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Although molecular-dynamics simulations can be parallelized effectively to treat large systems~106–108

atoms!, to date the power of parallel computers has not been harnessed to make analogous gains intimescale.
I present a simple approach for infrequent-event systems that extends the time scale with high parallel effi-
ciency. Integrating a replica of the system independently on each processor until the first transition occurs gives
the correct transition-time distribution, and hence the correct dynamics. I obtain.90% efficiency simulating
Cu~100! surface vacancy diffusion on 15 processors.@S0163-1829~98!51420-8#

With the increasing prominence and availability of multi-
processor computers, recasting problems in a form amenable
to parallel solution is becoming a critical step in effective
scientific computation. For dynamical systems, assigning a
region of physical space to each processor is an efficient way
to extend the accessible size scale. Using this approach,
molecular-dynamics~MD! simulations as large as 106– 108

atoms are now practical.1,2 Unfortunately, using the same
algorithm on a small system~e.g., ,103 atoms!, with the
goal of applying the parallel power to the time scale, is in-
efficient because the algorithm becomes communication
bound.

For some classical systems, the long-time dynamics are
characterized by extended residence times in a potential ba-
sin, with an occasional transition to a new basin. These
‘‘infrequent-event’’ processes are common in many fields of
current interest. Examples include diffusion and reorganiza-
tion processes on a surface during film growth, vacancy dif-
fusion at a grain boundary, annealing of a damaged region of
crystal after ion-implantation, and diffusion of an absorbate
through a zeolite.

A feature of infrequent-event systems is the separability
of the two characteristic time scales: the brief duration of a
transition event and the long waiting time between events.
Direct MD integration of the long waiting period is often
unnecessary because transition-state theory~TST! can be
employed to compute the rate constant directly, provided the
dividing surface for the reaction is known. Sometimes, how-
ever, the available reaction mechanisms are not easily deter-
mined due to the complexity of the system. In these cases, it
would be extremely useful to investigate the system behavior
with a direct simulation method such as MD, as it requires
no advanced knowledge of the available pathways. However,
MD is currently limited to nanoseconds. It is thus of great
interest to develop ways to extend the MD time scale, and
research efforts along these lines are underway.3,4

The purpose of this paper is to show that the properties of
an infrequent-event system can be exploited in a different
way to develop an efficient parallel approach to the dynam-
ics. For a system in which successive transitions are uncor-
related~the usual case for diffusive processes in materials!,
running a number of independent trajectories in parallel
gives the exact dynamical evolution from state to state. For a
system with correlated crossing events, the state-to-state se-

quence is still correct, and the associated time scale has
small, controllable errors. With this approach, the power of
parallel processing can be applied to make substantial exten-
sions in the MD time scale for small infrequent-event sys-
tems. For example, in the Cu~100! simulation discussed be-
low, a 15-processor implementation gives a 14-fold increase
in simulation time per wall-clock time. Moreover, this
method can be combined with other methods for extending
the MD time scale, such as the recently presented hyperdy-
namics method,4 giving a multiplicative effect in the time
scale gain. I present a derivation and demonstration for an
atomistic system, but the generality of the approach should
make it useful in a variety of applications.

Consider a classical, canonical system ofN atoms vibrat-
ing in a basin of the 3N-dimensional potential energy sur-
face. It is assumed that the dynamical exploration of this
basin is ergodic. Available to this system are a number (nesc)
of possible escape routes, each corresponding to a section of
the total dividing surface bounding this state. Eventually the
trajectory finds a point on the dividing surface and passes
through it to another state. Following this initial crossing~the
primary event!, there is a period of time (tcorr) during which
the system remembers how it entered the new state, and there
may be dynamically correlated surface crossings that return
the system to the original state or send it on to another
state.5,6 tcorr is system dependent; for processes of primary
interest here, such as bulk or surface diffusion, it is typically
a few Einstein vibrational periods~;1 ps!. At times greater
than tcorr after the primary event, by definition, the trajec-
tory has no memory of how it arrived in the new state. The
probability of finding a particular escape pathway from the
new state is now unbiased, in the sense that it depends only
on the properties of the dividing surface for that pathway.
Because the average time until the next escape is much
greater than the system memory time (tcorr), many indepen-
dent attempts are made to find an escape path during the
ergodic exploration of the basin. The success probability per
unit time is thus a constant, creating a first-order process.
Defining ktot as the total rate constant for finding the next
escape path from this state, the probability distribution for
the waiting time before the next primary crossing event is
given by7

p~ t !5ktotexp~2ktott !. ~1!
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In a system that exhibits no correlated crossing events,ktot is
exactly the TST rate constant (kTST). kTST is defined as the
outgoing flux through the total dividing surface, an equilib-
rium property of the canonical system.8,9 In the more general
case, in which correlated crossings occur,ktot,kTST, be-
cause some phase-space points on the dividing surface are
unavailable for a primary crossing event; the system passes
through those points only during the subsequent correlated
crossing events.9,5 Either way,ktot is a well-defined quantity,
which ~if desired! can be calculated exactly if the whole
dividing surface is known.5

The dynamical evolution of the system can be summa-
rized in the following way. Assuming that at leasttcorr has
passed since the trajectory entered the present state, Eq.~1!
gives the exact waiting time distribution until the next escape
crossing occurs. When it does occur, during a transient time
tcorr from the primary event, the trajectory may execute ad-
ditional state-to-state transitions correlated with the primary
crossing, after which it thermalizes in some state~perhaps
the original one!, and the cycle begins again with the value
of ktot for the new state. I now derive the parallel-replica
method, which is surprisingly simple.

I first assume that when a transition occurs, it can be
detected. This may not be possible for all systems, but is
required for implementing this method. One approach is to
interrupt the MD simulation periodically to perform a
steepest-descent or conjugate-gradient minimization, leading
the system towards the minimum of its current potential ba-
sin. Even with a partially converged minimization, compari-
son of the geometry to that of a previous minimization will
signal when a new basin has been entered. This requires no
advanced knowledge of the nature of the transition. By
choosing the number of MD steps between quench interrup-
tions much larger than the number of steepest-descent steps,
this transition monitoring need not excessively slow the
simulation.

Now consider simulatingM replicas of this same system
on M different processors. Each replica starts in the same
state, but with a different initial condition for the trajectory,
so that the replicas are statistically independent. Assume for
the moment that allM processors are equivalent and run at
the same speed. DefineS as the summed speed of all the
processors, relative to the speed of processor number 1;S
5M in the present case. The key point is that this set ofM
replicas acts the same as a supersystem withMnesc escape
paths; i.e., it is equivalent to a physical system whereM
replicas have been placed side by side. Modifying Eq.~1! to
account for the increased number of escape paths and the
new total escape rate (Sktot) gives the escape-time probabil-
ity distribution for this supersystem as a function oft1, the
trajectory time on processor number 1,

psuper~ t1!5Sktotexp~2Sktott1!. ~2!

This is the probability distribution for the time until the next
primary event occurs onany of the processors. At a given
point in time, the accumulated simulation time summed over
all the replica trajectories is related tot1 by

tsum5St1 . ~3!

Inserting this relation into Eq.~2!, and recognizing that
(1/S)p(t/S)dt5p(t)dt for any probability distributionp,
gives

psuper~ tsum!5ktotexp~2ktottsum!. ~4!

Comparison of Eq.~4! with Eq. ~1! shows that runningM
independent replica simulations and defining the time (tsum)
as in Eq.~3! results in the correct probability distribution for
the escape time from this state. After a transition occurs, the
value for ktot changes,10 but again~after integrating for a
period of at leasttcorr on a single processor! the parallel
trajectories give the correct waiting time probability distribu-
tion for the new state. Moreover, the parallelization has no
effect on the relative probabilities of the different possible
escape paths. Thus, if the parallel-replica trajectories are
monitored continuously for transitions,both the sequence of
states and the transition times in this parallel simulation are
indistinguishable from a simulation on a single processor.
This is true even if the processors run at different, time-
varying speeds, as shown below. Using intermittent transi-
tion checks~rather than continuous monitoring! introduces
controllable errors in the transition times if there are recross-
ing events. This is also discussed below.

The steps in the parallel-replica simulation procedure are
as follows: ~1! The current configuration of the system is
replicated onM processors.~2! A minimization is performed
to generate a reference configuration for transition checks.
~3! On each processor, after a momentum randomization
stage to eliminate correlations with other replicas, a classical
trajectory is integrated. A thermostat is used to control the
temperature.~4! Each replica trajectory is monitored for a
transition event by performing a quench after eachDtblock of
integration time. When one processor (i ) detects an event, all
processors are notified to stop. The time of this primary tran-
sition can be refined to arbitrary precision if desired.~5! The
simulation clock is advanced bytsum, the sum of the trajec-
tory times accumulated by allM replicas since the beginning
of step~3!. ~6! On one processor, replicai is integrated for-
ward for a prechosen time (Dtcorr>tcorr), during which
new transitions may occur. The simulation clock is advanced
by Dtcorr . ~7! Replica i becomes the new configuration of
the system.~8! Go to step~1!.

In this procedure, an exact mapping between the system
configuration and the simulation clock can only be made at
the time of each transition. Information on finer time scales,
e.g., regarding vibrational behavior, can be obtained from
any of the individual replica simulations. The procedure is
efficiently parallel if the typical escape time is much larger
thanDtcorrS and if the wall-clock time between transitions is
much greater than the communication time required in steps
~1! and~4! when a transition occurs. Between transitions, no
interprocessor communication is required. An appealing fea-
ture is that ifDtcorr is chosen too conservatively~larger than
necessary!, the dynamics are still correct, because Eq.~4! is
valid for the remaining time before the next escape, regard-
less of when the parallelization begins.

I now consider the effect of the intermittent transition
checks~noninfinitessimalDtblock!. For a TST-obeying sys-
tem, the dynamics are still exact provided that when a tran-
sition is detected, the most recent integration block is reana-
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lyzed to pinpoint the time of transition. If errors of the order
of Dtblock/2 are acceptable, the transition time can be taken
as halfway through the most recent integration block. Pro-
vided thattesc@Dtblock , this gives an error whose average
is negligible. For systems with correlated events, there is one
additional source of error in the transition times. A recross-
ing event~in which the trajectory quickly reenters the state it
just exited! that occurs within one integration block will be
invisible to the transition monitoring. Ideally, at the instant
of the first escape~on processori ), the otherM -1 trajectories
should be stopped while the correlated event takes place.
When the trajectory reenters the state at a timeDt recross
later, the otherM -1 trajectories can be restarted immediately
without biasing the dynamics, assuming that this is the end
of the correlated sequence. Each hidden recrossing thus
causestsum to accumulate (S21)Dt recross more time than it
should. This is a controllable error. The largerDt recross is,
the more often the recrossing event will cross over an inte-
gration block boundary rather than being hidden. By count-
ing these events and measuring their durations, an estimate
of the number and effect of the hidden recrossings can be
easily made.

In general, the processor speeds may be inequivalent, hav-
ing speeds relative to processor number one given by$si ;
i 51,2, . . . ,M ; s151%, and a summed speed of

S5(
i

M

si . ~5!

The supersystem now consists of a set ofM systems where
the rates within each systemi have been scaled bysi . Be-
cause the total escape rate is given by( i

Msiktot5Sktot , the
proof that the parallel simulation gives the correct waiting
time distribution proceeds just as in Eqs.~2! through ~4!,
using the new definition forS in Eq. ~5!.

Finally, I consider the case in which the processor speeds
are not constant in time. Due to the characteristics of a first-
order process, at any point in time (tp) at which a transition
has not yet occurred, the future probability distribution for
the waiting time measured fromtp is the same normalized
exponential function@Eq. ~4!# as whent was measured from
t50. If the processor speeds$si% change abruptly att5tp ,
the ~exact same! probability distribution for the parallel tra-
jectories can be rederived using the new set of speeds. As
this hypothetical rederivation can be applied as often as nec-
essary, the parallel-replica method is valid for arbitrary fluc-
tuations in the individual processor speeds.

As a demonstration, I apply the parallel-replica method to
the diffusion of a surface vacancy on the Cu~100! surface at
T5500 K. Although the real power of this method lies in
applications to systems where the pathways are numerous
and unanticipated~and preliminary tests indicate it works
well in those situations!, proving the dynamics are correct
requires a simple system. This case was intentionally con-
structed to have only one reaction pathway, so that the
escape-time probability distribution could be computed and
compared to the exact result. The copper interaction was
described using an embedded atom method~EAM!11 inter-
atomic potential, fit following the procedure described in
Ref. 12, with a053.615 Å, Ecoh53.54 eV, and
B51.41931012 erg/cm3, resulting in the parameters

DM50.7366 eV,RM52.325 Å,aM51.919 Å21, bM54.043
Å 21, andr cut54.961 Å. The simulation cell~see Fig. 1 in-
set! consisted of five layers of atoms, 18 atoms per layer~17
in the top layer!, with periodic boundary conditions parallel
to the surface. The substrate-exchange pathway was sup-
pressed by restricting the number of moving layers to two,
allowing only hopping events. The equations of motion were
integrated using a Langevin-Verlet algorithm13 with a time
step of 2310215 s and a Langevin coupling constant of 2
31011 s21. Both Dtblock andDtcorr were set to 2310212 s.
The parallelization was implemented on 16 processors using
a message-passing interface. A master-slave configuration
was chosen for these initial tests, givingM515.

To decorrelate the replica trajectories, the momenta were
randomized~by drawing from aT5500 K Maxwellian dis-
tribution! every 1.0 ps for the first 10 ps. Transitions were
not prevented from occurring during this period, although
none did. Alternatively, the randomization stage could be
performed beforet i50, with rejection of any transition at-
tempts during this period. These two methods gave indistin-
guishable escape-time distribution functions.

Primary transition checks were performed using a fixed-
ratio steepest descent~SD! minimization~one gradient evalu-
ation per step!. A transition was declared if, after 100 SD
steps, any atom still deviated from the reference configura-
tion obtained in step~2! by more than 1.0 Å. Each minimi-
zation was terminated after as few steps as possible. When a
transition was detected, the transition time was taken to be
halfway through the previous integration block. The wall-
clock time at the instant assigned to the transition was com-
municated to the other processors~via the master! to allow
calculation of their precise accumulated trajectory time at the
time of the transition, nullifying any communication lag ef-
fect. ~For very simple systems, such as a 2D model potential,
this had a significant effect.! On the processor that detected
the transition, the trajectory was continued for an additional

FIG. 1. Escape-time probability distribution for surface vacancy
diffusion on Cu~100!, obtained from a single trajectory~open
circles, dashed line! and from the parallel-replica method~filled
circles, solid line!. Error bars are one standard deviation and nor-
malization is for time expressed in ns. The inset shows a surface-
normal view of the simulation cell.
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time Dtcorr ~2 ps!, after which this configuration was passed
to the master processor and then distributed to all slave pro-
cessors to start the procedure again.

Figure 1 shows the distribution of escape times~defined
as the time between primary crossings! from 600 events in
the parallel-replica simulation. Also shown is the distribution
from a 600-event single-processor trajectory, performed us-
ing the same procedure, but withM51 and no momentum
randomizations. The two distributions agree, exhibiting the
expected exponential behavior. The average escape times are
also in excellent agreement~parallel: 0.7986 0.03 ns, single
processor: 0.80360.03 ns!, and were used to construct the
lines in Fig. 1, by equatingktot to the inverse of the average
escape time.

Correlated events were analyzed by comparing the suc-
cessive minimized reference geometries. Of the 600 transi-
tions in the parallel simulation, there were 7 recrossings, 28
double displacements, and 2 more complicated events. The
numbers for the single-processor trajectory were similar: 3,
31, and 1, respectively. These results are consistent with the
correlated events observed in a set of half-trajectories that
were performed to determinetcorr for this system. There,
100 trajectories, each 10 ps in length, were initiated at the
saddle-plane dividing surface. All correlated events ceased
within 1.5 ps, and most were over within the first 0.75 ps.

Running the master process on one of the slave processors
~reducing the total number of processors involved from 16 to
15! made no discernible difference in the simulation speed.
The simulation achieved a parallel efficiency of 92%, rela-
tive to 15 times the speed of a single, uninterrupted trajec-
tory. UsingDtblock56 ps and loweringT to 450 K ~decreas-
ing ktot by a factor of;3.5! increased the efficiency to 96%.
In general, the method becomes more efficient for systems
with more complicated potential functions~reducing the rela-
tive time spent on communication! and less efficient astcorr
increases or as the number of SD steps required to detect a
transition increases.

In conclusion, for small infrequent-event systems the
parallel-replica approach offers an efficient alternative to the
standard algorithm for parallelizing MD simulations. Its gen-
erality and ease of implementation should make it useful in a
variety of situations.
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