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Abstract: The activities and interactions of proteins that govern the cellular response to a signal
generate a multitude of protein phosphorylation states and heterogeneous protein complexes. Here,
using a computational model that accounts for 307 molecular species implied by specified
interactions of four proteins involved in signalling by the immunoreceptor Fc1RI, we determine the
relative importance of molecular species that can be generated during signalling, chemical
transitions among these species, and reaction paths that lead to activation of the protein
tyrosine kinase (PTK) Syk. By all of these measures and over two- and ten-fold ranges of model
parameters — rate constants and initial concentrations — only a small portion of the biochemical
network is active. The spectrum of active complexes, however, can be shifted dramatically, even by
a change in the concentration of a single protein, which suggests that the network can produce
qualitatively different responses under different cellular conditions and in response to different
inputs. Reduced models that reproduce predictions of the full model for a particular set of
parameters lose their predictive capacity when parameters are varied over two-fold ranges.

1 Introduction

Cell signalling, the biochemical process through which cells
sense and respond to their environment, involves an array of
proteins which include receptors, kinases, and adaptors,
components of proteins such as sites of phosphorylation,
and other biomolecules [1]. Early signalling events
triggered by receptors in eukaryotic cells usually involve
the formation of heterogeneous protein complexes in the
vicinity of the cell membrane [2–4]. This process of
complex formation is complicated because a typical
signalling protein contains multiple sites that may be
modified (e.g. phosphorylated) and that have the potential
to bind other proteins or lipids. In addition, the modification
or binding state of a protein can regulate its binding
and enzymatic activities. Thus, signalling can generate
a combinatorially large number of protein states and
complexes with different potentials to generate further
signals [4–8]. For example, a protein that contains 10 amino
acid residues subject to the activities of kinases and
phosphatases theoretically has 210 ¼ 1024 states of phos-
phorylation. If the protein forms homodimers, the number of
distinct complexes, or chemical species, is 524 800, a
number that might exceed the total amount of this protein in
the cell. For an assembly of n proteins, the number of
chemical species is on the order of

Qn
i¼1 si; where si is the

number of possible states of protein i in the assembly. Thus,
the number of chemical species in a system depends

exponentially on the number of interactions in the system
and may be quite large even when few interactions are
involved. For example, a model of early signalling
events mediated by the immune recognition receptor
FceRI includes 354 distinct chemical species and 3680
unidirectional reactions, but these species and reactions
arise from consideration of the interactions among only a
ligand and three signalling proteins—the multimeric
receptor, FceRI, and two protein tyrosine kinases (PTKs),
Lyn and Syk [9]. Similar models of early events in
signalling through the epidermal growth factor receptor
(EGFR) also involving only a handful of proteins contain
hundreds to thousands of distinct chemical species [8, 10,
11]. This combinatorial complexity has been largely ignored
by both experimentalists and modellers and is a major
barrier to predictive understanding of signal transduction.

Experimental resolution of protein states and complexes
is usually limited to a small number of sites and interactions,
but rapidly advancing proteomic technologies are likely to
provide a wealth of more detailed information about
signalling complexes in the near future [12–16]. A number
of studies already confirm that a diverse range of molecular
complexes arise during signal transduction [17– 20].
Because the full spectrum of protein states and complexes
is difficult to enumerate, let alone understand, compu-
tational modelling will play an important role in interpreting
such data and assessing the functional significance of
specific interactions and complexes [8]. Key questions to be
addressed include whether networks favour the formation of
specific complexes from the multitude of potential com-
plexes, and, if so, how these favoured complexes affect
signalling outcomes.

Few biochemical network models of signalling developed
so far encompass the breadth of states and complexes
required to address these questions. Instead, most models,
given a particular set of proteins and interactions, make
additional (usually implicit) assumptions that exclude
the vast majority of possible species from consideration.
An example is the model of EGFR signalling that was
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developed by Kholodenko et al. [21] and extended by
several other groups (for example [22, 23]). The original
model includes six proteins and tracks 25 species, but lifting
implicit assumptions in the model raises the number to
hundreds or thousands of species, depending on mechanistic
assumptions, even without the introduction of new rate
constants or other parameters [8]. While such models have
provided valuable insights into signalling mechanisms, they
are not suitable for addressing the questions of whether and
how signalling networks favour specific complexes, which
requires models that consider the full spectrum of possible
species.

Here, we analyse the specificity of complex formation in
a network model for early events in signalling by the high-
affinity receptor for IgE antibody (FceRI), a key initiator of
allergic reactions [24]. The model has been shown to make
accurate predictions of a number of experimental obser-
vations [9, 25]. Here, we characterise the distribution of
network activity in terms of individual species, reactions,
and reaction sequences or paths. We then examine how the
spread of network activity is affected when model
parameters are randomly varied, which corresponds to
changing the initial state of the cell that is receiving the
signal. We also explore the possibility of developing an
accurate reduced model by removing non-essential species
from the reaction network. The results indicate that while
only a small fraction of complexes, reactions, and paths is
active for a particular cellular state, which elements are
active depends strongly on the initial state of the cell.
Thus, to capture the full range of signalling behaviours, a
model must account for many more molecular complexes
than just those that are favoured in any particular cellular
state.

2 Methods

Network model. The network model analysed in this study
was developed in earlier work [9] and is summarised here.
The model includes just four components (Fig. 1a): the
FceRI receptor; a bivalent ligand that binds to a single site
on FceRI; the protein tyrosine kinases Lyn and Syk. But, in
a vivid illustration of combinatorial complexity, it encom-
passes 307 species coupled through a biochemical network
of 2326 unidirectional reactions (These numbers are smaller
than the figures of 354 species and 3680 reactions given in
[9] because some species and reactions of the full model are
inaccessible when ligand binding is irreversible, which is
the case for the IgE dimer). As shown in Fig. 1a, the
receptor is modelled as three distinct subunits, the primarily
extracellular a subunit that binds to the ligand, and the
primarily cytoplasmic b and g2 subunits that contain
immunoreceptor tyrosine-based activation motifs
(ITAMs), which upon phosphorylation bind to the SH2
domains of Lyn and Syk, respectively. Lyn also associates
with the unphosphorylated b subunit through an interaction
involving its N-terminal unique domain [26]. A series of
events (Fig. 1b) couples binding of the ligand, a covalently
cross-linked dimer of IgE antibodies [27], to activation of
Syk [28, 29], which is required for downstream signalling
events and cellular responses, such as calcium mobilisation
and release of histamine from mast cells [30, 31]. Ligand-
receptor binding induces dimerisation of receptors, which
permits Lyn that is weakly associated with a receptor to
phosphorylate the ITAMs of the trans receptor in the dimer,
leading to the recruitment of additional Lyn and Syk. Syk in
dimers can be transphosphorylated on its linker region
tyrosines by Lyn or on its kinase activation loop tyrosines by
Syk. Phosphorylation of Syk’s activation loop tyrosines is

critical for all downstream signalling, while phosphory-
lation of Syk’s linker region tyrosines has both positive and
negative effects on Syk activity and downstream events.

The simplicity of this picture hides the complexity of the
underlying biochemical network. Figure 1c displays one of a
multitude of possible sequences of individual reaction steps
starting from an unmodified receptor and leading to a dimer
of receptors containing fully-phosphorylated Syk. At each
step along this path many alternative branches are possible,
as indicated by the highlighted state in Fig. 1c and quantified
by the distribution in the number of reactions a species
containing a dimer of receptors can undergo (Fig. 1d).

Although the simple description of early signalling events
shown in Fig. 1b hides the underlying size of the chemical
reaction network, the network itself is in fact simpler than its
size would indicate. The combinatorial explosion of species
and reactions described in the Introduction arises because
chemical transformations occurring at a particular site on a
protein are generally assumed to be independent of the
modification state of other sites within the same protein or
protein complex. For example, four states of the b subunit of
FceRI are possible (unphosphorylated and unbound,
unphosphorylated and bound to Lyn, phosphorylated and
unbound, phosphorylated and bound to Lyn) and six states
are possible for the g2 subunit. There are thus 24 possible
modifications states for the cytosolic portion of a receptor,
and 24 � ð24 þ 1Þ=2 ¼ 300 modification states for a dimer
when all sites can be modified independently, as in our
model. While assumptions of site independence produce
large networks, they also permit a relatively small number
of parameters to characterise the rates of the reactions that
can occur. For example, the model assumes that the rate at
which Lyn binds to an unphosphorylated and unbound b
subunit of FceRI (called Constitutive Lyn binding in
Table 1) is independent of the binding state of the g2

subunit of that receptor or, whether the receptor is contained
within a receptor dimer. As a result, there are 144 different
reactions involving constitutive Lyn binding (Table 1), but
all utilise the same rate constant. Thus, although the total
number of reactions in the model is large for combinatorial
reasons, the number of reaction types (or classes) is
relatively small, and the number of parameters in the
model is comparable to the number of protein sites, not the
number of chemical species or reactions.

Ultimately, assumptions of minimal interactions among
sites must be tested by experiments, but given that there is
scant information about how the different components and
interactions within a complex or protein affect the further
transformations, they provide a basis for developing
reasonable initial models. We have recently developed
modelling software called BioNetGen that permits a user to
create large network models by writing a relatively small
number of reaction rules that generate the chemical species
and reactions [32, 33].

The reaction classes that are included in the current model
are listed in Table 1. The reaction rules used to generate the
network along with the default values of the component
concentrations and rate parameters that characterise the rat
basophilic leukaemia cell line RBL-2H3 are given in Fig. 1
and Table 1 of [9]. The BioNetGen software package was
used to construct the model based on these rules and
parameters, and to perform calculations [32]. The model and
the software are available at http://cellsignaling.lanl.gov

The model is parameterised by the initial concentrations
of the four components and 17 chemical rate constants
(This number is smaller than the 21 rate constants given in
[9] because the two ligand dissociation reactions have zero
rate and Syk association and dissociation are taken to be
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independent of Syk’s phosphorylation state). A detailed
description of how the parameters are determined is
provided in [9]. Most of the parameters have been
determined either directly, through measurement of cellular
protein levels or affinities for protein-protein interactions, or

indirectly, by fitting a subset of the parameters to
experimental time courses of protein phosphorylation and
dephosphorylation. Requiring the model to match certain
qualitative observations allowed constraints to be placed
on the remaining parameters, such as the rates of

Fig. 1 Model for early events in signal transduction through the FceRI receptor. (a) The four basic components of the model—a bivalent
ligand, the FceRI receptor, and the kinases Lyn and Syk. Covalently cross-linked IgE dimers are bivalent ligands that bind and aggregate
receptors irreversibly on the timescale considered in the model. The receptor is composed of three distinct subunits, the extracellular a subunit
that binds the Fc portion of IgE with 1:1 stoichiometry, and the cytoplasmic b and g2 subunits that contain immunoreceptor tyrosine-based
activation motifs (ITAMs), which upon phosphorylation bind to the SH2 domains of Lyn and Syk, respectively. Lyn also associates with the
unphosphorylated b subunit through an interaction involving its N-terminal unique domain. (b) Coarse description of the events leading to Syk
activation in the model. (c) A sequence of reactions in the model that generate the receptor dimer complex with the highest stoichiometry of
binding partners and phosphorylation. This path is one of the multitude of paths that exist in the model because of the large number of branches
that exist at each step. (d) The distribution of the number of possible reactions that species containing a dimer of receptors can undergo. There
are 300 such species in the model
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intracomplex phosphorylation, that are difficult to measure
or assess.
Time courses. Elementary mass action kinetics give rise to
a system of coupled ordinary differential equations (ODEs)
that describe the time evolution of the species concen-
trations following the addition of ligand. These ODEs are
solved numerically using the stiff solver CVODE [34],
which is called by BioNetGen.
Distribution of network activity. We adopt a simple
measure to determine the identity and number of active
elements (species, reactions, or paths) in the network: the
smallest set of elements that cumulatively account for a
prescribed fraction of the total concentration (for species) or
flux (for reactions and paths). This set is determined by rank
ordering the elements by relative concentrations or flux
from highest to lowest and dropping the remaining elements
from the list when the cumulative sum of the first n elements
crosses the cut-off fraction. These first n elements are
considered active. The choice of cut-off is arbitrary, but for
a uniform distribution over the network elements, the
fraction of network elements that are active equals the cut-
off value. When the fraction of active elements is much
smaller than the cut-off value, the distribution can be
considered skewed. An example of such a skewed
distribution that is typical of our results is that only about
7% of the possible species containing activated Syk account
for more than 95% of the activated Syk concentration.
Syk activation paths. We define an activation path as a
sequence of reaction events by which a molecular
component of the model is transformed from an inactive
state into an active one. Here, we analyse the paths that
transform an unphosphorylated Syk molecule in the cytosol

into an autophosphorylated Syk molecule associated with a
receptor dimer complex ðSyk�Þ: As described in more detail
in Appendix, Section 7.1, we use a deterministic algorithm
to enumerate paths as a function of the path length and a
stochastic algorithm to compute the relative contribution of
each path to the rate of Syk� production.
Parameter set ensembles. To determine the possible effect
of the initial cellular state on the distribution of network
activity, we generated two ensembles of 5000 randomly
scaled sets of parameter values, referred to as the 2x and 10x
ensembles.

Each new parameter set is produced by scaling each of the
parameters in the original model, rate constants and
concentrations, by an amount xp; where p is a uniformly
distributed random variable on the interval [21,1] chosen
separately for each parameter. The ligand concentration is
1 nM in the unscaled parameter set, but is varied along with
the other parameters in the scaled parameters sets. Two
parameters, the forward rate constant for ligand-receptor
binding ðkþ1Þ and the forward rate constant for receptor
cross-linking ðkþ2Þ were not varied. Thus, the input signal in
the scaled parameter sets varies only through the variation
of the total ligand concentration.

The ensembles are labelled by their x value, x ¼ 2 or x ¼
10: For each new parameter set generated, the time evolution
of the 307 chemical species is obtained as described above.
A fixed time of 100 s was chosen for sampling the
distributions of activated Syk and reactive fluxes. Variation
of the parameters affects the time required to achieve steady
state, but the sampling time of 100 s generally occurs during
the transient phase of signalling when species concentrations
are changing rapidly. For example, in the unscaled parameter

Table 1: Distribution of reaction rates for the RBL-2H3 parameter set 100 s after stimulation with 10 nM IgE dimer

Relative rate (% of total)

Reaction classa Rate constanta

Number of

reactions

Number of

important reactions

All reactions

in class

Top reaction

in class

Ligand binding kþ1 2 1 0.03 0.03

Receptor aggregation kþ2 4 1 0.03 0.03

Constitutive Lyn binding

Association kþL 146 3 8.58 6.55

Dissociation k�L 146 6 8.59 6.55

Lyn recruitment

Association k�
þL 144 19 0.11 0.03

Dissociation k�
�L 144 26 0.10 0.04

Syk recruitment

Association kþS 384 20 0.27 0.06

Dissociation k�S 384 35 0.26 0.09

Phosphorylation

Lyn ! b ITAM pLb 36 5 1.70 1.14

Lyn� ! b ITAM p�
Lb 36 9 4.10 1.63

Lyn ! g ITAM pLg 24 4 0.08 0.04

Lyn� ! g ITAM p�
Lg 24 7 0.18 0.08

Lyn ! Syk pLS 48 8 0.35 0.14

Lyn� ! Syk p�
LS 48 12 13.42 6.12

Syk ! Syk pSS 64 11 2.02 0.63

Syk� ! Syk p�
SS 64 10 19.17 6.10

Dephosphorylation d 628 53 41.00 6.07

Total 17 rate constants 2326 230 100.00 35.33

aComplete definitions of reaction classes and rate constants are in [9]
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set the level of Syk activation at 100 s is about 20% of its
steady state level (Syk activation increases monotonically
with time, as shown in Fig. 2). Over the full range of ligand
concentrations sampled in the 10x ensemble, Syk activation
(calculated without scaling the remaining parameters) at
100 s ranges from 2% of its steady-state value at 0.1 nM to
70% of its steady-state value at 10 nM. Increasing the
sampling time to 1000 or 10 000 s was found to have a
negligible effect on the ensemble results (shown in Fig. 4).
A later sampling time of 1000 s was chosen for the activation
path distribution to ensure the accuracy of the path sampling
method (see Appendix, Section 7.1), the validity of which
depends on steady-state conditions.
Model Reduction. We used an optimisation procedure
based on deleting species from the full network model to
find the smallest network that will reproduce the time course

of the full model for a set of observed quantities to within a
specified error. When a species is deleted from the network,
all reactions associated with that species are also removed,
but none of the remaining reactions or reaction rate
constants are changed. The objective function used to test
the fitness of a reduced model is the root-mean squared
(RMS) of the relative error computed over all quantities and
time points. The six quantities, which correspond to
observable properties that either have been or could be
measured for this system are FceRIb ITAM phosphory-
lation, FceRIg ITAM phosphorylation, Syk linker region
phosphorylation, Syk kinase activation loop phosphoryl-
ation, association of Lyn with the unphosphorylated FceRIb
subunit, and association of Lyn with the phosphorylated
FceRIb ITAM measured at 1,10,100, and 1000 s after
addition of ligand. Details of the optimisation algorithm are
presented in the Appendix, Section 7.2.

3 Results

In order to characterise the spread of activity in the reaction
network, we consider three distributions: the distribution of
activated Syk among chemical species, the distribution of
reactive flux among reactions in the same class, and the
distribution of frequency among paths that lead to activated
Syk. These distributions are obtained for a default set of
parameters that characterise the rat basophilic leukaemia
cell line (RBL-2H3) [9], for the default set with the Lyn
concentration increased ten-fold, and finally for ensembles
of parameter sets in which the default values are randomly
varied over two-fold and ten-fold ranges.
Distribution of activated Syk (Syk�). A Syk molecule that
is bound to a receptor and has been phosphorylated by a
second Syk is considered to be activated. The 164 species
that contain Syk� represent chemically distinct output
channels of the signalling model. We find that only a few
of these channels dominate the distribution of Syk� at all
times following addition of ligand. The two most populated
species, 354 and 207, contain more than 50% of the Syk�

(Fig. 2a), and 12 species contain more than 95% of the Syk�

(Fig. 2b, black bars). Although relatively few Syk� species
are populated, the composition of these species is
heterogeneous (Fig. 2c), varying in the amount of associated
Lyn and in the level of Lyn-mediated phosphorylation of
Syk. For example, Species 354 contains two Lyn molecules
and two Lyn-phosphorylated Syk� molecules, whereas
Species 207 contains no Lyn and neither of its two Syk�

molecules is Lyn-phosphorylated. This heterogeneity
may have functional consequences, because Lyn and
Lyn-phosphorylated Syk contain binding sites for signalling
molecules [35–39] including Cbl, the p85 subunit of
phosphatidylinositol-30 kinase, and phospholipase Cg.
As a result, molecules associated with Lyn-containing and
Lyn-deficient Syk� species can differ and the different
signalling complexes have the potential to trigger distinct
downstream signalling events.

The predicted distribution of Syk� changes during the
response to stimulation (Fig. 2a). The Lyn-containing
complex, 354, exhibits faster initial kinetics than the Lyn-
deficient complex, 207, but as receptor phosphorylation
increases, the pool of free Lyn available to bind receptors is
depleted [40], and 207 replaces 354 as the most abundant
form of Syk�. Thus, the temporal redistribution of Syk�

could have functional consequences if co-localisation of
Lyn and Syk has a strong effect on downstream signals.

The predicted distribution of Syk� also depends on the
initial state of a cell. As illustrated in Fig. 2b, the
distribution of Syk� can be shifted by a change in

Fig. 2 Predicted distribution of activated Syk ðSyk�Þ after
introduction of IgE dimer (10 nM) at time t ¼ 0 s. Calculations
were performed using the BioNetGen software package [32] using
parameter estimates for the RBL-2H3 cell line [9], except as noted
below. (a) Time courses for the total amount of Syk� (black curve)
and the amount of Syk� in each of the two species containing the
most Syk� at t ¼ 100 s (red and blue curves). (b) Rank ordered
distribution of Syk� at t ¼ 100 s (black bars) and when the Lyn
concentration is increased ten-fold (red bars). The 12 complexes
indicated account for more than 95% of the Syk� at t ¼ 100 s; and
five of these account for 95% of the mass when the Lyn concentration
is increased ten-fold. The indices used to refer to complexes are
defined at our web site (http://cellsignaling.lanl.gov). Species 354,
350, 346, and 264 each contain two bound Lyn molecules; Species
207 and 199 contain no bound Lyn; and Species 327, 263, 284, 319,
259, and 261 contain one bound Lyn molecule. (c) Illustration of the
four species containing the most Syk� at t ¼ 100 s
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the concentration of a single component. Increasing the
concentration of Lyn ten-fold causes a redistribution of Syk�

into Lyn-containing complexes (Fig. 2b, red bars). The effect
on Lyn-deficient states can be quite large: for example, the
fraction of Syk� in Species 207 drops by more than a
factor of 1000. Thus, a cellular response that depends on co-
localisation of Lyn and Syk could be upregulated (down-
regulated) by increasing (decreasing) the expression of Lyn.
Unfortunately, without including additional components in
the model, it is difficult to predict how co-localisation would
affect activity. For example, Lyn-containing Syk� com-
plexes might upregulate Syk-dependent responses because
Lyn binds the regulatory subunit of phosphatidylinositol-30

kinase (PI3K) [35], whose catalytic activity creates plasma
membrane binding sites for a number of known Syk
substrates [39]. On the other hand, Lyn-containing Syk�

complexes might downregulate Syk-dependent responses
because Lyn phosphorylation of Syk on Tyr-317 creates a
binding site for the ubiquitin ligase Cbl, which marks Syk
for degradation and may block the direct binding of PLC-g
to other phosphotyrosine residues on Syk [38]

Distribution of reaction rates. Another way to measure
the importance of network elements is to examine rates of
individual chemical reactions. As described above, the
model is constructed by lumping together similar chemical
transformations into classes described by a single rate
constant [9]. For example, the rate constant for Lyn binding
to the phosphorylated b ITAM ðk�þLÞ is independent of
whether Lyn or Syk is bound to any of the other sites within
a receptor aggregate and is used to characterise 144 distinct
chemical reactions. Since the rate of each reaction in the
model is given by the product of the rate constant and
the concentrations of the chemical species involved, the
distribution of reaction rates within the same class mirrors the
distribution of complexes that can participate in the reaction
class. Just as the 164 Syk�-containing complexes represent
alternative output channels of the model, the multiple
reactions within each class represent alternative conduits of
flow. The 17 reaction classes considered in our analysis and a
breakdown of their rate distributions for the default
parameter set are given in Table 1. The number of important
reactions within each class (defined, as above, by a 95% cut-
off) is always a small fraction of the total number of reactions
within a class. Cumulatively, only about 10% of the reactions
in the network are characterised as important. A similarly
narrow distribution of reaction rates is observed when the
Lyn concentration is increased ten-fold (results not shown).

Distribution of activation paths. Our final measure of
network activity is the steady-state distribution of flux
among reaction paths from inactive to activated Syk. Such a
path is a non-repeating ordered sequence of reactions
that transforms unphosphorylated cytosolic Syk into Syk�.
The number of theoretically possible activation paths grows
exponentially as a function of path length and far exceeds
the number of molecules in the system (Table 2), but only
12 paths account for 50% of the total activation flux and
�1000 paths account for 95%: The top two paths (Fig. 3),
both involve Syk binding to a receptor that is already bound
to Syk. Such shortcutting paths minimise the opportunity
for branching and are thus a major contributing factor to
the narrow distribution of path flux. Path 54 (Fig. 3) has
the highest flux among activation paths in which Syk initially
binds to a complex containing no associated kinases.
Activation of Syk along such paths requires additional Lyn
and Syk binding events and gives rise to more branching
opportunities and a greater diversity of possible paths.

Table 2: Number of possible paths and frequency of observed Syk activation paths as a function of path
length. The number of observed paths and fraction of the total activation flux accounted for by paths of a
given length are determined by stochastic sampling of 107 successful activation events at steady state,
when all FceRI are aggregated into dimers

Path length Number of possible paths Number of observed paths Fraction of activation flux

2 64 64 38.2%

3 384 287 26.3%

4 2,056 773 12.6%

5 14,068 1,434 4.8%

6 108,728 1,831 4.4%

7 845,800 2,026 4.3%

8 6,301,796 2,204 3.3%

9 44,621,932 3,081 2.1%

10 300,913,268 4,206 1.3%

Total 352,808,096 15,906 97.3%

Fig. 3 Reaction paths that convert inactive cytosolic Syk to the
activated form ðSyk�Þ under steady-state conditions. The paths are
indexed by the rank of their relative flux, which is given as a
percentage of the total activation flux, the rate of Syk� turnover.
The relative flux of each path when the total Lyn concentration is
increased ten-fold is shown in parentheses. Relative fluxes are
determined from a sample of 107 randomly generated successful
activation sequences
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Such paths, however, are relatively rare, cumulatively
accounting for only 4% of the total activation flux.

Thus, most Syk activation does not follow an extended
sequence of reaction events like that shown in Fig. 1c.
The species along the top two paths of Fig. 3 also exhibit the
split levels of Lyn association that were observed in the top
two Syk� complexes shown in Fig. 2. Increasing the Lyn
concentration ten-fold dramatically reduces the flux of
activation paths (values shown in parentheses in Fig. 3)
involving complexes without Lyn (Paths 2 and 54).
Variation of parameter values. To test whether a narrow
distribution of network activity depends on parameterisation
of the model, we examine the three measures of the activity
distribution for different sets of randomly altered parameter
values. The level of Syk activation varies widely among
parameter sets (Fig. 4a), but all parameter sets yield narrow
distributions of network activity in comparison to a uniform

distribution into all possible Syk�-containing species,
reactions, or Syk activation paths (Fig. 4b–d). For two-fold
variations of parameters, each measure of activity is
symmetrically distributed about the value characteristic
of the original parameter set. For ten-fold variations of
parameters, the average value of each measure decreases,
although each distribution has a long tail that extends to
higher values (Fig. 4b–d).

Systematic variation of parameter values confirms the
example of Fig. 2b: the identity and relative contribution
of important network elements can change depending
on parameter values (Fig. 4e–g). Figure 4e shows how the
fractional contribution of Species 354, the species contain-
ing the highest concentration of Syk� using the original
parameter set, is distributed in the 2x and 10x parameter set
ensembles. Species 354 contains � 30% of the Syk� using
the original parameter set (Fig. 2a–b), and its fractional
contribution is distributed symmetrically about this
value in the 2x ensemble over a range of �10–60%:
However, in the 10x ensemble, the distribution changes
substantially, with the most frequent value of the fractional
contribution tending towards zero (i.e. no Syk� in this state).
The fractional contributions of the Syk autophosphorylation
reaction with the highest reaction rate (Fig. 4f ) and the Syk
activation path with highest relative flux (Fig. 4g) exhibit
similar behaviour. Thus, the relative contribution of an
important network element is robust to modest (two-fold)
parameter variations, but larger (ten-fold) parameter varia-
tions usually cause activity to shift elsewhere in the network.
Model reduction. If a relatively small portion of the
signalling network is active, one might expect that the FceRI
model could be reduced in size without changing its
predictions. We tested this idea by removing species and
their associated reactions to reduce the network size while

Table 3: Performance of reduced models measured by
the RMS error of six observables (FceRIb ITAM
phosphorylation, FceRIg ITAM phosphorylation, Syk
linker region phosphorylation, Syk kinase activation
loop phosphorylation, low-affinity Lyn-receptor
association, and high-affinity Lyn-receptor association)
at three time points (t = 10, 100, and 1000 sec). Results
are representative of at least three reduced models with
the same number of nodes produced by separate
optimisation runs

Default

set

2 £

ensemble

10 £

ensemble

44 state model

(104 reactions)

Mean RMS error 6:5%a 56% 50; 000%

% sets RMS error <10% – 4:6% 0:2%

% sets RMS error>50% – 28% 77%

83 state model

(257 reactions)

Mean RMS error 3:0%b 45% 120%

% sets RMS error <10% – 16% 1:8%

% sets RMS error>50% – 22% 54%

aError with 1 nM IgE dimer stimulation. Error is 10% when objective

function is evaluated at conditions under which model reduction was

performed (10 nM IgE dimer stimulation, objective function computed at

t ¼ 1; 10, 100, and 1000 s)
bError with 1 nM IgE dimer stimulation. Error is 10% when objective

function is evaluated at conditions under which model reduction was

performed (10 nM IgE dimer stimulation, objective function computed at

t ¼ 1; 10, 100, and 1000 s)

Fig. 4 Effect of random variation of model parameter values on
the distribution of network activity. The distributions of Syk� in the
output species and of reaction rates grouped by rate constant are
determined at t ¼ 100 s following stimulation with IgE dimer.
The distribution of activation path fluxes is sampled at t ¼ 1000 s:
For each of the following properties the panels plot relative
frequency of occurrence in the 2x (solid lines) and 10x (dashed
lines) ensembles: (a) Total level of Syk�. (b) Number of important
Syk� species (account for more than 95% of Syk�). (c) Number of
important reactions (carry more than 95% of the reaction flux in
all reaction classes, as defined in Table 1). (d) Number of
important Syk activation paths (carry more than 50% of the Syk
activation flux, as determined from a sample of 105 activation
events for each parameter set). (e) Fraction of Syk� contained in
Species 354 (see Fig. 2c). (f) Fraction of Syk activation due to the
Syk autophosphorylation reaction with the highest flux using the
original parameter values. (g) Fraction of Syk activation due to
Path 1 of Fig. 3. Filled circles on the x-axis indicate the value of
each property calculated using the original parameter values
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minimising the error of six specified output functions in
comparison to the predictions of the full model. Permitting a
maximum RMS relative error of 10%; the smallest network
we found contained 44 species and 104 reactions (Table 3).
Although predictions of this model match those of the full
model for the original parameter values, the reduced model
is not predictive over a range of parameter values. Even for
the 2x ensemble of altered parameter sets, the reduced
model exhibits RMS errors outside the 10% tolerance in the
vast majority of cases and exhibits >50% RMS error in a
substantial fraction of cases. These results are insensitive to
the size of the error tolerance used in model reduction
(Table 3). The propensity of network activity to shift with
parameter variations (Fig. 4) appears to limit the possibility
of finding reduced models that apply over a broad range of
cellular conditions.

4 Discussion

The protein-protein interactions of signal transduction [3],
typified in the model considered here, generally imply a vast
biochemical network, comprising a multitude of protein
states and complexes and reactions among these. One issue
that modellers of signal transduction must confront is
whether this complexity affects the fundamental behaviour
of the system or whether most of it may be safely ignored, as
is common practice. The formulation of a simplified model
amounts to assuming that a small number of states
can effectively represent a multitude of potential states.
One problem with such simplifying assumptions, aside from
questions of accuracy, is that they limit the ability of models
to predict the effect of typical experimental manipulations,
such as knocking out specific sites of phosphorylation or
domains of proteins.

We have attempted here to assess the role of molecular
diversity in signal transduction by characterising the
diversity of complexes, reactions, and activation pathways
that arise in a detailed model of early signalling events
in a particular pathway initiated by receptor aggregation.
We find that for any given state of the cell, characterised
by a particular set of model parameters, only a small
fraction of the network appears to be active (Fig. 2 and
Table 1), but changing the cell’s state can change which
elements are active. The spectrum of active complexes in
the model can be shifted dramatically, even by a change
in the concentration of a single protein (Fig. 2b and
Fig. 3). Random variation of the model parameters
demonstrates that the narrow distribution of network
activity is a robust feature of the model (Fig. 4). The set
of important network elements is generally robust to
modest (two-fold) perturbations of rate constants and
concentrations, and major shifts in activity require large
(ten-fold) variations. It is possible to find reduced models
that reproduce the behaviour of the full model for
particular parameter values, but the predictions of these
models are poor for perturbed cellular states (Table 3).
They cannot be expected to predict accurately, for
example, the effects of knocking out a particular protein
domain. We conclude, therefore, that the assumptions of
simplified models should be carefully validated before
such extrapolations are made. The results of model
reduction suggest that it will be difficult to find simplified
models that are predictive over a broad range of cellular
states.

One question that arises from our study is whether the
topology of the network alone is sufficient to guarantee the
narrow distributions of activity we observe. A simple

numerical experiment demonstrates that this is not the case.
Setting all four initial concentrations and 17 rate constants
to unity, we find that more than 70% of the possible Syk�

species are active, as compared with about 7% using the
RBL cell parameters. Thus, variation in the levels of protein
expression and values of rate constants are essential for
producing narrow flows.

A related question is whether other large network models
will also exhibit focused distributions of network activity.
We have recently constructed and analysed a network model
of early events in signalling through EGFR [11]. Interest-
ingly, we find that at steady-state, the narrow distribution of
active species is comparable to that of the FceRI model, but
there is a much broader transient distribution that encom-
passes about 30% of the possible species. The broad
distribution of active species appears to arise from the
roughly equal concentrations of receptor-binding proteins
that produce complexes of broadly varying stoichiometry.
A dramatic reduction in molecular diversity occurs at steady
state because receptor-binding proteins are sequestered into
a few cytosolic complexes. The limited supply of these
proteins for receptor binding restricts the stoichiometry of
the complexes that can form, limiting the observed diversity
of species.

This study demonstrates that network dynamics alone,
even in the absence of feedback or cooperative interactions,
can produce highly focused flows of mass and information
in a signalling network. Moreover, we have seen that these
flows can be regulated by parameters such as protein
expression levels and enzymatic activities. One might
expect such focused flows to arise from other mechanisms,
such as cooperativity, feedback, or localisation. These
mechanisms may well restrict the range of complexes that
form during response to a signal, but observation of limited
molecular diversity among signalling complexes cannot be
attributed to any particular mechanism without models that
incorporate all of the potential mechanisms for limiting
diversity. In particular, interpretation of proteomic data
[12–16], assays of the protein phosphorylation states and
complexes generated during signalling, will require models
of the type analysed here to obtain mechanistic insights.

Experimental evidence for the role of differential
complex formation in shaping cellular responses comes
from studies of kinetic proofreading in immunoreceptor
signalling (recently reviewed in [4]), which indicate that
the signalling properties of a ligand are sensitive to the
lifetime of ligand-receptor binding. Ligands with longer
association lifetimes tend to signal more effectively
because they generate ‘mature’ signalling complexes that
carry the signal downstream, whereas shorter binding
ligands produce ‘frustrated’ complexes that do not signal
and can actually inhibit the production of mature
complexes by sequestering signalling components in
limited supply. Such ‘antagonist’ ligands have been
shown to produce both altered patterns of receptor
phosphorylation [41] and kinase-sequestering complexes
that inhibit signalling by more strongly binding ligands
[42, 43]. Both of these effects are predicted by detailed
models of early signalling events [40, 44], which provide
theoretical support for the ideas incorporated in simplified
models of kinetic proofreading [45, 46]. In terms of the
potential role that differential complex formation may play
in determining and regulating signalling outcomes, these
effects represent just a few possibilities. Investigating these
should be a major focus of computational studies of signal
transduction [6, 47, 48] in the near future.

We have shown here that the pattern of complexes
formed during a response to a signal can be sensitive to
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quantitative parameters that define the initial state of the
cell. Because the spectrum of active complexes in our
model can be shifted dramatically, even by a change in
the concentration of a single protein, one function of the
combinatorial complexity found in signalling systems
might be to provide a mechanism for cellular decision
making. Any event that changes the expression level or
activity of a component of the cell could affect signal
processing through a cascade involving that component, by
changing the composition of signalling complexes that are
generated. In this way, the complexity of signalling
complexes, which until now has been merely perplexing,
might turn out to be an essential element of cellular
computation.
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7 Appendix

7.1 Enumeration and sampling of activation
paths

We define an activation path as a sequence of reaction
events by which a molecular component of the model is
transformed from an inactive state into an active one. Here,
we focus on paths that transform an unphosphorylated Syk
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molecule in the cytosol into in an autophosphorylated Syk
molecule associated with a receptor dimer complex ðSyk�Þ,
but the methods can be easily generalised. The full reaction
network is first transformed into a directed graph (a set of
nodes and directional edges connecting nodes), from which
activation paths are defined, enumerated, and sampled to
determine relative activation fluxes.
Constructing the component activation graph. Each node
in this activation graph represents a distinct state of Syk in
the model. Nodes are created from the species that contain
Syk; species that contain one Syk molecule give rise to one
node, but species that contain multiple Syk molecules in
distinct states give rise to multiple nodes. For example, in
the second species of Path 1 in Fig. 3, the labelled Syk may
be associated with either the left or the right receptor of the
complex. Thus, to account for both possibilities, we must
include two nodes in the graph for this species. The edges of
the activation graph correspond to directed chemical
transitions between nodes that can be carried out in a single
reaction step. Edges are created from the reactions in the
model that involve Syk; one edge is created for each distinct
pair of reactant and product nodes arising from the reaction.
Reactions that contain multiple Syk molecules give rise to
multiple edges. For example, the first reaction shown in Path
1 of Fig. 3, where the labelled Syk may be either cytosolic
(the purple Syk) or associated with a receptor complex (the
black Syk), gives rise to two edges. The weight of an edge is
given by the rate at which a molecule of the labelled Syk is
transformed by the reaction. (If multiple reactions carry out
the same transformation of nodes, the weight is the sum of
the relevant rates). For the example given above, the weight
of the edge involving transformation of the purple Syk is
given by kþS times the concentration of the species
containing the black Syk, whereas the weight of the edge
involving the transformation of the black Syk is given by
kþS times the concentration of free Syk in the cytosol. (Note
that these weights are in general time dependent.) Reactions
involving the loss of Syk from a symmetric complex can
give rise to two edges from a single reactant node. If the
number of Syk molecules in the complex is s, the weight of
the edge for dissociation of the labelled Syk from the
complex is 1=s; and the weight of the edge for retention of
the labelled Syk is (s-1)=s. The Syk activation graph
constructed in this manner contains 420 nodes, of which 192
represent activated states of the labelled Syk, and 3644
non-zero edges (for irreversible ligand binding). The Syk
activation graph is available from the authors upon request.
Formal definition of an activation path. A Syk activation
path is defined as an ordered sequence of nodes of this
graph, where the first node corresponds to unphosphory-
lated, cytosolic Syk, and the final node is the first node in the
sequence in which the labelled Syk is autophosphorylated
and part of a receptor dimer complex. Each pair of adjacent
nodes in this sequence must be connected by an edge with
non-zero weight. To simplify our analysis, we restrict
the definition of a path to include only those sequences in
which each node appears at most one time, to avoid cycles
within paths.
Enumeration of paths. The enumeration of possible paths
as a function of path length (column 2 of Table 2) is carried
out using a modified form of the depth-first search [49].
Paths up to length N are enumerated as follows. A path is
implemented as a stack (elements are added to and removed
from the end of the list) and is initialised with a starting node
corresponding to unphosphorylated, cytosolic Syk. (I) Loop
over the edges originating from the final node of the path.
If the final node of an edge corresponds to an active state of
the labelled Syk, increment the number of paths of length n,

where n is the number of nodes in the path, and continue
with loop (I). If n<N and the final node of the edge is not a
member of the current path, add this node to the path and
begin a new loop at (I ). (II ) When the edges from the final
node in a path are exhausted, remove this node from the path
and continue with loop (I ) if the path still contains at least
one element. The recursive looping implied by (I ) is
implemented using a second stack that contains a pointer to
the current edge for each node in the path stack, where the
edges for each node are stored in a linked list and looped
over in that order.
Determination of activation flux. Sampling of paths to
determine their relative contribution to the total activation
flux is done using a stochastic algorithm based on Gillespie’s
method for computing chemical dynamics [50]. The first
node in a path is unphosphorylated, cytosolic Syk. Paths are
extended from the terminal node i in the path sequence by
choosing the next node j randomly with probability pi!j ¼
wi!j=

P
j0 wi!j0 ; where wi!j is the weight of the edge taking i

into j. Paths are terminated when the Syk molecule being
traced is autophosphorylated (successful activation) or when
it returns to the cytosol in its unmodified state. Sampling of
paths continues until a specified number of activation events
is recorded. Following a successful trace, the path is pruned
to remove loops by iteratively removing all nodes between
repeating nodes (including one instance of the repeating
node) until no more repeating nodes are present in the path.
The relative activation flux from a given activation path p is
ð# times p observedÞ=ð# activation eventsÞ: Edge weights
are determined from the species concentrations at a
particular sampling time and assumed to be constant. This
assumption is equivalent to assuming that the relative change
in the species concentrations is small over the duration of the
activation events being sampled, which holds exactly under
the steady-state conditions used to generate the data in Fig. 3
and Table 2. This assumption is also reasonably accurate for
the t ¼ 1000 s time point used in the sampling of activation
paths in the parameter set ensembles, because the duration
of the vast majority of activation events is at most a few
seconds and species concentrations undergo small fractional
changes on this timescale at a time so distant from the
addition of ligand.

7.2 Algorithm for model reduction

The optimisation algorithm is as follows. The starting
network is taken to be the full network. (1) At each step a
move is attempted in which a species is randomly deleted
from the network. If the objective function (defined in
Section 2) is below the threshold value for the RMS, the
deletion is accepted and the optimisation continues from (1).
(2) Following a failed move, the deletion is removed from
the list of possible deletions from the current network.
(a) After a sequence of 50 failed deletions or when all
deletions from the current network have been exhausted,
two addition moves are made in which a randomly selected
species that was previously deleted is added back to the
network. Additions are allowed only if they do not increase
the value of the objective function. (b) After a sequence of
1000 moves in which the size of the smallest network
reached has not decreased, 50 addition moves are
performed. Optimisation then continues from (1).
The purpose of both types of node addition, which undoes
the effects of past moves, is to prevent the procedure from
being trapped in a local minimum. We found that the larger
moves of type (b) were required to prevent most
optimisation runs from becoming trapped in high-lying
local minima.
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We varied both parameters and procedures of this
optimisation algorithm, but found that the above recipe
produced the smallest reduced networks for a given value of
the objective function threshold, with the smallest spread in
the size of the smallest network found from different
optimisation runs. For example, networks with 44 nodes that
satisfied an error tolerance of 10% were found in three of 16

optimisation runs, each consisting of about 106 attempted
moves. The range in the size of the smallest network found
in these 16 runs was 44–49. Similarly, four of 16
optimisation runs with an error tolerance of 1% found
reduced networks with 83 nodes, and the range in the size of
the smallest network found was 83–90. Reduced models are
available from the authors upon request.
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