the couplant was found to be 1040 ± 30 kg/m3 by mass-
ing a known volume of couplant. Both measurements were 
carried out at a laboratory ambient temperature of 22°C. 
The measured values were in agreement with those report-
ed on the couplant manufacturer’s product data sheet: 
velocity = 1650 ± 50 m/s and density = 1090 ± 65 kg/
m3. Finally, resonant ultrasound spectroscopy (RUS) [16], 
an independent experimental method which does not uti-
lize an acoustic couplant, was used to provide a set of 
elastic moduli against which to compare the PE results. In 
RUS, many resonant modes of a sample are measured and 
are used to determine the entire elasticity tensor, C, from 
measurement of a single sample. Publicly available code 
for analyzing RUS spectra are limited to regularly shaped 
samples of relatively high symmetry materials and do not 
include other material properties such as piezoelectricity.

III. Theoretical Approach

To determine the time delay between the reflections 
from the buffer rod and sample, the first two echoes in 
each waveform [labeled 1st buffer rod reflection and 1st 
sample reflection in Fig. 5(a)] were cross-correlated to give 
a cross-correlation function [17] such as the one shown in 
Fig. 5(b) (zoomed in around the maximum to show the 
details of the function). By summing random noise con-
tributions, the cross-correlation procedure dramatically 
increases the SNR of the measurement. Calculated here as 
the peak-to-peak amplitude of the signal divided by that 
of the noise, the SNR was on the order of 100 after the 
cross-correlation procedure compared with the raw wave-
form SNR which was in the range of 5 to 10, depending on 
the carrier frequency being considered. For each frequency 
at which data were collected, the lag corresponding to 
the maximum of the cross-correlation function [solid black 

circle in Fig. 5(b)] as well as the lags corresponding to the 
local maxima on either side of the maximum [open circles 
in Fig. 5(b)] were recorded. The cross-correlation function 
has the same periodicity as the input and reflected tone 
bursts and so the other local maxima are ±2nπ out of 
phase with the absolute maximum of the correlation func-
tion, where n is an integer. Following the approach used 
in [10], the time lag corresponding to the absolute maxi-
mum in the cross-correlation function for each frequency 
is plotted versus 1/f ; they are denoted with heavy black 
data points in Fig. 6. The time delay of the maxima on 
either side of the absolute maximum are also plotted and 
are shown as smaller gray points in Fig. 6. Such a plot 
is very useful for visualizing the 1/f dependence of the 
delay data. It is important to note from the figure that 
the absolute maximum in the cross-correlation does not 
always correspond to the delay which lies along the trace 
with the shallowest slope. This is a critical observation 
that emphasizes the importance of taking into account 
the additional local maxima on both sides of the abso-
lute maximum in the cross-correlation result. Data can 
be easily rearranged such that the trace with the shallow-
est slope corresponds to φnet/2πf. Because the delays of 
echoes measured at many different frequencies are consid-
ered in Fig. 6, the data appear to be continuous functions 
of 1/f rather than the discrete points of which they are 
actually composed. Each trace above and below this trace 
depends on 1/f as (φnet + 2nπ)/2πf  (for those traces with 
progressively more positive slopes) or (φnet − 2nπ)/2πf 
(for those traces with progressively more negative slopes). 
To fit the model to the measured delays, the data in Fig. 
6 were first sorted to create an 1800 × 8 matrix in which 
each row corresponds to a frequency at which data were 
collected, the first column contains 1/f, and columns 2 
through 8 contain seven data sets with delays of the form 
τm = τs + (φnet + 2nπ)/2πf for integer −3 ≤ n ≤3, as 
depicted in Fig. 7.

The usual 1-D scalar transmission line model (Fig. 2) 
was used to model the acoustic coupling layer [4], [10]. 
When comparing the buffer rod reflection with the first 
sample reflection (labeled B and C in Fig. 1), the mea-
sured time delay, τm, is given by

	 τ
ϕ ϕ π π

m
T13 R13= +
− − +2 2 2

2
3

3

l
v

n
fπ ,	 (2)

where l3 and v3 are the path length and phase velocity of 
an acoustic wave in the sample, respectively. φT13 and φR13 
are the phase shifts acquired by waves transmitted into 
the sample from the buffer rod and waves reflected back 
into the buffer rod from the buffer rod–couplant bound-
ary, respectively. The acoustic wave undergoes a phase 
shift of −π upon reflection from the sample–air boundary. 
Lastly, n is a positive or negative integer related to the 
cycles of the tone bursts that are being overlapped and is 
zero for the correct overlap. The transmission and reflec-
tion coefficients for normally incident stress plane waves in 
the three-media transmission line (see Fig. 2) have previ-
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ously been derived [10], [11] but are reproduced here for 
convenience. The reflection, Rxy, and transmission coef-
ficients, Txy, are:
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where Y s = 1 − R R e ik l12 32
2 2s s c. k2 = 2π/λ2 is the wave num-

ber of the stress wave in the couplant and lc is the thick-
ness of the couplant. The subscript x represents the me-
dium the wave is coming from (either 1 or 3 in Fig. 2) and 
the subscript y represents the medium the wave is travel-
ing toward (either 1 or 3 in Fig. 2). The Rij and Tij on the 
right-hand sides of the relations in (3) (where i and j are 
consecutive numbers) are the familiar reflection and trans-
mission coefficients for the two-media reflection or trans-
mission case:

	 R
Z Z
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Z
Z Zij
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j i
ij

j
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s s =
−
+

=
+

, .
2

	 (4)

Fig. 5. (a) Two consecutive buffer rod and sample reflections as recorded 
on the oscilloscope for a typical delay measurement and (b) the cross-
correlation function of the first buffer rod and first sample reflections. 
These reflections are windowed before carrying out the cross-correlation 
to avoid interference from echoes spaced similarly in time.

Fig. 6. (a) All delay data recorded between 35 and 125 MHz. The heavy 
black dots indicate the lag corresponding to the maximum in the cross-
correlation function of the first buffer rod and sample reflections at each 
carrier frequency. The smaller gray dots represent the local maxima on 
either side of the global maximum in the cross-correlation function at 
each frequency. The scatter in the data at lower frequencies and far away 
from the maximum in the cross-correlation function reflect the weakness 
in the signal and the unreliability of the correlation function under those 
conditions. (b) The same data presented in (a), but focusing on the over-
laps close in time to the correct overlap.

Fig. 7. Delay data after the data have been sorted into seven data sets. 
The f −1 dependence of each data set is indicated with the shallowest 
data set, with slope φnet, corresponding to the correct overlap.
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In (4), Zi = viρi is the acoustic impedance of the ith me-
dium. The superscript s throughout these relations serves 
as a reminder that these expressions are for stress, as op-
posed to displacement, waves.

It is important to note that, for the three-media case, 
the phase of the reflection and transmission coefficients 
depends on the frequency of the stress wave and the cou-
plant thickness because of the presence of the e ik l2 c and 
e ik l2 2 c terms. This is in contrast to the two-media case in 
which the phase is independent of frequency, as can be 
seen from (4).

Built into (1)–(4) is the assumption that the various 
media in the transmission line are nondispersive, and the 
vi and Zi are thus independent of frequency. When probing 
dispersive samples or making use of dispersive buffer rods 
or couplants, the frequency dependence of the vi and Zi 
should be included in the relevant terms of (1)–(4).

An implementation of the Nelder–Mead simplex direct 
search algorithm [13] was used to fit (2) to each sort-
ed data set. Two other commonly used algorithms, the 
Levenberg–Marquardt method and a generalized reduced 
gradient (GRG2) algorithm, were also initially tested and 
both showed initial guess sensitivities similar to that of 
the Nelder–Mead simplex method. The nonlinear model 
has two free parameters, lc and vp, for which one must 
provide initial starting guesses to input into optimization 
routine. NLLS minimization routines locate local minima 
(instead of a global minimum), which are known to be 
sensitive to the initial guesses of the user [13]. For each of 
the seven data sets (−3 ≤ n ≤3), the norm of the differ-
ence vector, Δ, was calculated as

	 ∆ = −∑
i

i if f( ( ) ( )) ,τ τmeas fit
2 	 (5)

where τmeas is the measured delay and τfit is calculated at 
each point for which there is a measured delay using (2) 
and the appropriate phases of the reflection and trans-
mission coefficients in (3). The summation is carried out 
for all frequencies at which there is a measured delay. To 
investigate how sensitive the minimization routine is to 
small changes in the parameters vp and lc, Δ for differ-
ent NLLS solutions were calculated for initial guesses of 
couplant thicknesses between 10 and 50 μm (inclusive) in 
2 μm intervals and for sample phase velocities between 
6000 and 7000 m/s (inclusive) in 10 m/s intervals for a 
total of 2121 trials.

For comparison with the NLLS approach, linear least 
squares fits were also performed on the sorted data sets. 
This approach, which is computationally simpler, assumes 
that φnet in (1) is a constant and independent of frequency.

IV. Results and Discussion

A. RUS Sample Characterization

The alloy and associated acoustic material constants 
of the polycrystalline aluminum sample used in this work 

were unknown because it was cut from machine shop stock. 
RUS was used to establish a reliable longitudinal acous-
tic phase velocity against which to compare the phase 
velocity determined by the couplant-corrected pulse–echo 
measurements. Twenty experimental resonances were fit 
using the LANL RUS code [16]. Fits were achieved by 
refining the values of C11 and C44 as well as the radius 
and height of the cylindrical sample. Varying the physical 
dimensions serves to refine the density because the mea-
sured mass was kept fixed. The refinement gave an RMS 
error of 0.19% and yielded a longitudinal phase velocity of 
6360 m/s from a fit density of 2781 kg/m3 and a fit value 
of C11 = 112.5 GPa.

B. Delay Data Collected Between 35 and 50 MHz

Data collected within a 15 MHz frequency window 
were selected for an initial analysis because this spread 
represents a frequency range such as is typically used in 
PE measurements and also because the delay versus f −1 
trends in this range are largely linear and do not exhibit 
the prominent phase change present around f −1 = 16 ns 
observed in Fig. 7. Fig. 8 shows the norm of the differ-
ence vector calculated after NLLS optimization using dif-
ferent starting values as described in Section III for the 
delay data collected in the frequency range 35 MHz ≤ f ≤ 
50 MHz (delays in the range 20 ns ≤ f −1 ≤ 29 ns in Fig. 
7). From Fig. 8, the high sensitivity of the norm of the dif-
ference vector to the initial guesses can be seen.

Each of the three vertical axes in Figs. 8(a)–8(c) show 
|Δ|, whereas the horizontal axes show values of lc and vp 
corresponding to the solution (not the initial guesses) for 
the various initial guesses of these parameters. The differ-
ent initial guess values, described in Section III, are not 
visible in the figures. Fig. 8(a) shows |Δ| as a function of 
both vp and lc, whereas Figs. 8(b) and 8(c) show the same 
|Δ| as a function of only vp or lc, respectively (in each, 
information about the second variable is not visible even 
though that variable changes from point to point). It can 
be concluded from Fig. 8 that the confident selection of 
either vp, or lc is not possible by searching for a minimum 
in |Δ|. As seen in Fig. 8, the fit with the lowest |Δ| cor-
responds to vp = 6457 m/s and lc = 50 μm. When these 
parameters are entered into the model and plotted on top 
of the data (not shown), there are phase changes present 
in the model which are clearly not exhibited in the data. 
Based on performing a NLLS minimization with many 
different starting guesses, one is thus faced with a choice 
of selecting among multiple solutions for vp in the range 
6350 m/s ≤ vp ≤ 6460 m/s with no quantitative basis for 
making such a selection.

Simple linear least squares fits were also performed on 
the seven data sets. As can be seen from (2), the intercept 
of such a fit determines the travel time in the sample 
whereas the slope is related to the net phase difference 
(±2nπ) between the two echoes being considered. A linear 
least squares fit to the delay data in the 35 to 50 MHz 
range gives a mean y-intercept value of 1.585 μs with an 
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uncertainty of 0.2 ns when all seven data sets are con-
sidered. The uncertainty in the delay determination was 
estimated by using the standard error of the y-intercepts 
of the seven linear fits to the data. This delay yields a 
phase velocity of 6384.9 m/s for the 5.06 mm sample. This 
result agrees with the RUS-determined velocity to better 
than 0.4% which is good by most standards and certainly 
better than the 1.6% discrepancy one would get by choos-
ing the vp = 6460 m/s solution from the NLLS fit [see Fig. 
8(b)]. Table I summarizes the different phase velocities 
and couplant thicknesses determined from this PE data 
set for easy comparison.

C. Delay Data Collected Between 35 and 125 MHz

Fig. 9 shows the results of the NLLS optimization tri-
als with the same combinations of initial guesses as in 
Fig. 8 but considers delays collected at frequencies over 
the full range of 35 MHz ≤ f ≤ 125 MHz. The layout of 
Fig. 9 is the same as that of Fig. 8: Fig. 9(a) shows |Δ| as 
a function of both vp and lc, whereas Figs. 9(b) and 9(c) 
show |Δ| as a function of these two parameters indepen-
dently. As with the delay data from the 35 to 50 MHz 
range, the sensitivity of the optimization routine to the 
user-input initial guesses is evident. For example, if one 

Fig. 8. The norm of the difference vector, |Δ|, considering delays collected at carrier frequencies in the range 35 MHz ≤ f ≤ 50 MHz. (a) The data 
represented as a function of both phase velocity, vp, and couplant thickness, lc. (b) and (c) show the same data as a function of a single variable only. 
(Note that the value of the second variable is changing from point to point in (b) and (c) even though this information is not visible.)

TABLE I. Summary of Pulse–Echo-Determined vp and lc. 

Data set
Least squares 
fit type vp (m/s) δRUS

a (%) lc (μm)

PE 35–50 MHz Nonlinear 6457 1.5 50
Nonlinear 6350–6460 0.2–1.6 10–40
Linear 6384.9 0.4 —b

PE 35–125 MHz Nonlinear 6361 0.02 12–23
Nonlinear 6361 0.02 40–42
Linear 6360.9 0.01 —b

aδRUS = 100*(vp − vp,RUS)/vp,RUS, where vp,RUS = 6360 m/s.
blc not determined in linear least squares fit.
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were to run the optimization routine on the data in Fig. 
7 a single time with starting guesses of lc = 30 μm and 
vp = 6400 m/s, the search terminates with a solution of 
lc = 24.5 μm and vp = 6416 m/s, which is seen to be far 
away from the global minimum in Fig. 9. The scatter of 
the possible solutions in Fig. 9 shows clearly that distin-
guishing the global minimum from the large number of 
local minima requires executing the optimization routine 
with many different starting values. Physical knowledge of 
a system often provides a useful basis for rejecting local 
minima in nonlinear minimizations. However, as can be 
seen from Figs. 8 and 9, in the case of the PE transmis-
sion line model, this would require prior knowledge of the 
couplant thickness to better than a few micrometers. This 
is not practical in most laboratory setups. It is also pos-
sible to change the maximum allowable |Δ| that the NLLS 
routine will accept before terminating (and thus reducing 
the number of solutions attainable). However, there is no 
way of knowing what this threshold |Δ| should be a priori 
because some data sets will naturally be fit more easily 
than others. Consequently, it will always be necessary to 
try many possible initial guesses when using an NLLS fit-
ting routine to model PE delay data.

There is a group of solutions near vp = 6360 m/s in 
Figs. 9(a) and 9(b) that have markedly lower |Δ| than the 
other solutions shown in the figure. However, within this 
group are solutions corresponding to two different bond 
length values, specifically lc ≈ 12 to 23 μm and lc ≈ 40 to 
42 μm, as can be seen in Figs. 9(a) and 9(c). Fits of (2) 
to the data are shown in Figs. 10(a) and 10(b) for values 
of lc = 13.5 μm and lc = 40 μm, respectively (both fits 
had vp = 6361 m/s). The |Δ| of these two fits are too 
close to quantitatively reject one fit in favor of another. 
Note that both fits qualitatively capture the phase change 
in the delay data that is present around f −1 = 16 ns  
( f = 62.5 MHz). Figs. 10(c) and 10(d) show close ups of 
the correct-overlap data [i.e., n = 0 in (2)]. The model of 
the system with a 40 µm bond length [Figs. 10(b) and 
10(d)] appears to capture a feature in the data present 
around f −1 = 12.5 ns which is not captured in the lc = 
13.5 μm model. However, the lc = 40 μm model also pre-
dicts features around f −1 = 9 ns and f −1 = 24 ns which 
are not seen in the data. Thus, though the vp of the wave 
appears to be very precisely determined by the NLLS min-
imization, it is difficult to determine the bond length with 
the same certainty.

Fig. 9. The norm of the difference vector, |Δ|, considering delays collected at all carrier frequencies in the range 35 MHz ≤ f ≤ 125 MHz. (a) The 
data represented as a function of both phase velocity, vp, and couplant thickness, lc. (b) and (c) show the same data as a function of a single variable 
only. (Note that the value of the second variable is changing from point to point in (b) and (c) even though this information is not visible.)
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A linear least squares fit to the full delay data set, 
shown in Figs. 10(c) and 10(d), gives a delay of 1.591 μs 
± 0.1 ns when all seven data sets were considered. The 
relative error in the delay determination is thus on the or-
der of 10−4. This delay corresponds to a vp = 6360.9 m/s, 
which is in excellent agreement with the velocities deter-
mined using the NLLS minimization and also with the 
RUS results. Further, the |Δ| of 30 ns calculated from the 
linear least squares fit indicates slightly better agreement 
with the data than the lowest |Δ| ≈ 50 ns calculated from 
the NLLS fit. The velocities and bond lengths determined 
from this data set are compared with those determined 
from the 35 to 50 MHz data set in Table I.

D. The Number of Points Required  
for Delay Determination

This analysis emphasizes the importance of measuring 
acoustic phase delays at multiple frequencies for PE vp de-
terminations. Cross-correlation of digital signals is a pow-
erful tool that is useful for removing biases that can occur 
when overlapping the echoes by eye. However, even using 
the maximum of the cross-correlation function, it is easy 
to choose the wrong overlap by several full cycles, as can 
be seen in Fig. 6. For example, if a single delay measure-

ment were made at 52.6 MHz (f −1 = 19 ns) or 62.5 MHz 
(f −1 = 16 ns) and the cross-correlation maximum were 
chosen as the final delay, the delay would differ from the 
true delay at that frequency by +2 or −2 whole periods, 
respectively. At 52.6 MHz and 62.5 MHz, these errors are 
38 ns and −32 ns, respectively, corresponding to a +2.4% 
and −2.0% deviation from the true delay and errors of 
4.8% and 4.0% in elastic constants extracted from these 
measurements.

Given the commercial availability of broadband trans-
ducers and the ease of automated data collection and digi-
tal signal processing, it is straightforward to collect data 
at many different frequencies. The limiting factors in the 
number of data points collected need only be the center 
frequency and bandwidth of the transducer, the physical 
size and acoustic attenuation coefficients of the material 
used, and the time available for data collection. In practi-
cal measurements, one would like to collect enough data 
points to achieve the precision required by his applica-
tion and no more. One way to accomplish this would be 
first to collect delay data at the maximum, minimum and 
middle frequencies of the available bandwidth. A linear 
least squares fit to these data can be performed and the 
y-intercept recorded. Next, data would be collected at fre-
quencies halfway between each of the first three frequen-

Fig. 10. The model fit data (black dashed line) is shown on top of the measured delay data (gray data points) for a phase velocity of 6361 m/s and 
couplant thicknesses of (a) and (c) 13.5 μm and (b) and (d) 40 μm. (c) and (d) show the detail of the trace with a slope of φnet (n = 0) in panels 
(a) and (b), respectively.
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cies, giving a total of five data points. The y-intercept of 
the fit to five data points can be compared with the inter-
cept of the fit using only three points to determine if the 
fit parameters are changing by the inclusion of additional 
data. The process of successively increasing the number 
of data points and watching for a change in the fit delay 
time would be repeated until the determined delay stabi-
lizes to within the precision required by the application. 
The full data set reported in this work was analyzed as if 
the data were collected in the manner described here and 
it was determined that 129 data points were sufficient for 
analyzing these data. Fits performed using 257, 513, and 
1025 equally spaced data points found delays that were all 
within ten parts per million of the iteration immediately 
before and also were all within five parts per million of the 
fit to all 1800 data points.

V. Conclusions

This paper presents acoustic pulse–echo data with de-
lays collected over a very large range of tone-burst carrier 
frequencies to explicitly demonstrate the strong nonlin-
earities in the delay data predicted by the commonly used 
transmission line model. The data analysis presented in 
this work has compared the effectiveness of the three-me-
dia scalar transmission line model that is commonly used 
in accounting for the coupling layer in pulse–echo time-of-
flight measurements to the much more simple linear least 
squares fit to the data. Corrections made with the trans-
mission line model require the use of a two-parameter non-
linear least squares minimization routine which can easily 
lead to significant differences in extracted acoustic phase 
velocities and coupling bond lengths depending on the us-
er-input initial guesses of these parameters. Measurements 
of acoustic delays using pulses with carrier frequencies 
ranging from 35 to 125 MHz showed that the nonlinear 
least squares fitting routine can identify a phase velocity 
value in good agreement with that determined through 
RUS measurements if enough trial guesses are used. How-
ever, the model was unable to provide a quantitative cri-
terion for unambiguously determining the coupling bond 
length. Moreover, the phase velocity determined by the 
NLLS fit showed negligible difference to that found using 
the more simple linear least squares fit. When delays col-
lected from a more modest carrier frequency range of 35 to 
50 MHz were considered, the NLLS routine was unable to 
unambiguously identify either the phase velocity or bond 
length. A simple linear least squares fit of these same data 
indicated a phase velocity within half of a percent of that 
determined using RUS and the broader frequency range 
pulse echo measurements. The strongest argument in fa-
vor of the transmission line model over a simple linear 
least squares fit to delay data may be that, in theory, it 
provides information about the couplant bond length but 
this argument is not supported by the data reported here. 
This work suggests that a simple linear least squares fit to 
phase delay versus inverse frequency should be used in fa-

vor of the complex nonlinear least squares fit which results 
from the transmission line model. This is particularly true 
given that the latter does not provide unambiguous values 
for the bond length and can often lead to inaccurate val-
ues for the phase velocity.
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