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Three different sets of shallow water equations, representing different levels of approximation are
considered. The numerical solutions of these different equations for flow past bottom topography in
several different flow regimes are compared. For several cases the full Euler solutions are computed
as a reference, allowing the assessment of the relative accuracies of the different approximations.
Further, the differences between the dispersive shallow water~DSW! solutions and those of the
highly simplified, hyperbolic shallow water~SW! equations is studied as a guide to determining
what level of approximation is required for a particular flow. First, the Green-Naghdi~GN!
equations are derived as a vertically-integrated rational approximation of the Euler equations, and
then the generalized Boussinesq~gB! equations are obtained under the further assumption of weak
nonlinearity. A series of calculations, each assuming different values of a set of parameters—
undisturbed upstream Froude number, and the height and width of the obstacle, are then presented
and discussed. In almost all regions of the parameter space, the SW and DSW theories yield
different results; it is only when the flows are entirely subcritical or entirely supercritical and when
the obstacles are very wide compared to the depth of the fluid that the SW and DSW theories are
in qualitative and quantitative agreement. It is also found that while the gB solutions are accurate
only for small bottom topographies~less than 20% of the undisturbed fluid depth!, the GN solutions
are accurate for much larger topographies~up to 65% of the undisturbed fluid depth!. The limitation
of the gB approximation to small topographies is primarily due to the generation of large amplitude
upstream propagating solitary waves at transcritical Froude numbers, and is consistent with previous
analysis. The GN approximation, which makes no assumptions about the size of the nonlinearity, is
thus verified to be a better system to use in cases where the bottom topographies are large or when
the bottom topographies are moderate but the flow transcritical. ©1996 American Institute of
Physics.@S1070-6631~96!01708-4#

I. INTRODUCTION

Shallow water equations provide useful reduced dimen-
sion descriptions of free surface flows in systems like the
oceans and the atmosphere. In this paper we consider three
different sets of shallow water equations, representing differ-
ent levels of approximation. We compare the numerical so-
lutions of these different equations for flow past bottom to-
pography in several different flow regimes. In several cases
we compute the full Euler solutions as a reference, allowing
us to assess the relative accuracies of the different approxi-
mations. We also study the convergence of the results of the
more accurate DSW theories to those of the highly simplified
hyperbolic shallow water theory, as a guide to determining
what level of approximation is required for a particular flow.

The usual shallow water~SW! equations, familiar to
geophysicists, can be derived from the three-dimensional Eu-
ler equations by making the hydrostatic approximation, i.e.,
ignoring the vertical acceleration, and then averaging the
equations across the thin dimension of the flow. This corre-
sponds to the limits→0, wheres (5D/l) is the shallow-
ness or dispersion parameter, the ratio of a representative
average depth to the horizontal length scale of interest. Bet-
ter reduced dimensional descriptions can be derived by con-
sidering the nonhydrostatic pressure contributions. These de-
scriptions differ from the usual SW equations by the

presence of higher-order dispersive terms whose origin lies
in the vertical acceleration, and so are termed dispersive
shallow water~DSW! theories. Since the dispersive terms
have their origin in nonhydrostaticity, one might expect that
their importance in geophysics is restricted to small scale
flows. A recent article,1 however, suggests that the higher-
order dispersive terms may be important on global scales
also, specifically in the context of long term climate simula-
tions. Here the point is that even though the dispersive terms
are small, as estimated by scale analysis, the integration time
is long. Estimates in that article suggest that the solution
trajectories for barotropic flow in the ocean, one based on the
SW equations and the other on DSW equations, could di-
verge noticeably on time scales like 30 years.

The Green-Naghdi~GN! equations are a particular set of
DSW equations. They were first derived for one horizontal
dimension and flat bottom assuming irrotationality by Su and
Gardner.2 They were independently derived in a more gen-
eral setting, based on assumptions about the form of the ve-
locity in the thin ~vertical! dimension for a flat bottom by
Green, Laws, and Naghdi,3 and generalized by Green and
Naghdi4 for a varying bottom. The same equations have sub-
sequently been rederived by many others.5–8 The GN equa-
tions have been used in the computation of steady wave so-
lutions of permanent form~with no bottom topography!,7

study of tidal basins,9 and the generation of upstream-
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propagating solitary waves by moving disturbances in con-
nection with ships moving in a channel.10

The Boussinesq equations11 are an alternate DSW theory
and date back to the 1870s. They assume both a flat bottom
and a particular balance between the nonlinearity and the
dispersion in the problem:d5O(s2). Hered (5A/D) is the
nonlinearity parameter defined as the ratio of the typical am-
plitude of the deviation from equilibrium of the free surface
to a representative depth. The Boussinesq equations have
been generalized to include varying bottom topography and
weak stratification~e.g., see Wu12 and Camassa and Holm13!.
Different variations of generalized-Boussinesq~gB! equa-
tions have been used to study shallow fluid flow over topog-
raphy ~e.g., see Wu and Wu,14 or Lee, Yates, and Wu15!. In
fact, the phenomenon of solitary waves propagating up-
stream of a moving surface pressure disturbance16 was first
numerically simulated using the gB equations.14 A closely
related set of equations that specialize to unidirectional
waves, and which are valid when the flow is transcritical, are
the forced Korteweg-de Vries~fKdV ! equations. These equa-
tions have also been widely used to study the same phenom-
enon, but we do not address the fKdV equations in this paper
since they are specialized to unidirectional waves, and are
not valid over a wide range of Froude numbers. Neither do
we consider extensions of the Boussinesq equations which
use the velocity at a certain depth as a primary variable17,18

or their nonlinear extensions,19 since their primary utility
seems to be in fluid layers of intermediate depths, where they
have significantly improved dispersion properties.

In the flow over a two-dimensional ridge, discontinuities
appear in the SW solutions both upstream and downstream
of the ridge in the form of hydraulic jumps20 ~regions IIa and
IIb of Fig. 1!. If the shallowness parameters is identically
zero, the higher-order dispersion terms in the DSW equations

vanish and the usual SW equations are recovered. As shown
later, for a nonzero value ofs, the DSW equations will re-
solve the discontinuities of the SW equations into trains of
oscillations. In a physically analogous situation, but in the
context of the simpler KdV equation, Lax, Levermore, and
Venakides,21 have proved the convergence of the~average
over the oscillatory! KdV solution to the solution of the non-
dispersive equation in the limit of very small dispersion.
Thus, though the DSW equations we study are nonlocal and
have very different dynamical properties compared to the
usual SW equations, we use the regime diagram of the SW
equations, Fig. 1, as a guide to choosing the parameters we
study.

Although the question of the importance of nonhydro-
static effects in long time climate simulations is of great
importance, it is beyond the scope of this paper. Here we
focus on three intermediate goals: first, we want to evaluate
the utility of the GN approximation for accurately represent-
ing nonhydrostatic features of shallow fluid flow over a two-
dimensional ridge by comparing with fully nonhydrostatic
simulations of the Euler equations.~The geophysical coun-
terpart of this flow would be a mesoscale atmospheric flow
past a steep mountain or an oceanic flow past a seamount.!
Second, considering the asymptotic dependence of the gB
theory on the nonlinearity parameter, we want to establish
the regions of validity of the gB equations as an adequate
approximation of the nonhydrostatic flow. Finally, we would
like to understand the convergence of the DSW descriptions
to the SW description in the different regimes of Fig. 1.

The plan of our paper is as follows. To better illustrate
the relationship between the SW, gB, and GN equations, we
first present a derivation of these equations using the same
approach. Thus, in section II we derive the GN equations as
a vertically-integrated rational approximation of the Euler
equations and show the further restriction~details in Appen-
dix A! of the GN equations to the gB equations. In section
III, we compare the GN and gB solutions against the fully
nonhydrostatic Euler solutions for three different cases to
assess the accuracies of the DSW theories. In section IV, we
compare the SW solutions in the four different regimes of
Fig. 1 against the corresponding DSW solutions, and in sec-
tion V, we study the convergence of the GN solutions to the
SW solutions in the limit of very wide topographical fea-
tures. Conclusions are presented in section VI, and the nu-
merical schemes are briefly described in Appendix B.

II. DERIVATION OF THE DSW EQUATIONS

A. The Euler equations

The behavior of the free surface of a homogeneous layer
of fluid in the inviscid and incompressible limit is described
by the Euler equations:

dtu1w]zu52
1

r
¹p, ~1a!

dtw1w]zw52
1

r
]zp2g, ~1b!

FIG. 1. The regime diagram for the hydrostatic shallow water equations.
The x-axis is the dimensionless ridge height and they-axis is the undis-
turbed Froude number. Region I is entirely subcritical, and the free surface
dips symmetrically about the obstacle. Region III is entirely supercritical,
and the free surface rises symmetrically about the obstacle. In region IIa,
there is an upstream-propagating hydraulic jump and a stationary lee-side
hydraulic jump. In region IIb, there is an upstream-propagating and a
downstream-propagating hydraulic jump. The parameters corresponding to
the six test cases presented in this article are also shown.
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where¹5(]x ,]y) is the two-dimensional horizontal gradi-
ent operator,u5(u,v) is the horizontal velocity field,w is
the vertical velocity, anddt5] t1u•¹ is the horizontal two-
dimensional material time derivative. In the system of coor-
dinates used,z is in the direction of the vertical,x5(x,y) is
in the horizontal,h is the depth of the fluid layer,b is the
height of the bottom topography, andb1h is the height of
the free surface. These dynamical~prognostic! equations are
supplemented by the constraint~diagnostic relation! of in-
compressibility expressed as the divergence free condition,

¹•u1]zw50. ~2!

The equality of the normal-velocity of the free-surface to the
velocity of the fluid normal to the free-surface there gives
rise to the kinematic boundary condition,

w5] t~b1h!1u~b1h!•¹~b1h!,

at z5~b1h!~x,t !. ~3a!

Here we adopt the convention that if a term in round paren-
theses is preceded by a field and not an operator, then the
field is evaluated at the location given by the term in the
parentheses. The constancy of pressure at the free surface~at
a prescribed valuep0! gives rise to the dynamical boundary
condition

p~x,t !5p0 , at z5~b1h!~x,t !. ~3b!

The impermeability of the bottom surface gives rise to the
bottom boundary condition,

w5] tb1u~b!•¹b, at z5b~x,t !. ~4!

In particular flow situations, it is possible to define an
average or representative depthD and a typical horizontal
scalel. There are then two parameters of interest: the shal-
lowness or dispersion parameters defined as the ratio of the
representative depthD to the typical horizontal scalel, and
the nonlinearity parameterd defined as the ratio of typical
amplitudeA of a wave to the depthD. Since we are inter-
ested in a reduced-dimension description of shallow fluid
systems, the shallowness parameters is a convenient small
parameter for the analysis.

We nondimensionalize the various quantities as follows:

x5lx* , z5Dz* , h5Dh* , b5Db* , t5
l

c0
t* ,

~5!
u5c0u* , w5sc0w* , and p5r rc0

2p* ,

wherec05AgD is the long gravity wave speed correspond-
ing to the depthD, and the nondimensionalization ofw takes
into account Eq.~2!. Rewriting Eq.~1a!, Eq.~1b! and Eq.~2!
after dropping the asterisks, the nondimensional Euler equa-
tions are

dtu1w]zu52¹p, ~6a!

s2~dtw1w]zw!52]zp21, ~6b!

¹•u1]zw50. ~7!

Hereuuu is the spatially and temporally varying Froude num-
ber based on the long gravity wave speedAgD. Note that
this nondimensionalization does not assume the Froude num-

ber to be small; considering the importance of the small
Froude number limit to oceanic flows, we will investigate
this limit in a separate article.

B. The Green-Naghdi equations

As far as the continuity equation is concerned, no as-
ymptotics are necessary and an integration of Eq.~7! from
the bottomb to the free surfaceb1h @along with the bound-
ary conditions, Eq.~3a! and Eq.~4!# leads to

d̄ th52h¹•ū, ~8!

whered̄t5] t1ū•¹, and

ū5
1

h E
b

b1h
udz.

This is the exact vertically-averaged continuity equation,
common to all vertically-averaged shallow water equations.

The form of the vertical momentum equation, Eq.~6b!,
gives us a rational basis to expandp in terms ofs2 as

p~x,z,t !5p0~x,z,t !1s2p1~x,z,t !. ~9a!

Then from Eq.~6a!, noting thatw5O(1) as a result of the
nondimensionalization, we may expandu similarly as

u~x,z,t !5u0~x,z,t !1s2u1~x,z,t !. ~9b!

First we consider the part of the horizontal momentum
equation, Eq.~6a!,

dtu01w]zu052¹p0 , ~10!

wheredt5] t1u•¹. Note that this equation contains terms of
different orders ins2. In an attempt to vertically integrate
this equation, we proceed as follows. In the limits→0, the
vertical momentum equation, Eq.~6b!, yields

p0~z!5b1h2z, ~11!

i.e., the pressure is hydrostatic. We assume the constant pres-
sure at the free-surface,p0 in Eq. ~3b! equals zero in this
paper. Further, if the initial conditions are such that]zu050,
then from Eq.~10! and Eq.~9b!, ]zu050 for all times. In
such a case, vertical integration of Eq.~10! from b to b1h
yields

d̄ tu052¹~b1h!. ~12!

Equations~8! and ~12! ~with ū5u0!, which constitute the
leading-order approximation in the shallowness parameter
~s→0! are the classical shallow water equations.

Next we consider the remainder of the horizontal mo-
mentum equation: AtO(s2) we have

dtu11w]zu152¹p1 . ~13!

Note that in any of the equations that appear atO(s2), we
can replaceu by ū anddt by d̄t while incurring an overall
error of onlyO(s4). We vertically integrate Eq.~13! from b
to b1h:
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E
b

b1h

@ d̄tu11w]zu1#dz

5] t~hū1!2u1~b1h!] t~b1h!1u1~b!] tb1ū•¹~hū1!

2u1~b1h!@ ū•¹~b1h!#1u1~b!@ ū•¹b#

1@wu1#b
b1h1hū1~¹•ū!1O~s2!

5hd̄tū11O~s2!,

or

hd̄tū152¹~h p̄1!2p1~b!¹b1O~s2!. ~14!

To determine the nonhydrostatic pressure termsp1(b)
and p̄1 in the above equation, we use the remainder of the
vertical momentum equation, Eq.~6b!, which atO(s2) is

dtw1w]zw52]zp1 . ~15!

Since this equation is already atO(s2), we can again replace
u by ū anddt by d̄t , incurring an overall effective error only
of O(s4). Vertically integrating the continuity equation, Eq.
~7!, from b to an arbitrary heightz gives an expression for
the vertical velocityw as

w~x,z,t !5d̄tb2~z2b!¹•ū1O~s2!. ~16!

Then vertically integrating Eq.~15! from an arbitrary height
z to the free-surfaceb1h, and making use of the boundary
conditions Eq.~3b!, Eq. ~3a!, and Eq.~4!,

p1~x,z,t !5E
z

b1h

@ d̄t~ d̄tb2~z2b!¹•ū!

2~ d̄tb2~z2b!¹•ū!¹•ū1O~s2!#dz

5E
z

b1h

@ d̄t
2b1~z2b!~~¹•ū!22d̄t~¹•ū!!

1O~s2!#dz. ~17!

But from Eq.~8!,

~¹•ū!22d̄t~¹•ū!52
1

h
d̄t~h¹•ū!, ~18!

and so

p1~x,z,t !5~b1h2z!d̄t
2b2

1

2h
@h22~z2b!2#

3d̄t~h¹•ū!1O~s2!. ~19!

Therefore, the nonhydrostatic termsp1(b) and h p̄1 in Eq.
~14! are

p1~b!5hd̄tS d̄tb2
1

2
h¹•ūD , ~20!

h p̄15h2d̄tS 12 d̄tb2
1

3
h¹•ūD . ~21!

Adding s2 times Eq.~14! to Eq. ~12!, and rewriting in
the dimensional form, we get

d̄ tū52g¹~b1h!2
1

h
~¹~h p̄1!1p1~b!¹b!1O~s4!.

~22!

Here,h p̄1 and p1(b) are given by Eq.~21! and Eq.~20!,
respectively, but now in the dimensional variables. It is
worth noting here that at the initial instant~and therefore at
all later times!, the horizontal velocity has been assumed to
be z-independent at the leading order@u05u0~x,t!, but
u15u1~x,z,t! in Eq. ~9b!#. The equations~22! and~8!, result-
ing from such a near-columnar motion are called the level-I
Green-Naghdi equations.

C. The generalized-Boussinesq equations

In deriving the GN equations~above!, we made no as-
sumptions about the nonlinearity parameterd. To restrict the
GN equations to the weakly nonlinear regime, we assume
d!1, i.e., the deviation from equilibrium of the free surface
and the deviation of the flow velocity from the ambient are
both small. In particular, we assume the Boussinesq balance
d5O(s2). To be consistent with this assumption that the
response is small, we must assume that the bottom topogra-
phy ~forcing! is also small:b5O(d). Since the dispersive
terms in Eq.~22! are of higher order than the classical shal-
low water terms, we can linearize those dispersive terms~see
Appendix A!. The resulting momentum equations are

d̄ tū52g¹~b1h!1
h0

2
Dt~¹¹•~h0ū!!

2
h0
2

6
Dt~¹¹•ū!, ~23!

whereh0 is the undisturbed depth of the fluid layer~assum-
ing a flat free surface!, and whiledt5] t1ū•¹ as before, we
have now introduced the linear derivativeDt5] t1U•¹,
whereU is the constant ambient flow velocity. These are the
usual gB equations for variable bottom topography, pre-
sented here in a frame in which the topography is fixed—a
frame natural for the problems in which we are interested.

III. COMPARISON OF THE DSW SOLUTIONS TO THE
EULER SOLUTIONS

In this section we compare the GN and the gB solutions
against the Euler solutions for three different cases. The
simulated problem in each case is the flow over a two-
dimensional ridge, with the different cases representing dif-
ferent choices of Froude number and the height of the ridge.
In all the three cases, the ridge has the form

b~x!5bc~11uxu2/L2!21.5, ~24!

with the half-width parameterL set to 1.0. The height of the
ridge is changed by varyingbc .

Cases 1 and 2 are designed to challenge the GN theory.
In case 1 the ridge height is a large fraction of the total layer
thickness (bc50.65). In case 2, the incoming velocity is
critical ~i.e., Fu51.0!. Finally in case 3, the height of the
ridge is reduced to 0.2 to make it closer to the range of
validity of the assumptions going into deriving the gB ap-
proximation.
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A. Case 1

We begin with the example of a ridge with dimension-
less heightbc50.65 in a flow whose undisturbed~upstream!
Froude numberFu50.7. The nondimensional amplitude of
the first upstream-propagating solitary wave in the full Euler
solution~see the description below! for this case at time 30 is
'0.7. Since the nondimensional height of the ridge and the
amplitude of the solitary wave is so large, one might expect
poor predictions from a vertically-integrated theory. The
comparisons detailed below, however, indicate that is not the
case and that the GN equations are able to predict both the
amplitude and the time of formation of the solitary waves
reasonably well, reiterating the nonasymptotic nature of the
GN theory in the nonlinearity parameterd. ~We note that the
GN equations were derived in section II from an asymptotic
expansion of the Euler equations in only the shallowness
parameters, with no assumptions being made about the non-
linearity parameterd.!

In the present two-layer Euler computation~see Appen-
dix B 1!, the density of the upper layer is one hundred times
smaller than that of the bottom layer. For numerical reasons,
we smooth the density transition between the layers@in the
form of a hyperbolic tangent profile, Eq.~B5!#. The upper
layer is initially twice as thick as the bottom layer and the
top of the upper layer is a rigid lid. The second-order accu-
rate numerical algorithm22 is based on semi-Lagrangian
nonoscillatory forward-in-time methods.23,24 The restoring
boundaries minimize reflection of waves generated within
the computational domain and insure steady inflow. In the
Euler computation we used a horizontal cell sizeDx of 5/64
and a time step of 2/64.~All lengths in the computations are
in units of representative water depthD and the time is in
terms ofAD/g.! Figure 2 shows a time sequence of results
from the Euler simulation at times 10, 20, and 30. The plots
contain three isopycnic contours at densities values 0.105,
0.505, and 0.905 times the density of the lower layer.@The
density of the lower layer is used as the reference densityr r
in the nondimensionalization; see Eq.~5!.# In addition, the
instantaneous velocity field is indicated by arrows. While the
generation of a train of upstream-propagating solitary waves
is clear, the high level of irregular activity downstream of the
ridge may only be interpreted as indicative of physical wave
breaking. We do not consider the Euler solutions in this
downstream region in our comparisons, since after wave-
breaking, viscous mechanisms are important. However, to
address issues of implicit numerical viscosity of the Euler
solver, the same problem was repeated with a spatially
fourth-order accurate method—a method with lesser implicit
viscosity.23,24 While the upstream solutions were visually
identical but for a slightly reduced spreading of the isopyc-
nals in the case of the fourth-order scheme, we found differ-
ences only on small scales in the region of breakdown of the
flow, downstream of the ridge. This indicates the relatively
inviscid nature of the upstream solution and a dependence on
implicit viscosity of only the small scale features of the so-
lution in the region of breakdown of the flow~downstream of
the ridge!.

The GN and gB models are also based on forward-in-

time methods and use semi-Lagrangian integrations along
fluid trajectories~see Appendices B 2 and B 3!. The disper-
sive terms introduce new issues in the numerical approxima-
tions. Although these terms can be shown to be small based
on scale analysis, an explicit approximation is stable only
under further severe restrictions of the computational
timestep. We postpone a discussion of these issues to Appen-
dix B. The problem configurations for the GN and gB mod-
els are exactly the same as the lower layer of the Euler com-
putation. The calculations are now one-dimensional, and the
top and bottom boundary conditions are part of the equations
themselves.

In Fig. 3, we compare the 0.505 density contour from the
Euler solution with the GN solution at the same three times.
The continuous line is the GN solution and the heavy broken
line is the Euler solution. The gB solution is also shown at
the last time~time 30! in a lighter broken line for later ref-
erence. The GN solutions predict the amplitude of the train
of upstream propagating solitary waves very closely~an error
of less than 5%!; however the GN solitary waves are gener-
ated slightly earlier than is predicted by the Euler equations.
Based on our experience with this flow, we attribute this
difference in part to the fact that the Euler equations use two
layers of the fluid with a density ratio of a 100~as mentioned
previously!, while the density ratio assumed in the GN
theory is infinite. The GN equations fail to represent the flow
correctly in the downstream side other than that they predict
the correct minimum of the fluid surface behind the ridge.
This is, however, only to be expected since the cnoidal
waves that develop in the lee of the ridge cannot break in the
GN computation, but do in the Euler equation computation.
That is, by the very nature of the approximation, the break-

FIG. 2. Fu50.7 andbc50.65.Snapshots of the Euler solutions at 10, 20,
and 30 time units after the start of the flow. The ratio of the density of the
lower layer to the upper layer is 100. The three iso-density contours are at
0.105, 0.505, and 0.905 times the density of the lower layer. The instanta-
neous velocity field is indicated by the arrows. All length scales are nondi-
mensionalized by the undisturbed fluid depth in this and all the following
figures.
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ing of waves is excluded in any of the reduced dimension
shallow water descriptions. It remains to be verified whether
the waves that develop in the GN calculation have the same
wavelength as those that break in the Euler calculation.

Although a ridge height of 0.65 puts it far outside the
range of validity of the gB approximation, we present the gB
solution at time 30 in Fig. 3~lighter broken line!. The am-
plitude of the solitary waves is much larger and these waves
are produced much earlier in the gB approximation.~The
amplitude of the first solitary wave is in error by about 35%.!
Also the depressed region on the downstream side has ad-
vanced much farther and there are some spurious oscillations
near the first wave of the lee-side wavetrain. Despite these
differences, it should be remarked that the gB approximation
provides a fair prediction for this set of parameters, which lie
outside the range of validity of the assumptions made in its
derivation.

B. Case 2

In case 2, the flow is critical meaning thatFu51.0, and
the ridge heightbc is chosen equal to 0.4. From the Euler
solutions, we know that the first upstream-propagating soli-
tary wave begins to break by time 30 for this choice of pa-
rameters and hence this case provides another severe test
case for the GN equations.

The Euler simulation for case 2 is similar to that of case
1 excepting that the density ratio of the lower to the upper
layer is set to 1000:1 as opposed to the 100:1 ratio used in
the previous case. This larger value of the density ratio was
chosen to test the sensitivity of the comparison between the
Euler and the shallow water theories where the ratio is infi-
nite. The larger density ratio in the Euler simulations does
significantly reduce the small discrepancies between the
speed and amplitude of the solitary waves in the two simu-

lations noted in case 1. However the larger ratio also entails
greater computational expense. In particular we had to set a
tighter convergence level in the elliptic solver increasing the
number of iterations, and also the timestep had to be reduced
as the computation progressed.

Snapshots of the two-dimensional Euler computation are
shown at times 10, 20, and 30 in Fig. 4. The format is the
same as in Fig. 2, but now the three isopycnals are plotted
for density values of 0.1005, 0.5005, and 0.9005 times the
density of the lower layer. The breaking of the first
upstream-propagating solitary wave is evident at time 30,
and as before, the downstream waves have broken after time
10.

The comparison of the 0.5005 density contour of the
Euler solutions with the GN solutions at times 10, 20, and 30
is shown in Fig. 5. In that figure, the jagged heavy broken
lines are the Euler solutions, the smooth continuous lines are
the GN solutions, and the gB solutions are plotted as lighter
broken lines. The comparison between the Euler solutions
and the GN solutions on the upstream side, i.e., the ampli-
tude and speed of the upstream-propagating solitary waves
and their time of formation is excellent up to time 30, when
the Euler solution is beginning to show signs of breaking. As
in the previous case, the height of the depressed region
downstream of the ridge is very nearly the same in the Euler
and GN solutions.

As in case 1, at a ridge height of 0.4 in case 2, the gB
equations predict a larger amplitude of the upstream propa-
gating solitary waves and an earlier time of formation. In this
case, the amplitude of the first solitary wave is overpredicted
by about 35%. There is better correspondence between the
gB and GN solutions on the downstream side though the
amplitudes of the gB waves are much larger. Interestingly,
however, the shape of the Euler solitary wave seems closer
to the gB representation than to the GN representation. In

FIG. 3. Fu50.7 andbc50.65. Acomparison of the GN solutions at times
10, 20, and 30 with the 0.505 density contour of the Euler solutions. The
heavy broken line is the Euler solution and the smooth continuous line the
GN solution. At time 30, the gB solution is shown in a lighter broken line.

FIG. 4. Fu51.0 andbc50.4. TheEuler solutions at times 10, 20, and 30.
The density ratio of the lower layer to the upper layer is 1000. The format of
the picture is the same as in Fig. 2. Note the breaking of the first upstream-
propagating solitary wave at time 30.
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general, the GN solitary waves tend to be wider than the
Euler solitary wave.

C. Case 3

In case 3, we choose the undisturbed Froude number as
in case 2,Fu51.0, but reduce the height of the ridge,bc to
0.2 so that this case is closer to the range of validity of the
gB approximation than is case 2. The mesh and timestep for
both the GN and gB simulations are the same, and are iden-
tical to those used in cases 1 and 2. For the Euler run, we use
a density ratio between the lower and upper layers of 1000:1,
similar to case 2.

In Fig. 6, we compare the 0.5005 density contour from
the Euler solutions~heavy broken jagged line! with the gB
solutions~lighter smooth broken line! and the GN solution
~smooth continuous line! for case 3. The snapshot is at time
40. We see that even at this small value of the ridge height
the gB equations predict an earlier time of formation and a
slightly greater amplitude for the upstream propagating soli-
tary waves. The GN solutions again compare better in am-
plitude and time of formation of the solitary waves to the
Euler solutions. The wider nature of the GN solitary waves
~compared to the Euler solitary waves! is again evident.

It is interesting to compare the downstream waves gen-
erated in the gB and GN simulations. The initial transient
wave that moves downstream~not shown! is exactly the
same in the two solutions. This agreement, as well as the
close correspondence between the cnoidal waves far down-
stream~outside the window of presentation in this figure! is
due to the fact that these are linear features of the DSW
theories and are progressing over a flat bottom. We note that
for the GN equations to go over to the gB equations, in
addition to a linearization of the dispersive terms, it is nec-
essary to make assumptions about the size of the bottom
topography. A noticeable difference between the two solu-
tions is the larger amplitude of the cnoidal waves just down-
stream of the depressed region of fluid behind the ridge and
the slightly shorter wavelengths of these waves in the gB
solutions.

The comparisons between the Euler solutions and the
GN solutions in the above three cases demonstrate convinc-
ingly the utility of the GN equations for accurately predicting
vertically-averaged features of a nonhydrostatic flow with
large nonlinearities. Further, from the above test cases, we
conclude that the gB theory is quantitatively adequate only
when the bottom topographies are less than about 20% of the
undisturbed water depth. This is in agreement with Lee,
Yates, and Wu,15 who found that the solutions of the gB
equations agreed with tow-tank experiments for bottom to-
pographies of about 15% of the undisturbed water depth.

IV. COMPARISON OF THE SW SOLUTIONS TO THE
DSW SOLUTIONS

In the SW regime diagram of Fig. 1, there are four dis-
tinct regions: Region I where the flow is entirely subcritical,
region III where the flow is entirely supercritical, and region
II where there is an upstream-propagating hydraulic jump
and a lee-side hydraulic jump. Region II is divided into two
subregions: region IIa where the lee-side hydraulic jump is
stationary and region IIb where the lee-side hydraulic jump
propagates downstream. In this section we compare the SW
solutions with the GN and gB solutions in each of these four
regimes. As representative of region IIb, we consider case 2
discussed earlier, and for regions IIa, I, and III, we introduce
cases 4, 5, and 6, respectively, where in case 4:bc50.50,
Fu50.45; case 5:bc50.15, Fu50.50; case 6:bc50.40,
Fu52.00. The SW solutions~dot-dashed lines!, the GN so-
lutions ~continuous lines!, and the gB solutions~dashed
lines! for these four cases are presented in Fig. 7.

As mentioned earlier, the SW theory differs from DSW
theories by allowing the formation of discontinuities in the
form of hydraulic jumps where the gradients of various
quantities become infinite. After the formation of these hy-
draulic jumps, the solutions satisfy the SW equations only in
a weak sense. In particular, the numerical model requires
some dissipation of energy to regularize the solution and
avoid unphysical oscillations. This dissipation usually takes
the form of an artificial viscosity in numerical models, and is
either implicit in the differencing scheme or is added explic-
itly. The second-order adaptive discrete-velocity method dis-
cussed in Nadiga,25 provides one such implicit artificial vis-
cosity scheme to simulate the SW equations. We have found

FIG. 5. Fu51.0 andbc50.4. A comparison of the GN solutions at times
10, 20, and 30 with the 0.5005 density contour of the Euler solutions. The
jagged heavy broken line is the Euler solution and the continuous smooth
line is the GN solution. The gB solution is shown in lighter broken lines.

FIG. 6. Fu51.0 andbc50.20.Snapshot at time 40 of the Euler~jagged
heavy broken line!, GN ~continuous line!, and gB~lighter broken line! so-
lutions.
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this method superior to either adding explicit artificial vis-
cosity to the semi-Lagrangian scheme or increasing the im-
plicit viscosity by making the interpolation step of the semi-
Lagrangian scheme nonoscillatory, i.e., the level of
oscillation at a hydraulic jump is much smaller with the
adaptive discrete-velocity method. The SW solutions for all
the cases were computed using this adaptive discrete-
velocity scheme. The sameDx of 5/64D ~as in the previous
Euler, GN, and gB computations! was used in the SW cal-
culations and the time step corresponded to a CFL number of
about 0.8. The errors in the SW solutions resulting from our
numerical model, when compared to the asymptotically ex-
act values for the SW equations, are of the order of 1%.

We consider a related aspect of the method of solution of
the gB equations for case 4, the case where the SW equations
develop a stationary lee side hydraulic jump~see Fig. 1!. In
this case, it was necessary to introduce a certain amount of
artificial dissipation in the code for the gB solution while
there was no such need for the GN solution. This dissipation
resulted from making the interpolation step in the semi-
Lagrangian solver nonoscillatory by adding donor cell flux
corrections to the original centered differences. This was
done on anad hocbasis since there is no analytical theory to
indicate that the introduction of an artificial dissipation
would result in a weak solution of the gB equations. Further,
the introduction of such dissipation affects the flow more

globally than just in the region of steep gradients it was
intended to resolve, and now the depressed region behind the
ridge grows with time.~This is related to the nonlocal nature
of the DSW theories.! The SW ~i.e., s→0! solution has a
stationary hydraulic jump on the lee side of the ridge, and the
GN solutions can be interpreted as having resolved this hy-
draulic jump into a train of waves, the leading edge of which
stands at about the location of the hydraulic jump~see case 4
in Fig. 7!. Such an interpretation is however, not possible
with the gB solutions since the leading edge of the wave
train is now propagating downstream. We are thus faced
with a problem in the realization of the gB solutions, though
perhaps only from a computational point of view—without
the artificial dissipation, the calculation cannot be continued
and with the dissipation, thes→0 limit is lost.

The qualitative differences between the SW solutions
and the DSW solutions~the GN and the gB solutions! for
cases 2 and 4~in Fig. 7! are attributable to the presence of
discontinuities in the SW solutions. What is striking, how-
ever, is the trend of the SW equations in region IIb of Fig. 1
~represented here by case 2, Fig. 7! to predict a lower level of
the free surface in the depressed region just downstream of
the ridge and a higher level~compared to the average eleva-
tion of the DSW solutions! in the region upstream of the
ridge. Considering only the region of the uniform depressed
shelf downstream of the ridge in case 2, the SW solution is in
error by at least 20%, noting that the GN solution for this
case has been verified previously by direct comparison to the
full Euler solution. This difference between the GN solution
and the SW solution is at first sight disturbing. Since this
region is locally flat, it would seem that the contributions of
the dispersive terms would have to be negligible here, im-
plying that the GN equations would have to predict the same
depression of the free surface as the SW equations. The
above argument is however incorrect in view of the fact that
the DSW theories are nonlocal. A similar trend of overpre-
diction of the elevation of the free surface upstream of the
ridge and the depression of the free surface downstream of
the ridge is evident in case 4~in Fig. 7! also. Finally for
cases 5 and 6~see those cases in Fig. 7!, though there are no
discontinuities in the SW solutions, it is clear that there are
still large dispersive corrections to the SW solutions. In fact,
the SW solution in case 5 is qualitatively different from the
DSW solution for that case downstream of the ridge. For
cases 5 and 6, the differences between the GN and the gB
solutions are of the same nature as discussed earlier.

The above comparisons between the SW solutions and
the DSW solutions indicate that when the undisturbed up-
stream Froude number and the height of the bottom topog-
raphy are such that discontinuities occur in the SW solutions,
they are regularized by dispersion in the DSW solutions.
While it is difficult to quantify this difference between the
SW and DSW solutions, it is clear that the nonlocal nature of
the DSW equations results in substantial quantitative correc-
tions to the SW solutions even in uniform regions like the
depressed shelf downstream of the obstacle.

FIG. 7. A comparison of the SW solutions~dot-dashed lines!, the GN so-
lutions ~continuous lines!, and the gB solutions~dashed lines! for four cases
corresponding to the four regions of Fig. 1. Case 2:Fu51.00,bc50.40,
time530. Case 4:Fu50.45, bc50.50, time540. Case 5:Fu50.50,
bc50.15,time5180. Case 6:Fu52.00,bc50.40,time530. Note that the
SW solutions overpredict the elevations and the depressions of the free
surface.
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V. THE DISPERSIVE DIFFERENCES FOR VERY
GENTLE TOPOGRAPHIES

In Fig. 8, we present the SW solutions~dot-dashed lines!
and the GN solutions~continuous lines! for the same four
cases as in Fig. 7, but now with the ridge in each of the cases
being 10 times wider than in Fig. 7. The agreement between
the SW solutions and the GN solutions is almost perfect for
cases 5 and 6, and it is clear from cases 2 and 4 that for these
very gentle bottom topographies, the differences between the
SW solutions and the DSW solutions are mainly related to
the discontinuities in the SW solutions.

In view of the above comparison between the SW solu-
tions and the GN solutions, we may conclude that the SW
level of description is a faithful representation of the flow
only when the Froude number and ridge heights are such that
the flow is either entirely subcritical or entirely supercritical
and the slope of the ridge is very gentle. Our numerical re-
sults further suggest that in cases where the discontinuities of
the SW solutions are regularized by dispersion in the DSW
solutions, the DSW solutions converge in a weak sense~i.e.,
the average over the oscillations! to the SW solutions in the
limit of extremely wide topographical features.

VI. CONCLUSIONS

Reduced dimension descriptions of inviscid shallow
fluid flows are easier to simulate than the full three-
dimensional Euler equations. Such descriptions have been
derived at several different levels of approximation. The

usual shallow water~SW! equations constitute the leading-
order reduced dimension approximation derived from an as-
ymptotic expansion in the shallowness parameter and assume
hydrostatic balance. Nonhydrostatic terms at the next order
restore the dispersive nature of the gravity waves and thus
lead to dispersive shallow water~DSW! models. Since these
model equations are obtained by a vertical-averaging proce-
dure, wave breaking and related phenomena cannot be incor-
porated within this framework.

In this paper we first compared the relative accuracies of
two DSW theories—the Green-Naghdi~GN! theory and the
generalized Boussinesq~gB! theory—by making direct com-
parisons to the full Euler solutions in three different cases
and then considered the relationship between the SW and
DSW theories using three additional representative cases.
Each set of equations were integrated numerically to solve
the flow over a two-dimensional ridge. The DSW equations
are a singular perturbation extension of the SW equations,
and so required novel algorithmic formulations~discussed in
Appendix B!.

We find that the GN equations predict important features
of the flow~excluding wave breaking! accurately over a wide
range of parameters. The gB equations capture qualitatively
the same features of the flow in all the regimes considered,
although some of the cases were far outside of their asymp-
totic range of validity. For the gB model to be quantitatively
correct, features of the bottom topography have to be less
than about 20% of the undisturbed fluid depth. For most of
the cases considered, the SW solutions were qualitatively
incorrect. However this does not contradict the usefulness of
the SW approximations for many applications. The appear-
ance of the dispersive corrections to the SW equations as the
highest-order derivatives leads to difficulties in quantifying
the differences between the SW and DSW descriptions, but
our numerical simulations seem to indicate that the DSW
solutions converge in a weak sense~i.e., averaging over the
oscillations! to the SW solutions in the limit of very wide
topographical features.
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APPENDIX A: LINEARIZATION OF THE DISPERSIVE
TERMS

Since no assumptions are made about the size of the
nonlinearity in the derivation of the Green-Naghdi equations,
the resulting dispersive terms there are nonlinear. In this ap-
pendix, we show how a linearization of the dispersive terms
leads to the dispersive terms of generalized-Boussinesq

FIG. 8. The SW solutions~dot-dashed lines! and the GN solutions~continu-
ous lines! for the same four cases as in Fig. 7. The only difference is that the
ridges are now 10 times wider than in Fig. 7. The dispersive corrections are
now confined to cases for which the SW solutions have discontinuities.
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equations. For simplicity, considering stationary bottom to-
pographies, the dispersion terms in the GN equations are

1

h*
¹Fh*2 dtS 13 h*¹•u*2

1

2
u* •¹b* D G

1dtS 12 h*¹•u*2u* •¹b* D¹b* , ~A1!

whereb
*

5b/D, h
*

5h/D, andu
*

5u/c0 , i.e., no assump-
tions have been made on their sizes. If the nonlinearity is
assumed small, i.e., the deviations from the ambient condi-
tions are of orderd!1, then

h*5h01O~d!, u*5U1O~d!⇒¹•u*5O~d!,

b*5O~d!. ~A2!

In the above equation,U is the constant ambient velocity and
h0512b

*
is the depth of the undisturbed fluid layer. The

latter also implies that ¹h05O(d). Further, since
dt5]/]t1u

*
•¹, dt5Dt1O(d), whereDt is the linear de-

rivative ]/]t1U•¹. Inserting Eq.~A2! in Eq. ~A1!, we have

1

h0
¹Fh0

2DtS 13 h0¹•u1
1

2
u•¹h0D G1O~d2!. ~A3!

Note in the above equation that the second term of Eq.~A1!
makes no contribution at the leading order ind, and that
there are stillO(d2) terms in the first term of Eq.~A3!.
Further manipulation of Eq.~A3! under the same assump-
tions gives the linearized dispersion terms as

h0

2
Dt~¹¹•~h0u!!2

h0
2

6
Dt~¹¹•u!. ~A4!

APPENDIX B: THE COMPUTATIONAL MODELS

1. Numerical model for the Euler equations

We solve the incompressible Euler equations:

dv

dt
52

1

r
¹f2gS 12

r0
r D¹z, ~B1a!

dr

dt
50, ~B1b!

¹•v50, ~B1c!

wheref denotes the pressure perturbation from a hydrostati-
cally balanced environment characterized by a density profile
r05r0(z), g is the acceleration of gravity, and other vari-
ables have their usual meaning. Equations~B1! ~cast in stan-
dard, nonorthogonal, terrain-following coordinates26! are in-
tegrated along flow trajectories on a discrete, regular,
nonstaggered mesh using a second-order accurate semi-
Lagrangian finite difference approximation of Smolarkiewicz
and Pudykiewicz.23 Briefly, the model algorithm treats the
prognostic equations~B1a! and ~B1b! in the symbolic form

dc

dt
5Fc, ~B2!

whose integral along a parcel trajectory assumes the
trapezoidal-rule approximation,

c i
n115~c10.5DtFc!o10.5DtFcu i

n11

[c̃o10.5DtFcu i
n11. ~B3!

Heren, i, andDt have the traditional meanings of the time
level, position on the grid, and the temporal increment, re-
spectively. The subscripto appearing at the first term on the
right hand side of Eq.~B3! refers to ac̃ field value at the
departure point~xo,t

n! of the trajectory arriving at the grid
point ~xi ,t

n11!; here, it denotes an elaborate, second-order
accurate, monotone, nonlinear interpolation algorithm.24 The
departure pointsx0 are evaluated to second-order accuracy
by a two pass iteration of

xo5xi1E
tn11

tn

v~x,t !dt,

approximated in the spirit of Adams-Bashforth schemes as

xo5xi20.5Dt~vo12vi
n2vi

n21!, ~B4!

following the mid-point algorithm in section 4 of Smolark-
iewicz and Pudykiewicz.23 The elliptic pressure equation,
which follows from the incompressibility constraint~B1c!
imposed on the discretized momentum equation~B1a!, is
solved using the method of conjugate residuals~e.g., see
Smolarkiewicz and Margolin22,27 for algorithmic details and
a further discussion!.

The model setups adopted for the simulations in section
III are as follows. The ambient conditions assume the uni-
form ambient flow ofu` and a density profile,

r0~z!

r r
5S 120.5DrS 11tanhS ~z2D !

e D D D , ~B5!

with Dr either equal to 0.99 or 0.999,D51, ande52/64.
The bell-shaped hill~24! forms the lower boundary of the
model. The boundary conditions assumed are free-slip rigid-
lid at both the top and bottom boundaries. At the lateral
boundariesu5u` ; the gravity-wave absorbers near the lat-
eral boundaries attenuate the solution toward ambient condi-
tions with an inverse time scale that increases linearly from
zero at the distance 26DX'2D from the boundary to
(16Dt)21'(3L/u`)

21 at the boundary. The model domain
(x,z)P[220D,20D]3[0,3D] is resolved with NX3NZ
5512396 uniform grid incrementsDX55/64 andDZ52/
64. The initial condition is the potential flow past the hill in
Eq. ~24!. Details of the model performance in a similar flow
situation may be found in Rotunno and Smolarkiewicz.28

2. Numerical model for the Green-Naghdi equations

The presence of high-order time derivatives on the right
hand side of the Green-Naghdi equations written in a La-
grangian form complicates the semi-Lagrangian approxima-
tion of these equations. In the model that is used in the simu-
lations of section III, the depth equation is solved explicitly
to obtain the new depth and then the momentum equations
are solved implicitly to obtain the new velocity fields. The
departure point is found to second-order accuracy as in Eq.
~B4!, but now with the three-dimensional velocity fieldv
replaced by the two-dimensional horizontal velocity fieldu.
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In what follows, we briefly present the modeling of the depth
equation and the momentum equations separately.

A. The depth equation

With a provision for the restoring boundaries, the depth
equation, Eq.~8!, is now

dh

dt
52h¹•u2

h2ha

t
. ~B6!

The instantaneous flow JacobianJ measures the rate of con-
traction or expansion of a parcel of fluid:29

J5
]x

]xo
5

]~x,y!

]~xo ,yo!
, ~B7!

and is evaluated following the departure point calculations of
Eq. ~B4!. From the definition of the velocity divergence,30

¹•u5¹•
dx

dt
5
1

J

dJ

dt
. ~B8!

Substituting Eq.~B8! in Eq. ~B6!,

1

J

dhJ

dt
52

h2ha

t
. ~B9!

A mid-point integration~trapezoidal rule! over the parcel tra-
jectoryT connecting~xo,t0! and ~xi ,t1! results in

hJ2ho

Dt
52

1

2 H Fh2ha

t G
0

1
h2ha

t
JJ , ~B10!

where the Jacobian is calculated such that at the departure
point J0 is identically unity. Further manipulation of the
above equation leads to an explicit expression for the depth
of the fluid layer at the arrival grid point at the new time
level:

h5Fh2
Dt

2t
~h2ha!G

0

J212
Dt

2t
~h2ha!, ~B11!

rewritten for convenience as

h5
h̃J211ha~Dt/2t!

11~Dt/2t!
. ~B12!

B. The momentum equation

With the boundary restoring terms included, the momen-
tum equation is

du

dt
52¹~h1b!1

1

h
¹S h2

da

dt D1
db

dt
¹b2

u2ua
t

,

~B13!

where

a5S 13 h¹•u2
1

2
u•¹bD ,

b5S 12 h¹•u2u•¹bD ,
from Eq. ~22!. Note that although at this stageh is known,
the right hand side is nonlinear inu. The dispersive terms in
the above equation being the highest-order time derivatives

in the equation necessitate an implicit solution of the two-
dimensional velocity field. Manipulating the above equation
to put it in a form more amenable to the semi-Lagrangian
technique,

du

dt
52¹~h1b!12

da

dt
¹h1h

d

dt
¹a1h¹u•¹a

1
db

dt
¹b2

u2ua
t

.

All the terms in the above equation can be evaluated at the
mid-point of the Lagrangian trajectory~connecting the grid
point at the advanced time level and the departure point at
the known time level!, except the2h¹u•¹a term. This
term, which is quadratic in the¹u, is much smaller than the
other three dispersive terms and is evaluated entirely at the
departure point without significantly affecting the overall ac-
curacy of the integration.~This has been verified by using a
predictor-corrector algorithm to evaluate the nonlinear term
at the mid-point of the parcel trajectory.! Now writing down
the mid-point integration formula for the above equation
over the particle trajectoryT results in

u2uo
Dt

52
1

2
~¹~b1h!1@¹~b1h!#o!1~¹h1@¹h#o!

3
a2ao

Dt
1
1

2
~¹b1@¹b#o!

b2bo

Dt

1
1

2
~h1ho!

¹a2@¹a#o
Dt

1@h¹u•¹a#o

2
1

2 S u2ua
t

2Fu2ua
t G

o

D , ~B14!

whereQ0 indicates that the fieldQ is evaluated at the depar-
ture pointx0. Since this equation is linear inu, it may be
symbolically written as

L~u!5û,

whereL is the linear operator in Eq.~B14!. The complexity
of the linear operator and the fact that the field to be solved
for above is two dimensional makes it quite cumbersome to
put it in the matrix form: we solve it by the method of con-
jugate residuals.

3. Numerical model for the generalized-Boussinesq
equations

The departure point evaluation and the explicit solution
of the depth equation proceed exactly as for the Green-
Naghdi equations. Only the discretization of the momentum
equation, Eq.~23!, is different and is described below.

The gB momentum equations with the restoring terms
included are
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du

dt
52¹~h1b!1

h0

2
Dt~¹¹•~h0u!!2

h0
2

6
Dt~¹¹•u!

2
u2ua

t
,

whereDt is the linear derivative] t1U•¹, and whereU is the
constant ambient flow velocity. Approximating the above
equation at the mid-point of the Lagrangian trajectory, we
get

u2uo
Dt

5
1

2
~¹~b1h!1@¹~b1h!#o!

2
1

2 S u2ua
t

2Fu2ua
t G

o

D
2
1

2

h01@h0# lo
2

¹¹•~h0u!2@¹¹•~h0u!# lo
Dt

2
1

6 S h01@h0# lo
2 D 2 ¹¹•u2@¹¹•u# lo

Dt
,

~B15!

whereQlo refers to the value of the quantityQ at the depar-
ture point corresponding to the uniform velocityU
~xlo5xi2U!. Again as with the GN case, the above equation
is linear in u and constitutes an elliptic problem which is
solved by the method of conjugate residuals. ReplacingQl0
in the above discretization byQ0 , the value ofQ evaluated
at the nonlinear departure point resulted only in negligible
changes to the solution.

The horizontal discretization, the time step, and the grav-
ity wave absorbers are exactly the same as for the Euler
model for both the GN and the gB models. The flow in the
GN and gB models is started impulsively at time zero, and is
unlike in the Euler model where the initial condition corre-
sponds to the potential flow solution. The computation of the
Euler solutions were carried out on the Cray YMP at Na-
tional Center for Atmospheric Research and the computation
of the SW and DSW solutions were carried out on the Con-
nection Machine CM-5 in the Advanced Computing Lab at
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