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t. We introdu
e a graph-theoreti
 formalism suitable for mod-eling bio
hemi
al networks marked by 
ombinatorial 
omplexity, su
h assignal-transdu
tion systems, in whi
h protein-protein intera
tions play aprominent role. This development extends earlier work by allowing forexpli
it representation of the 
onne
tivity of a protein 
omplex. Withinthe formalism, typed attributed graphs are used to represent proteinsand their fun
tional 
omponents, 
omplexes, 
onformations, and statesof post-translational 
ovalent modi�
ation. Graph transformation rulesare used to represent protein-protein intera
tions and their e�e
ts. Ea
hrule de�nes a generalized rea
tion, i.e., a 
lass of potential rea
tions thatare logi
ally 
onsistent with knowledge or assumptions about the rep-resented biomole
ular intera
tion. A model is spe
i�ed by de�ning 1)mole
ular-entity graphs, whi
h delimit the mole
ular entities and mate-rial 
omponents of a system and their possible states, 2) graph transfor-mation rules, and 3) a seed set of graphs representing 
hemi
al spe
ies,su
h as the initial spe
ies present before introdu
tion of a signal. A re-a
tion network is generated iteratively through appli
ation of the graphtransformation rules. The rules are �rst applied to the seed graphs andthen to any and all new graphs that subsequently arise as a result ofgraph transformation. This pro
edure 
ontinues until no new graphs aregenerated or a spe
i�ed termination 
ondition is satis�ed. The formal-ism supports the generation of a list of rea
tions in a system, whi
h 
anbe used to derive di�erent types of physi
o
hemi
al models, whi
h 
anbe simulated and analyzed in di�erent ways. The pro
esses of generat-ing and simulating the network may be 
ombined so that spe
ies aregenerated only as needed.1 Introdu
tionA 
ommon feature of bio
hemi
al networks, espe
ially those 
omprising protein-protein intera
tions, is 
ombinatorial 
omplexity [15,7, 29, 26℄, whi
h is presentwhenever a relatively small number of biomole
ular intera
tions have the poten-tial to generate a mu
h larger number of distin
t 
hemi
al spe
ies and rea
tions.For a system marked by 
ombinatorial 
omplexity, the 
onventional approa
h ofmanually spe
ifying ea
h term of a mathemati
al model is often impossible if the
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ount 
omprehensively for the 
onsequen
es of biomole
-ular intera
tions. Thousands of rea
tions may arise from the intera
tions of onlya few proteins, as in 
ases we have studied [25,19, 5℄. A solution to this problemis to spe
ify a rule for ea
h biomole
ular intera
tion and its e�e
ts, and then usethe rules to automati
ally generate a logi
ally 
onsistent rea
tion network and
orresponding models, whi
h may take diverse forms. This approa
h has beenused, typi
ally ad ho
, to model a number of signal-transdu
tion systems (forexamples, see [47,28, 36℄). These systems, in whi
h 
ombinatorial 
omplexity isubiquitous, regulate 
ellular responses to environmental stimuli through protein-protein intera
tions and play important roles in many diseases. The 
omplexityof models 
an be redu
ed in 
ertain 
ir
umstan
es [8,18, 6℄, but methods fortreating 
ombinatorial 
omplexity are still needed.Re
ently, several frameworks and software tools have been developed formodeling bio
hemi
al networks through formalized des
riptions of biomole
ularintera
tions. These frameworks in
lude visualization tools and visual languages[34,12, 32, 1℄, pro
ess algebras [43,10℄, and di�erent types of rewrite systems [9,48,20, 4, 17℄. Software tools that allow spe
i�
ation of a kineti
 model via rulesfor biomole
ular intera
tions in
lude BioNetGen [4, 17℄ and BIOCHAM [20℄. Inboth 
ases, rules are expressed in a rudimentary but general-purpose languageand interpreted through pro
edures of pattern mat
hing and string rewriting.Another tool that 
an be used to obtain a kineti
 model, Mole
ulizer, provides aset of modules (about 10) for model spe
i�
ation [37℄. Ea
h module fun
tions asa rea
tion generator for a parti
ular type of rea
tion. Related work is dis
ussedin more detail later.Here, we provide a theoreti
al framework for extending the BioNetGen lan-guage to in
lude graph transformation rules [2℄. This report formalizes the di-agrammati
 
onventions proposed in [16℄ for representing proteins and protein
omplexes as graphs and introdu
es new details about the graphi
al pro
eduresfor model spe
i�
ation and generation. The motivation for this extension is adesire to be able to expli
itly tra
k and a

ount for the 
onne
tivity of a pro-tein 
omplex, whi
h is important, for example, when the rea
tivity of a 
omplexdepends on its 
on�guration, whi
h is 
ommon. The graph-theoreti
 formalismis tailored to the problem of building physi
o
hemi
al models of bio
hemi
alnetworks, parti
ularly protein-protein intera
tion networks. It allows for the ab-stra
tion of proteins, fun
tional 
omponents of proteins, and protein 
omplexes,in
luding multimeri
 proteins that fun
tion as a unit. Throughout the text, wewill illustrate 
on
epts using 
artoon diagrams of [16℄. Most of these diagramspertain to the model of [19℄ for membrane-proximal events in F
�RI-mediatedsignal transdu
tion.2 Model Spe
i�
ationA model spe
i�
ation ne
essarily in
ludes a de�nition of the material parts of asystem and all of the internal states of these parts to be 
onsidered. An exampleof an internal state, whi
h might be asso
iated with a tyrosine residue (as a 
on-
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al Networks 3venient abstra
tion), is phosphorylation status. The two possible states of su
h aprotein 
omponent might be labeled `phosphorylated' and `not phosphorylated.'Another example is the three-dimensional 
onformation of a protein. If 
onsid-eration of two 
onformations is adequate for modeling purposes, these statesmight be labeled `open' and `
losed.' A spe
i�
ation also in
ludes a de�nition ofthe 
hemi
al transformations that 
an potentially take pla
e in a system. Sometransformations may 
hange the 
onne
tivity of mole
ular parts, as when twoproteins form a 
omplex. Other transformations may 
hange the internal statesof mole
ular parts, as when a protein tyrosine kinase (PTK) 
atalyzes a phospho-rylation rea
tion or when binding of a ligand indu
es a 
onformational 
hangeof an allosteri
 enzyme. A rea
tion network is obtained by applying rea
tionrules for 
hemi
al transformations to a seed set of 
hemi
al spe
ies. Ensemblefun
tions 
orresponding to readouts of interest, su
h as 
onserved quantities orobservables, 
an be used to spe
ify model outputs. Graphs for elements of amodel spe
i�
ation are de�ned in detail below.2.1 Mole
ular Entities, Components, and ComplexesMost mole
ular entities of interest, su
h as polypeptide 
hains, are stru
turedunits of a bio
hemi
al network. Proteins involved in signal transdu
tion, for ex-ample, typi
ally 
ontain multiple fun
tional 
omponents and intera
tions aremediated by su
h 
omponents. Examples in
lude sites of modi�
ation (aminoa
id residues), protein motifs, 
atalyti
 subunits, and protein intera
tion do-mains [41℄.De�nition 1. A Mole
ular-entity Graph is a triple M = (V;E;AM ), where Vis a set of labeled attributed verti
es and E is a set of undire
ted edges. Ver-ti
es represent 
omponents. Vertex labels need not be unique; multiple verti
eswith the same label indi
ate 
omponents 
onsidered to be equivalent and maygive rise to stru
tural symmetry. Edges represent intra- or intermole
ular bondsbetween 
omponents. A mole
ular-entity graph has a unique label and may havean optional set of attributes AM .Mole
ular-entity graphs for the four proteins 
onsidered in the F
�RI modelare shown in Fig. 1(a). Note that edges are not in
luded, even though the
omponents of the mole
ules are physi
ally 
onne
ted. Consideration of these
onne
tions would not a�e
t the behavior of this parti
ular model. Mole
ular-entity graphs re
e
t the level of abstra
tion in a model and largely de�ne themodel's s
ope. Additional de�nition of the problem domain 
omes from typingof the 
omponents and edges in mole
ular-entity graphs, whi
h is dis
ussed later.Brie
y, typing de�nes whi
h attributes of a vertex are variable and whi
h are�xed. Typing also de�nes the possible values of the variable attributes. Fixedattributes might in
lude sequen
e, mole
ular weight, links to annotation sour
es,et
. Mole
ular weight is one example of a �xed attribute that might a�e
t re-a
tivity [37, 17℄. An example of a variable attribute is phosphorylation status,whi
h often a�e
ts binding a
tivity.
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gFig. 1. Graphs of the F
�RI model. (a) Graph representations of mole
ular entitiesin the model of [19℄ a

ording to 
onventions proposed in [16℄, with minor deviations.Verti
es within the PTK Syk represent three 
omponents: tandem SH2 phosphotyrosinebinding domains, linker region (L) and a
tivation loop (A). Components L and Ahave a `state' attribute that 
an take two values: Y and pY, 
orresponding to `notphosphorylated' and `phosphorylated'. The bivalent ligand is 
omprised of two identi
albinding domains (F
). The PTK Lyn in
ludes a single 
omponent that lumps theunique and SH2 domains of this protein. The multi
hain F
�RI re
eptor 
onsists ofthree 
omponents representing the �, � and dimeri
 
 
hains of the re
eptor. The �and 
 
omponents have phosphorylation state attributes like A and L above. (b) A
hemi
al spe
ies graph. (
) Component-level type graph (CTG) 
orresponding to thismodel. (d) The 
hemi
al spe
ies in (b) typed over CTG by the typing mapping g. (e)A pattern graph. (f) An ensemble of 
hemi
al spe
ies mat
hed by the pattern graph.In the future, it may be desirable to extend the 
on
ept of mole
ular entity toembra
e re
ursion, su
h that a mole
ular entity may be 
omprised of mole
ularentities. In the meantime, we treat a 
omplex of mole
ular entities as a spe
ial
ase.De�nition 2. A Complex Graph M� is a 
onne
ted set of mole
ular-entitygraphs. A 
omplex graph may be asso
iated with an alphanumeri
 label, if desired,and an optional set of attributes.In the model of [19℄, 300 out of 354 potential 
hemi
al spe
ies 
ontain a re-
eptor dimer, whi
h 
an be represented as a 
omplex graph. It is important to
onsider 
omplexes, be
ause 
omplexes 
an be observed experimentally and areoften of fun
tional signi�
an
e. An example is provided by the 
ase of a re
eptorthat be
omes phosphorylated only when it is 
omplexed with a se
ond re
eptorof the same type. Complex graphs are 
onne
ted at the level of mole
ular-entitygraphs, but be
ause the verti
es of a mole
ular-entity graph need not be 
on-ne
ted, a 
omplex graph may be un
onne
ted at the level of 
omponent verti
es.Note that if we restri
t ourselves to 
onsideration of binary intera
tions (thedefault assumption), then ea
h vertex of a 
omplex graph is 
onne
ted by atmost one edge. The label of a 
omplex graph may be either assigned or derivedfrom stoi
hiometry and mole
ule labels.
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al Spe
iesThe material building blo
ks of a bio
hemi
al network, de�ned above, are its
omponents, mole
ules, and 
omplexes. Chemi
al spe
ies, one of the two kindsof elements in a 
hemi
al rea
tion network, are parti
ular 
on�gurations of thesebuilding blo
ks in spe
i�
 internal states.De�nition 3. A Chemi
al-spe
ies Graph C is a mole
ular-entity or 
omplexgraph with any and all variable attributes taking spe
i�
 values.A 
hemi
al-spe
ies graph is illustrated in Fig. 1(b). Note that, 
onsistent withthe layout 
onventions of [16℄, mole
ular-entity graphs 
omprising the 
hemi
al-spe
ies graph are en
losed in boxes for 
larity and some labels are suppressed toavoid 
lutter.2.3 Types of Components and BondsThe mole
ular-entity graphs of a system, and all derivative graphs of a system,are typed over a 
omponent-level type graph, whi
h de�nes the types of verti
esand edges in the system.De�nition 4. A Component-level Type Graph (CTG) of a bio
hemi
al system
omprises a pair (CV;CE), where CV is a set of vertex (
omponent) types, andCE is a set of edge (bond) types. Ea
h type is asso
iated with a set of attributes,whi
h may be variable or �xed. Values of �xed attributes are de�ned, and theallowable values of variable attributes are enumerated or otherwise indi
ated. Anygraph G of a system 
omprised of or derived from the system's set of mole
ular-entity graphs is typed over CTG via a mapping g : G! CTG.As indi
ated in Fig. 1(
), we 
onsider the 
omponents of mole
ules in theF
�RI model to belong to one of two types. Ea
h 
omponent is a site of bind-ing and/or a site of phosphorylation. A site of phosphorylation has a variableattribute, whi
h has two possible values, Y (not phosphorylated) or pY (phos-phorylated). Components �, �, 
, F
, unique/SH2, and SH2 are sites of binding.Components �, 
, L, and A are sites of phosphorylation. The type graph ofFig. 1(
) further indi
ates that two types of bonds are 
onsidered. A bond is al-lowed between two binding sites or between a binding site and a phosphorylationsite. A typing mapping is partially illustrated in Fig. 1(d).2.4 Pattern Graphs and Ensembles of Chemi
al Spe
iesPattern graphs are derived from mole
ular-entity graphs. They appear in rea
-tion rules and fun
tion evaluation rules, de�ned later, and they 
an be 
onsid-ered subgraphs of 
hemi
al-spe
ies graphs. We refer to the set of 
hemi
al-spe
iesgraphs mat
hing a pattern graph as an ensemble, be
ause these graphs represent
hemi
al spe
ies that all have a 
ommon rea
tivity or all 
ontribute to a 
ommonquantity (the value of an output fun
tion).
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ular-entityand/or 
omplex graphs. These graphs need not be 
onne
ted. The 
omponents,mole
ular entities, and 
omplexes of P may ea
h be asso
iated with a set ofvariable attributes. In addition, 
onne
tivity of the graphs of P to external 
om-ponents is spe
i�ed via an interfa
e. The Interfa
e of a Pattern Graph IP is apartition of VP into three sets: VP = V 0P FV 1P FV 01P , where V 0P is a set of 
om-ponents that 
annot be bound to 
omponents external to the pattern graph, V 1Pis a set of 
omponents that must be bound to 
omponents external to the patterngraph, and V 01P is a set of 
omponents that are free to be either bound or unboundto 
omponents external to the pattern graph.A pattern graph is illustrated in Fig. 1(e). A

ording to the 
onventionsof [16℄, the interfa
e of a pattern graph is spe
i�ed by the symbol used for anode (open, half-�lled, or �lled 
ir
le). An open 
ir
le represents a 
omponentv 2 V 0P . A half-�lled 
ir
le represents a 
omponent v 2 V 01P . A �lled 
ir
lerepresents a 
omponent v 2 V 1P . By 
onvention, a half-�lled 
ir
le is omitted inthe diagrammati
 representation of a graph if values of variable attributes ofthis 
omponent are unrestri
ted. As indi
ated earlier, a pattern graph is used tode�ne an ensemble of 
hemi
al-spe
ies graphs.De�nition 6. An Ensemble of Chemi
al-spe
ies Graphs 
P is a set of 
hemi
al-spe
ies graphs ea
h mat
hed by an identi
al pattern graph P .A 
hemi
al spe
ies graph C = (V;E) is mat
hed by a pattern graph P =(VP ; EP ) i�1. there exists a subgraph C 0 = (V 0; E0) � C isomorphi
 to P via an isomor-phism f : P ! C 0;2. f is 
onsistent with the interfa
e IP ; and3. f preserves attributes of 
omponents, mole
ular entities, and 
omplexes, e.g.,for a vertex v 2 VP attributes of f(v) 2 V 0 fall within the set of attributesde�ned for v 2 VP .Figure 1(f) shows an ensemble of 
hemi
al-spe
ies graphs, ea
h of whi
h ismat
hed by the pattern graph of Fig. 1(e). Note that 
hemi
al-spe
ies graphs
ontaining multiple subgraphs isomorphi
 to a pattern graph may be mat
hedmultiple times. For example, the simple string pattern AB mat
hes BAB twi
e.In the future, it may be useful to asso
iate `
ontext' attributes with verti
es ofa pattern graph to restri
t or otherwise 
ontrol the number of mat
hes, whi
ha�e
ts parameterization of rea
tions (see below).The observables of an experiment typi
ally 
orrespond to properties of en-sembles. Thus, it is important to be able to determine su
h properties so thatmodel predi
tions 
an be tested. This 
apability is obtained by spe
ifying afun
tion evaluation rule [4,17℄.De�nition 7. A Fun
tion Evaluation Rule is a pattern P and a fun
tion ofattributes of 
hemi
al-spe
ies graphs belonging to 
P . This fun
tion is referredto as an output fun
tion.



Graph Theory for Rule-based Modeling of Bio
hemi
al Networks 7A fun
tion evaluation rule is pro
essed by �rst �nding the 
hemi
al-spe
iesgraphs mat
hed by the pattern graph of the rule and then 
al
ulating the valueof the rule's output fun
tion. An example of an output fun
tion is a weightedsum of 
on
entrations. A rule asso
iated with this type of fun
tion is useful, forexample, for determining the total 
on
entration of a protein X in a parti
ularstate of phosphorylation when the protein may be distributed among numerous
hemi
al spe
ies, as is usually the 
ase. Con
entrations of 
hemi
al spe
ies areweighted by the number of X proteins in ea
h spe
ies.2.5 Chemi
al Rea
tionsWe have now introdu
ed de�nitions needed to 
onsider one of the two kinds ofelements in a bio
hemi
al rea
tion network, a 
hemi
al spe
ies. The se
ond kindof element is a 
hemi
al rea
tion.De�nition 8. A Chemi
al Rea
tion � 
omprises a set of rea
tant 
hemi
alspe
ies graphs R�, a set of produ
t 
hemi
al spe
ies graphs P�, and a rate law��. Produ
t 
hemi
al spe
ies graphs are obtained from rea
tant 
hemi
al spe
iesgraphs via graph rewriting 
onsistent with 
hemistry.Graph rewriting 
onsistent with 
hemistry in the 
ase of a 
losed systemmeans that P� is obtained from R� via 
omposition of the following operations:{ addition/removal of intra- or inter-mole
ular edge(s),{ 
hange of values of variables attribute(s), and{ repla
ement of a mole
ular entity or set of mole
ular entities with anothermole
ular entity or set of mole
ular entities having the same 
omponents.The �rst two 
lasses of operations are found in the F
�RI model. The third
lass of operations is allowed so that one may model assembly and disassem-bly of a multimeri
 protein (Fig. 2(d)), 
ovalent rea
tions between proteins, andproteolyti
 
leavage of a protein. Examples of the latter rea
tions o

ur in a
-tivation of the 
omplement system via the 
lassi
al pathway. (The enzyme C1assembles on the surfa
e of an antigen, where it 
atalyzes 
leavage of 
omple-ment 
omponent C3, generating fragments C3a and C3b. C3b may then atta
h
ovalently to the antigen.) Two additional operations are allowed for an opensystem: synthesis and degradation of a set of mole
ular entities. Degradation ofa mole
ule means that its 
orresponding mole
ular-entity graph is removed (toa sink external to the system being modeled) along with any and all bonds towhi
h it is 
onne
ted. Synthesis of a mole
ule means that a new mole
ular entityappears (from a sour
e external to the system being modeled). Finally, we notethat the se
ond 
lass of operations in
ludes transport between 
ompartments if
ompartment lo
ation is in
luded as a variable attribute of mole
ular entities ina multi
ompartment system.Figure 2 illustrates 
hemi
al rea
tions involving representative rewriting op-erations. The 
omposition of the rewriting operations of a rea
tion implies amapping f� between verti
es of R� and P�. This mapping must preserve, add,
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ular-entity graphs as units. In other words, if any vertex of amole
ular entity in R� maps to ; then all other verti
es of this mole
ular entitymust also map to ; (Fig. 2(e)). Vi
e versa, if some vertex v 2 M � P� la
ks apreimage, then no other verti
es of M may have preimages. Importantly, up tosynthesis/degradation of mole
ular entities, f� preserves 
omponents, i.e., ver-ti
es of 
hemi
al spe
ies in R� and P� are the same even if mole
ular entities arerepla
ed with other mole
ular entities (Fig. 2(d)).
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PρFig. 2. Di�erent types of rea
tions. (a) Addition of an intermole
ular 
hemi
al bond.(b) Breaking of an intermole
ular 
hemi
al bond. Note that breaking a bond does notne
essarily lead to two separate 
hemi
al spe
ies, be
ause mole
ular entities may be
onne
ted by more than one bond and bonds may be intramole
ular as well as inter-mole
ular. (
) Change of a 
omponent's attribute value. (d) Repla
ement of a mole
ularentity with two mole
ular entities having the same 
omponents. (e) Degradation of amole
ular entity. Note that, as suggested by the layout of the diagrams in this �gure,if the 
hemi
al-spe
ies graphs in R� and P� are ea
h repla
ed with a single node, thena 
hemi
al rea
tion 
an be represented as a dire
ted bipartite graph.2.6 Rea
tion RulesA rea
tion rule is a generalization of an individual rea
tion. It de�nes a 
lass of
hemi
al transformations of rea
tants to produ
ts; the rea
tants have 
ommonproperties, as do the produ
ts.De�nition 9. A Rea
tion Rule is a graph transformation rule r : RP ! PP ,a rate law �, an appli
ation 
ondition �, and pre
eden
e index N , where1. A disjoint union of m rea
tant pattern graphs RP is used to mat
h andsele
t m rea
tant 
hemi
al spe
ies Cr.2. The transformation rule r in
ludes a 
omponent-level mapping fun
tion f :RP ! PP 
onsistent with 
hemistry (see above). It maps RP to a set ofn produ
t pattern graphs PP . A set of rea
tant 
hemi
al spe
ies Cr un-dergoes transformation by repla
ing the image of RP in Cr with PP via f .
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al Networks 9Dangling edges are removed. This pro
ess of graph rewriting 
orresponds tothe well-known single-pushout approa
h [13℄. Note that, to avoid ambiguitywhile embedding PP in Cr , any vertex of RP in V 0RP of the interfa
e IRPmust remain in the same set in PP , i.e., f(V 0RP ) � V 0PP .3. The rate law � is a fun
tion of rate parameters, su
h as a single-site rate
onstant, and properties of 
hemi
al spe
ies Cr, su
h as their 
on
entrations.4. The appli
ation 
ondition � may in
lude, for example, a pattern sele
tingspe
ies that may not serve as rea
tants.5. The pre
eden
e index N is the priority of rea
tions generated by the rule.It is sometimes 
onvenient to spe
ify a rule that will generate rea
tions thatrepla
e a subset of rea
tions generated by another rule [17℄.A rea
tion rule is illustrated in Fig. 3(a). It should be noted that a negativeappli
ation 
ondition 
an be spe
i�ed by assigning a zero-valued rate law to arule. All rea
tions with lower pre
eden
e generated by other rules are overridden.A pra
ti
al appli
ation of this idea is the 
ase in whi
h an inhibitor of an enzymeis introdu
ed to a model. An old rule that generates rea
tions 
atalyzed by theenzyme 
an be overridden by a new rule that additionally 
ontains the inhibitorin RP and generates with higher pre
eden
e a rea
tion with a zero-valued orredu
ed rate.3 Model Generation3.1 Appli
ation of Rea
tion RulesA bio
hemi
al rea
tion network 
an be generated through iterative appli
ationof a set of rea
tion rules to a seed set of 
hemi
al spe
ies until no further 
hangeis possible (exhaustive generation) or a spe
i�ed termination 
ondition is rea
hed(su
h as iteration until generation of a given number of produ
t spe
ies or rea
-tions).The pro
ess of applying rea
tion rules to a set of distin
t 
hemi
al spe
iesgraphs C0 
onsists of the following steps, generalizing the algorithm of [17℄. Forea
h 
hemi
al spe
ies C mat
hed by RP , a transformation repla
es RP in Cwith PP a

ording to a pro
edure of graph rewriting, whi
h as mentioned earlier
orresponds to the standard single-pushout approa
h [13℄.1. For ea
h rea
tion rule rm;n; RP1 + : : :RPm ! PP1 + : : :PPn, identify allsets of spe
ies graphs in C0 that qualify as rea
tants. Then, for ea
h RPi,�nd all mat
hing spe
ies graphs Ci 2 C0.2. For ea
h set of rea
tant spe
ies FCi, de�ne a 
hemi
al rea
tion (graph trans-formation) by repla
ing the image of FRPi in FCi with FPPj. In thisoperation, attributes of verti
es in FCi that do not di�er between the 
or-responding verti
es of FRPi and FPPj are preserved. In
ident edges ofFCi not indi
ated in FRPi or FPPj are also preserved. Any edge (l; 
)between a vertex l 2 FRPj and 
 2 C n FRPi is either repla
ed with anedge (f(l); 
), if f(l) 2 FPPj, or removed, if f(l) = ;. Assign the pre
eden
eindex N of the rea
tion rule to ea
h rea
tion.
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tion rules to the set of seed spe
ies, generate a list of distin
trea
tions R0. If the list R0 
ontains identi
al rea
tions with di�erent pre
e-den
e indi
es, delete rea
tions with indi
es less than the maximum index.All identi
al rea
tions of the same pre
eden
e remain in R0.4. Identify 
hemi
al spe
ies that are produ
ts in the list R0 but that are notisomorphi
 to any in the list C0 to obtain a list of new spe
ies graphs C1.
Fc Fc

f

f
f

α

New edge 

added

A-pY
L-Y

γ-pY β-Y

C

α

A-pY
L-Y

γ-pY β-Y
K

α

New edge 

added

RP

α

K

PP
PPRP

(a) (b)Fig. 3. Rea
tion rule for ligand-re
eptor binding in the model of [19℄. (a) The rule
onsists of a rea
tant pattern graph RP , a produ
t pattern graph PP , and a mappingf . The interfa
e of RP spe
i�es that two F
 
omponents and an � 
omponent of RPshould be unbound. The rule generates a rea
tion in whi
h one F
 
omponent is boundto the � 
omponent; the other F
 
omponent is una�e
ted. The remaining 
omponentsof spe
ies mat
hed by the rule are also un
hanged. (b) An example of a rea
tion thatmay be generated by the rule.After the initial steps listed above, we 
ontinue the network generation pro-
edure by iteratively applying ea
h of the rea
tion rules to the set of spe
ies inSki=0 Ci, where k is a 
ounter that is updated after ea
h round of rule appli
a-tion. Note that rea
tions need only be generated when rea
tant spe
ies in
ludeat least one rea
tant in the list Ck. After ea
h round of exhaustive appli
ation ofthe rules, we obtain a list of new rea
tions Rk and a list of new produ
t spe
iesCk+1. Termination o

urs when either no new spe
ies are found or a spe
i�edtermination 
ondition is satis�ed. Appli
ation of the rea
tion rule of Fig. 3(a)is illustrated in Fig. 3(b). In general, �nding subgraph and graph isomorphisms
an be 
omputationally expensive (the subgraph isomorphism problem is NP-
omplete [27℄), but eÆ
ient methods are available for many problems of pra
ti
al
on
ern [50,39℄. Also, for two labeled attributed graphs, (sub)graph isomorphism
an be ruled out in many 
ases by a simple 
omparison of labels and attributes.Issues of termination and 
omputational 
omplexity are dis
ussed further below.Termination Figure 4 illustrates a set of rules for whi
h the rule-evaluation pro-
edure des
ribed above is non-terminating [11, 16℄. The rules of Fig. 4 des
ribeintera
tion of a symmetri
 bivalent ligand with a symmetri
 bivalent 
ell-surfa
ere
eptor. Rules (a) and (b) and their reverse forms des
ribe the formation andbreak up of polymer 
hains of alternating ligands and re
eptors. Rule (
) and itsreverse form des
ribe ring 
losure and opening. The potential size of the network



Graph Theory for Rule-based Modeling of Bio
hemi
al Networks 11is limited physi
ally by the numbers of ligands and re
eptors and binding pa-rameters, but without regard to these quantities, the network is of in�nite size.Rule evaluation 
an be terminated by spe
ifying an arbitrary 
uto� for 
hainsize, number of spe
ies, et
. or a maximum number of iterations of rule evalu-ation. With su
h an approa
h, one must be 
areful to ensure that a generatednetwork is of suÆ
ient size to en
ompass the spe
ies populated in a simulation.Alternatively, as des
ribed below, rule evaluation 
an be embedded in networksimulation. With this approa
h, network elements (spe
ies and rea
tions) aregenerated as needed and arbitrary termination of network generation is avoided.The fa
t that a set of rea
tion rules 
an generate sets of spe
ies and rea
tions ofunbounded size demonstrates that membership of a given spe
ies in a rea
tionnetwork is semi-de
idable, meaning that membership 
annot generally be ruledout in a �nite number of steps. Also, in general, it 
annot be determined if eval-uation of a set of rules will eventually terminate in the absen
e of a spe
i�edtermination 
ondition, su
h as a maximum number of iterations. For bio
hemi-
al systems, it is diÆ
ult to imagine a situation in whi
h non-terminating ruleevaluation 
ould pose a major problem. The e�e
tive size of a network is alwayslimited for physi
al reasons (e.g., as when only a �nite number of mole
ules isavailable to populate the spe
ies of a network). An example of network size beinglimited by protein 
opy number is dis
ussed in [15℄.
RP1

K
1

PP1

(a)

RP2

K
2

PP2

Ligand capture

Receptor chain elongation

RP3

K
3
(n)

PP3

Receptor chain closure

K
3
(4)

(c)

(b)

K
2

K
1

Fig. 4. Rea
tion rules for intera
tion of a bivalent ligand with a bivalent 
ell-surfa
ere
eptor. Evaluation of these rules is non-terminating. (a) Rule for ligand 
apture ruleand an example of rule appli
ation. (b) Rule for re
eptor 
hain elongation and anexample of rule appli
ation. (
) Rule for re
eptor 
hain 
losure and an example of ruleappli
ation. Note that the rate law in this rule depends on ring size [11℄.
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edure of rule evaluation may be 
om-putationally expensive for several reasons. Two important issues are as follows.1. A problem of subgraph isomorphism must be solved to map RP onto a spe
iesgraph. Ea
h rea
tant pattern in the rule set must be tested for isomorphismagainst all of the spe
ies o

uring in the network.2. A problem of graph isomorphism must be solved to determine the uniquenessof a spe
ies graph appearing in a new rea
tion. Ea
h produ
t of a new rea
-tion must be 
he
ked for uniqueness against the other spe
ies appearing inthe network, whi
h 
an be a

omplished by generating a 
anoni
al label (astring) for ea
h produ
t of ea
h rea
tion.The need to solve these problems in the pro
edure of rule evaluation 
ouldlimit the appli
ability of our modeling approa
h to `small' systems in some 
ir-
umstan
es. However, we expe
t the pro
edure to be pra
ti
al more often thannot. Two fa
tors serve to mitigate the 
omputational 
osts. First, the verti
esof graphs are labeled and attributed, and as a result, the 
omputational 
ost ofisomorphism s
ales as the number of identi
al verti
es (those sharing the samelabel and attributes). This number is small in most 
ases we have 
onsidered, forexample, as in two models we have reported for signal-transdu
tion systems [19,5℄. It should be noted that these models are among the largest ever 
onsideredfor su
h systems, 
omparable in size to models developed for other systems usingdistin
t rule-based methods [36, 37℄. Se
ond, even in 
ases where the �rst prop-erty does not hold, as in the model of Fig. 4, the maximum degree of verti
esis generally small, one or two, and thus low-
omplexity algorithms are appli
a-ble [38, 21℄. An unoptimized prototype implementation of our algorithm in Perl(available upon request) demonstrates the pra
ti
ality of the algorithm,whi
h wehave used to generate an array of biologi
al networks ranging in size from s
oresof spe
ies to more than 104 spe
ies (unpublished material). Compared with themethod of BioNetGen 1.1 [4, 17℄, whi
h is based on string mat
hing and sub-stitution, we �nd that graph-based network generation is 
urrently about anorder of magnitude slower. However, the method is still feasible. For example,with a laptop 
omputer, the model of [19℄, whi
h in
ludes 354 spe
ies, is gen-erated in about 2 s using BioNetGen 1.1 [4,17℄, and it is generated using theprototype software in about 45 s. An extension of this model that in
ludes 2954spe
ies (available at http://
ellsignaling.lanl.gov) is generated in about 40 sand 1400 s using the two software tools. Again, the prototype software has notbeen optimized: the algorithm for (sub)graph isomorphism implemented at thistime is simply that of Ullmann [50℄. Substantial improvements in performan
eshould be possible.3.2 Assigning Rea
tion ParametersAlthough the rate law is the same for all rea
tions generated by a rule, rate
onstants assigned to individual rea
tions may be di�erent [17,37℄. For purposesof dis
ussion, we will now assume that rate laws in rea
tion rules are rate laws
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al Networks 13for elementary rea
tions (i.e., they have the form �r = �r�mi=1[Ci℄, where [Ci℄denotes the 
on
entration of 
hemi
al spe
ies Ci) and that the rate 
onstant ofthe rate law, �r, is a single-site rate 
onstant. For a given individual rea
tion, therate 
onstant �r may need to be multiplied by any of a variety of fa
tors to ensure
onsisten
y with other rea
tions generated by the same rule r. A fa
tor may arisefor reasons related to 
ollision frequen
y. For example, the 
ollision frequen
y ofA+B rea
tions, in the limit of large numbers, is twi
e that of A+A rea
tions, allother fa
tors being equal. A statisti
al fa
tor may arise if there is rea
tion pathdegenera
y (multiple 
hemi
ally indistinguishable rea
tion paths from rea
tantsto produ
ts). A fa
tor may arise for reasons related to turnover frequen
y in the
ase of a 
atalyti
 rea
tion. For example, if formation of a 
omplex fa
ilitates anenzymati
 rea
tion by 
o-lo
alizing enzyme and substrate, then we must 
onsiderthe number of enzymes in the 
omplex. A fa
tor, whi
h equals a volume ratio,may arise if rea
tions take pla
e in separate 
ompartments of di�erent volumes.Rate 
onstants may also be modi�ed by the properties of the rea
tant 
hemi
alspe
ies (Fig. 4(
)).Statisti
al fa
tors are related to symmetries [17℄. Fa
tors greater than 1 arisewhen a pattern RP is symmetri
, meaning there exist non-trivial automorphisms : RP ! RP , and the rea
tion rule breaks the symmetry of the pattern. Atransformation that 
ompletely breaks pattern symmetry is asso
iated with astatisti
al fa
tor of jAut(RP )j, where Aut(RP ) is the automorphism group ofRP . Consider, for example, the rea
tion rule A:A ! A + A0 in whi
h A is amole
ular entity graph, A0 is a form of A that di�ers with respe
t to attributevalues, RP = A:A, `.' represents an edge 
onne
ting mole
ular entities, and `+'serves to indi
ate that PP = A + A0 is disjoint union of the graphs A and A0and that the mole
ularity of ea
h rea
tion de�ned by the rule is 2. The rea
tantpattern is symmetri
, with jAut(RP )j = 2, but the nontrivial autmorphism isnot preserved under the mapping onto the produ
t patterns. This rea
tion rule,applied to the 
hemi
al spe
ies B:A:A:B, has a statisti
al fa
tor of 2, be
auseeither of the two A mole
ules 
an be transformed into A0 and the rea
tionsB:A:A:B ! B:A + A0:B and B:A:A:B ! B:A0 + A:B are 
hemi
ally indistin-guishable. When an automorphism is preserved under the mapping onto produ
tpatterns, it does not 
ontribute to the statisti
al fa
tor of a rea
tion. For exam-ple, the rule A:A ! A + A applied to the 
hemi
al spe
ies B:A:A:B generatesthe rea
tion B:A:A:B ! B:A + A:B with a statisti
al fa
tor of one. In gen-eral, the statisti
al fa
tor arising from pattern symmetry is given by the ratiojAut(RP )jjAut(RP!PP )j , where the denominator indi
ates the size of the group of autmor-phisms of RP that are preserved under the mapping of RP onto PP . Statisti
alfa
tors also arise when the rea
tant 
hemi
al spe
ies Cr 
ontain symmetri
 in-stan
es of RP . For example, the rule A! A0 applied to A:A would generate therea
tion A:A! A:A0 with a statisti
al fa
tor of 2.3.3 Embedding Rule Evaluation in SimulationThe method of network generation des
ribed above does not rely on the popula-tions of spe
ies in the seed set or rate laws. On
e a bio
hemi
al rea
tion network
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an be used to formulate di�erent types of models. Forexample, one 
an generate a system of 
oupled ordinary di�erential equations(ODEs) or a sto
hasti
 simulation algorithm (SSA) [23,24℄, whi
h is a MonteCarlo pro
edure for simulating dis
rete-event rea
tion kineti
s. However, thereare 
ases when all potential spe
ies of a rea
tion network 
annot be exhaus-tively enumerated, as for intera
tion of a bivalent ligand with a bivalent re
ep-tor (Fig. 4). For su
h a system, rule evaluation would pro
eed inde�nitely unlessan arbitrary termination 
ondition is spe
i�ed. A solution to this problem is toembed rule evaluation in the simulation pro
edure, su
h that 
hemi
al spe
iesare generated only as needed. Two methods for embedding rule evaluation inSSA-based simulation of bio
hemi
al rea
tion kineti
s have been proposed [37,17℄, and both are now implemented in BioNetGen. With lazy rule evaluation[37℄, only rea
tions and spe
ies 
onne
ted to newly populated spe
ies are gener-ated. With layered rule evaluation [17℄, the network is extended when a spe
iesis populated for the �rst time by applying the rea
tion rules for a spe
i�ednumber of iterations (the default is one round), as in the pro
edure des
ribedearlier, to all 
urrent spe
ies. The relative eÆ
ien
ies of the various simulationpro
edures have yet to be fully evaluated, but preliminary (unpublished) resultsindi
ate that pregeneration of a network followed by simulation and on-the-
ygeneration of a network during simulation are 
omplementary. Lazy and lay-ered simulation-embedded evaluation of rules are 
omparable for problems wehave 
onsidered (unpublished material). Embedding rule evaluation in ODE-based simulations is straightforward and may provide better performan
e thananalogous SSA-based simulations.4 Dis
ussionThe sheer size of some bio
hemi
al systems makes it diÆ
ult to formulate mod-els for them and represent these models in 
omprehensible ways. Rea
tion rulesfor biomole
ular intera
tions help to solve these problems [29, 26℄. Rules serveas generators of rea
tions, whi
h 
an then be translated into mathemati
al or
omputational models, in the way SBML [30℄ is translated into, say, a system of
oupled ordinary di�erential equations (ODEs). In our experien
e, the equationsof a rule-based model typi
ally far outnumber the rules from whi
h they are de-rived [19, 5℄. The ability to generate models through automati
 interpretation ofrules over
omes limitations of writing models manually, whi
h may be impossi-ble. In mathemati
s, many 
ombinatorial problems that are intra
table be
ometra
table when reformulated in terms of generating fun
tions (rules). Here, wehave extended methods for rule-based modeling of bio
hemi
al systems by intro-du
ing a formalism for graphi
al rea
tion rules, whi
h 
an expressively representbiomole
ular intera
tions and the 
onsequen
es of these intera
tions.Our main motivation for introdu
ing graphi
al rea
tion rules is that su
hrules allow the 
onne
tivity of proteins in a 
omplex to be expli
itly and system-ati
ally represented. This ability is needed when 
onne
tivity a�e
ts the rea
tiv-ity of a 
omplex. A simple example is provided by the 
ase of a bivalent ligand
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ting with a bivalent 
ell-surfa
e re
eptor. As illustrated in Fig. 4, su
h aligand indu
es the formation of rings and 
hains of re
eptors. However, only a
hain, su
h as the protein 
omplex illustrated on the right side of panel (b), 
anasso
iate with additional ligand or re
eptor. A ring, su
h as the protein 
omplexillustrated on the right side of panel (
), 
an only break apart. Clearly, 
hainsand rings must be distinguished. The most straightforward way of solving thistype of problem, we believe, is through the introdu
tion of graphs. The 
ostof introdu
ing graphs is 
omputational 
omplexity. This 
ost seems diÆ
ult toavoid if one wishes to tra
k 
onne
tivity of 
omplexes, whi
h is important forme
hanisti
 modeling of many biologi
al systems.Graphi
al rea
tion rules have further representational advantages over othermeans of summarizing and analyzing biologi
al systems. They 
an be visualizedas 
artoon-like diagrams and therefore used for the same purpose as diagram-mati
 intera
tion maps [34, 1℄, whi
h are in 
ommon use. However, unlike mostintera
tion maps, rules have pre
ise interpretations [16℄. A set of well-posed rulesunambiguously spe
i�es a rea
tion network, and a model for this network 
an begenerated through a 
omputational pro
edure that interprets the rules. Be
ausethe pro
edure is automati
, on
e rules are spe
i�ed, very little mathemati
al or
omputational expertise is required in prin
iple to obtain a mathemati
almodel.Graphi
al rea
tion rules are also 
lose in form to the type of biologi
al knowledgeusually available about a system, whi
h may 
onsist mainly of a list of proteins,their fun
tional 
omponents, and their binding and 
atalyti
 a
tivities, even fora well-studied system. Thus, be
ause graphi
al rules 
an be spe
i�ed essentiallyby drawing 
artoon-like diagrams (an interfa
e that provides this 
apability isin development) and they provide a natural way to formalize biologi
al knowl-edge, graphi
al rules may, with maturation of software, allow more biologists to
ontribute to the development of mathemati
al models, whi
h are needed forpredi
tive understanding of biologi
al systems, whi
h are ex
eedingly 
omplex.Finally, rules for biomole
ular intera
tions may be useful for high-throughputmodeling of large numbers of systems and for development of models that in-
lude a large number of distin
t intera
ting biomole
ules. Rules are independentunits of a model spe
i�
ation and sets of rules are 
ompositional, whi
h allowsmodels to be built in
rementally. In prin
iple, 
rude models of a large size 
ouldbe built at present from information of pairwise protein-protein intera
tions
urrently 
atalogued in ele
troni
 databases, su
h as the Human Protein Refer-en
e Database [42℄. However, large-s
ale modeling of higher quality will require
ataloging the fun
tional domains involved in intera
tions and the 
onditionsunder whi
h intera
tions take pla
e. Rules must be expressive enough to en
odethis information, and graphi
al rules are a step forward. The independen
e ofrules fa
ilitates not only in
remental model building but also the 
onsiderationof alternative models and me
hanisti
 hypotheses. For example, to introdu
e aprotein-protein intera
tion in a system to investigate its e�e
t, one 
an simplyadd an appropriate rule instead of adding and modifying possibly large numbersof interrelated equations or lines of 
ode. If rules are stored in a ma
hine-readableformat in an ele
troni
 database, they 
an be reused. Rules 
an be assembled
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h may share some
omponents, and models for di�erent parts of a larger system 
an be integratedby 
ombining the 
orresponding sets of rules. Community standards for stor-ing and ex
hanging rule-based models of biologi
al systems are 
urrently beingdis
ussed [31, 22℄.4.1 Related WorkWe 
ontribute a new appli
ation of ideas from formal systems, graph rewrit-ing, and (sub)graph isomorphism. Our formalism is expressive enough to repre-sent protein-protein intera
tions. There is probably mu
h room for algorithmi
improvement. A general framework for graph rewriting 
losely related to thepresent work is that of AGG [49℄. Graph rewriting has been used to model di-verse biologi
al systems [45℄ and other systems, su
h as 
hemi
al systems [3℄ andself-assembling roboti
 systems [33℄. This body of work provided inspiration. Anumber of resear
h groups have developed various methods for rule-based mod-eling of signal-transdu
tion systems. A few key referen
es not already 
ited are[40,44, 14℄. Software tools related to BioNetGen in
lude STOCHSIM [35℄, Celler-ator [46℄, Maude [14, 48℄, BIOCHAM [20℄, and Mole
ulizer [37℄. Others have alsosuggested, like us, the use of graphs to represent proteins and protein-proteinintera
tions [9,10, 48℄.A
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