
The Complexity of Complexes in Signal
Transduction

William S. Hlavacek, James R. Faeder, Michael L. Blinov, Alan S. Perelson,
Byron Goldstein

Theoretical Biology and Biophysics Group (T-10), Theoretical Division, Mail
Stop K710, Los Alamos National Laboratory, Los Alamos, New Mexico 87545,
telephone: 505-665-1355; fax: 505-665-3493; e-mail: wish@lanl.gov

Published online 24 November 2003 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/bit.10842

Abstract: Many activities of cells are controlled by cell-
surface receptors, which in response to ligands, trigger
intracellular signaling reactions that elicit cellular re-
sponses. A hallmark of these signaling reactions is the
reversible nucleation of multicomponent complexes, which
typically begin to assemble when ligand-receptor binding
allows an enzyme, often a kinase, to create docking sites for
signaling molecules through chemical modifications, such
as tyrosine phosphorylation. One function of such docking
sites is the co-localization of enzymeswith their substrates,
which can enhance both enzyme activity and specificity.
The directed assembly of complexes can also influence the
sensitivity of cellular responses to ligand-receptor binding
kinetics and determine whether a cellular response is up- or
downregulated in response to a ligand stimulus. The full
functional implications of ligand-stimulated complex for-
mation are difficult to discern intuitively. Complex for-
mation is governed by conditional interactions among
multivalent signaling molecules and influenced by quanti-
tative properties of both the components in a system and
the system itself. Even a simple list of the complexes that
can potentially form in response to a ligand stimulus is
problematic because of the number of ways signaling
molecules can be modified and combined. Here, we review
the role of multicomponent complexes in signal trans-
duction and advocate the use of mathematical models that
incorporate detail at the level of molecular domains to study
this important aspect of cellular signaling. B 2003 Wiley
Periodicals, Inc.
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INTRODUCTION

A cell uses cell-surface receptors to constantly monitor its

environment and initiate responses to environmental cues,

e.g., signals such as growth factors and cytokines. The range

of signals, typically ligands, a cell can detect and the con-

centrations at which ligands can be detected are determined

by the array of receptors on the cell’s surface. When a

receptor encounters an agonist ligand, ligand-receptor inter-

action triggers a cascade of intracellular signaling reactions

that can lead to a variety of cellular responses, such as the

secretion of mediators of cell–cell communication, changes

in gene expression, and cell proliferation. For an overview

of cellular signaling, see Hunter (2000). Because receptor-

mediated signal transduction plays a central role in regulat-

ing a panoply of cellular activities, improved understanding

of receptor signaling has a number of potential practical

applications, from the rational design of drugs and vaccines

to the engineering of cells for biotechnological purposes.

So far, much of the effort to understand receptor-mediated

signal transduction has been aimed at identifying the mole-

cules that participate in specific signaling cascades and at

qualitatively characterizing the activities and interactions of

these molecules. Thus, for a well-studied system, we might

have a list of parts and enzymatic activities, knowledge of

where each molecule acts in the signaling cascade (e.g., the

activity of molecule A is required for the activity of mole-

cule B), and knowledge of protein–protein interactions at

the domain level (e.g., molecule A interacts with molecule

B via binding of domain X in A to domain Y in B). Here, we

use ‘‘domain’’ as a general term for a functional component

of a protein, such as an individual amino acid residue, like

a tyrosine that is phosphorylated, a short motif or segment of

a polypeptide chain that is recognized by a binding partner,

like the immunoreceptor tyrosine-based activation motif

(ITAM) (Cambier, 1995), a large modular segment of a

polypeptide chain with binding or catalytic activity, like the

kinase domain of a receptor tyrosine kinase (Schlessinger,

2000), or a subunit of a multimeric protein, like the a chain

of FceRI (Kinet, 1999).

The acquisition of qualitative information about the

cellular signaling apparatus is no small task, in part because

the typical protein involved in a signaling cascade is a

complex machine subject to multiple layers of regulation.

However, the ultimate goal of studying signal transduction

is to understand how the components in a signaling cas-

cade work together as a system to direct cellular responses

to changes in the extracellular environment. This level of

understanding will require quantitative characterization of
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signaling components and their interactions (e.g., measure-

ment of concentrations and rate constants) and will be

achieved when we are able to accurately predict how a cell

responds to an array of external signals over a range of

intracellular operating conditions. Mathematical models

provide the framework for achieving such a predictive

systems-level understanding.

Appropriately, mathematical modeling of signal trans-

duction is now emerging as a prominent field of research in

systems biology (Bhalla and Iyengar, 1999; Endy and Brent,

2001; Kitano, 2002; Taussig et al., 2002; Wiley et al., 2003).

Here, we present our perspective on modeling of signal

transduction, advocating models that track the interactions,

modifications, and activities of molecular domains, the

fundamental elements of signal transduction systems

(Pawson and Nash, 2003). We will focus on an omnipresent

feature of signal transduction that we feel presents a major

challenge to modelers, the assembly of multicomponent

complexes through conditional multivalent binding. We

speak of conditional multivalent binding, because the

activity of a molecular domain in a binding reaction can be

modulated, for example, by phosphorylation, and a signaling

molecule typically contains multiple domains, which

mediate interactions with multiple molecules. A conse-

quence of conditional multivalent interactions among sig-

naling molecules is the possibility that a ligand stimulus will

induce the formation of a number of chemically distinct

multicomponent complexes during the process of signal

transduction. We will discuss the significant but manage-

able challenges that ligand-induced assembly of diverse

complexes pose for the development of models, how these

challenges have been addressed, and how they might be

dealt with in the future. We will also discuss how complex

assembly can have surprising functional consequences and

comment on recent studies (Faeder et al., 2003; Goldstein

et al., 2002; Hlavacek et al., 2001, 2002) that show how

the behavior of a signal transduction system can depend

qualitatively and nonlinearly on quantitative factors, such

as the relative abundance of a signaling molecule or com-

petition between concurrent processes that have counter-

acting effects.

MULTICOMPONENT COMPLEXES

Much of receptor signaling consists of construction projects

that take place just below the cell surface. In Figure 1, for

each of four systems, we have schematically illustrated one

of the multicomponent membrane-proximal complexes that

can form as a result of ligand-receptor binding. The mecha-

nisms responsible for ligand-induced nucleation of such

intracellular complexes are similar for a wide variety of sys-

tems. Typically, ligand-receptor binding allows an enzyme

to create binding sites around which complexes nucleate.

Below, we discuss the specific processes directed by the

epidermal growth factor receptor (EGFR) and the high-

affinity receptor for IgE antibody (FceRI) that lead to

the formation of multicomponent intracellular complexes

(Fig. 1a and 1b). A brief introductory discussion of the well-

studied EGFR and FceRI systems, both of which have been

modeled (in different ways), will provide the necessary

background for further discussion and allow us to illustrate

the problem of combinatorial complexity, i.e., signal trans-

duction within a vast potential chemical reaction network

that arises because signaling molecules can be modified in a

number of ways and combine to form complexes in a variety

of ways. Much of combinatorial complexity is a direct

consequence of conditional multivalent binding.

EGFR-Directed Assembly of Complexes

Growth factors and related molecules trigger cell prolifera-

tion and other cellular responses through interaction with

cell-surface receptors. A well-studied receptor of this type is

EGFR (Jorissen et al., 2003; Schlessinger, 2000; Wiley et al.,

2003), the receptor for epidermal growth factor (EGF).

The intracellular nucleus of the complex illustrated in

Figure 1a is an EGF-induced dimer of EGFR. This complex

can form as a result of processes described roughly as

follows. Ligand binding promotes or stablizes interactions

Figure 1. Multicomponent complexes that can form during receptor-

mediated signal transduction. (a) Complex formation around EGFR

(Jorissen et al., 2003; Schlessinger, 2000). The cytosolic adapters Grb2

and Shc are recruited to the membrane when EGFR tyrosines are

autophosphorylated. Grb2 also binds phosphorylated Shc and interacts

constitutively with Sos, a guanine nucleutide exchange factor. (b) Complex

formation around FceRI (Kinet, 1999; Turner and Kinet, 1999). Syk, a cy-

tosolic protein tyrosine kinase (PTK), is recruited to the g chain of FceRI

after phosphorylation of receptor tyrosines by the Src-family PTK Lyn,

which is tethered to the membrane and interacts with the h chain of FceRI

via constitutive low-affinity and phosphorylation-dependent high-affinity

interactions. (c) Complex formation around Ste5p (Elion, 2001). The

kinases Stel1p, Ste7p, and Fus3p constitute a MAPK cascade involved in

the mating response of yeast and interact with the scaffold protein Ste5p,

which forms homodimers. When a-factor pheromone binds Ste2p, Ste4p, a

G protein component, is liberated to interact with Ste5p. Recruitment of

Ste5p to the membrane enables membrane-associated kinase Ste20p to

phosphorylate Ste11p, which initiates the MAPK cascade. (d) Complex

formation around FcgRIIB (March and Ravichandran, 2002). SHIP1, a

cytosolic inositol phosphatase, is recruited to the membrane after

phosphorylation of FcgRIIB tyrosines. Recruitment of SHIP1 depends

on Grb2, which interacts constitutively with SHIP1 and, like SHIP1,

interacts with FcgRIIB.
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between receptors (Ferguson et al., 2003; Garrett et al., 2002;

Ogiso et al., 2002). When two receptors are co-localized via

ligand-induced dimer formation, as in Figure 1a, the cyto-

plasmic kinase domain of one EGFR is able to transphos-

phorylate various cytoplasmic receptor tyrosine residues of

the other EGFR (Jorissen et al., 2003; Schlessinger 2000).

Phosphotyrosine-containing sites can be recognized by the

cytosolic adapter proteins Grb2 and Shc (Batzer et al., 1994;

Okabayashi et al., 1994), which are recruited to phosphory-

lated receptors. When Shc is bound to a receptor, it can be

phosphorylated by EGFR (Pelicci et al., 1992). The

phosphorylated form of Shc interacts with Grb2 (Rozakis-

Adcock et al., 1992), which interacts constitutively with the

guanine nucleotide exchange factor Sos (Egan et al.,1993;

Li et al., 1993; Rozakis-Adcock et al., 1993). Formation of

EGFR �Shc �Grb2 �Sos complexes is an important route

through which EGFR recruits Sos to the membrane (Sasaoka

et al., 1994). Translocation of Sos from the cytosol to the

membrane is required for Sos-catalyzed activation of Ras

(Boguski and McCormick, 1993), a membrane-tethered

GTPase that regulates a mitogen-activated protein kinase

(MAPK) cascade. This MAPK cascade, which is similar to

the one illustrated in Figure 1c, ultimately activates

transcription factors that control gene expression (Chang

and Karin, 2001; Treisman, 1996).

The multicomponent complex illustrated in Figure 1a is

just one of the many complexes that can potentially form

during signaling, in part because the molecules involved in

EGFR-mediated signal transduction each have multiple

binding sites, as is generally true (Pawson and Nash, 2003).

For example, Grb2 binds EGFR and Shc via its Src ho-

mology 2 (SH2) domain (Lowenstein et al., 1992; Rozakis-

Adcock et al., 1992), and Grb2 binds Sos via its two SH3

domains (Egan et al., 1993; Li et al., 1993; Rozakis-Adcock

et al., 1993). The reaction network is complicated not only

by multivalent binding and the consequent possibility of a

spectrum of multicomponent complexes but also by the

conditional activity of component binding sites. For

example, Grb2 binds tyrosine residue Y1068 of EGFR only

when this residue is phosphorylated. Thus, we must be able

to keep track of whether Y1068 is phosphorylated or not if

we wish to follow the interaction of EGFR with Grb2. As in

this example, many other signaling molecules contain

binding sites that can be either on or off depending on

phosphorylation/modification state. A further complication

is the transitory nature of complexes (Bunnell et al., 2002;

Pacini et al., 2000). For example, just as there are enzymes,

such as kinases, that modify proteins to turn binding sites on,

there are enzymes, such as phosphatases, that reverse these

modifications to turn binding sites off (Hunter, 1995). For

this reason and others (e.g., short-lived chemical bonds),

there is a constant competition during signal transduction in

which multicomponent complexes are building up and

breaking down. From these considerations, we can start to

appreciate the complexity of signaling networks and the

difficulties, experimental and theoretical, that must be

overcome to develop predictive models of these networks.

For any conceivable case, one must consider a spectrum of

ephemeral complexes, composed of multiple components,

each of which can occupy numerous modification states.

Modeling Early Events in EGFR Signaling

To what extent do the conditional multivalent interactions of

signaling molecules complicate modeling? Kholodenko et al.

(1999) formulated a mathematical model for early EGFR-

mediated signaling events. They primarily focused on the

events that lead to recruitment of Sos to the inner membrane.

This model includes six proteins and tracks 25 chemical

species. It can be reduced to a model that includes five

proteins (EGF, EGFR, Grb2, Shc, and Sos) and tracks 18

chemical species if we omit consideration of phospholipase

Cg (PLCg), which is not required to recruit Sos to the

membrane. An extended version of the model that

incorporates the MAPK cascade triggered by Sos-activated

Ras tracks 94 chemical species (Schoeberl et al., 2002). In

both models, reaction dynamics are characterized by a

system of coupled ordinary differential equations (ODEs),

with the number of ODEs corresponding to the number of

chemical species.

The number of equations in the model of Kholodenko et al.

(1999) or Schoeberl et al. (2002) is a consequence of the

multivalent protein–protein interactions that dominate the

EGFR signaling cascade. The reaction network considered

in either model, as is typical of protein interaction networks,

is larger and more branched than would be expected for a

genetic regulatory or metabolic network involving the same

number of proteins. For comparison, consider the metabolic

network of the red blood cell. A model of this network

(Jamshidi et al., 2001) includes 34 ODEs and, unlike the

EGFR models, involves a comparable number of enzymes.

Gene regulation involves aggregation phenomena as in

signal transduction (Ptashne and Gann, 2002), but genetic

regulatory networks tend to involve a relatively small set of

transcription factors (Thieffry et al., 1998, Shen-Orr et al.,

2002), which is reflected in models (Gilman and Arkin,

2002). Thus, in comparison with models for metabolic and

genetic regulatory networks, the models of EGFR signaling

can be considered large. Nevertheless, these models may not

be large enough, because each model explicitly tracks only a

fraction of the microscopic chemical species that are

potentially involved in the processes considered.

In the model of Kholodenko et al. (1999), the only

monomers of EGFR considered are those lacking cytoplas-

mic modifications and the only dimers of EGFR considered

are those in which both receptors are bound to EGF and only

a single receptor is in direct contact with, at most, a single

adapter protein, Grb2 or Shc but not both. Unaggregated

receptors with modified/bound cytoplasmic domains, dimers

of EGFR involving EGF-free receptors (Jorissen et al.,

2003), and dimers of EGFR in direct contact with more than

a single adapter protein (Jiang and Sorkin, 2002), such as the

one illustrated in Figure 1a, are among the types of com-

plexes assumed not to form. If we wish to account for all
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chemical species that are possible when the protein inter-

action domains of EGFR are considered to be independent,

then a model without PLCg, incorporating the same scope of

interactions considered by Kholodenko et al. (1999), must

track, depending on mechanistic assumptions, hundreds to

thousands of chemical species.

For example, we can identify 1232 potential chemical

species based on the following assumptions about the pos-

sible states of the relevant protein domains. The extracellu-

lar domain of a receptor can be either free or bound to EGF.

The Grb2 binding site on EGFR can be (1) unphosphory-

lated, (2) phosphorylated, (3) bound to Grb2, or (4) bound to

Grb2 associated with Sos. The Shc binding site on EGFR can

be (1) unphosphorylated, (2) phosphorylated, (3) bound to

Shc, (4) bound to phosphorylated Shc, (5) bound to Shc

associated with Grb2, or (6) bound to Shc associated with

Grb2 and Sos in complex. Thus, from combinatorics, there

are 2 � 4 � 6 = 48 species containing a single receptor, an

equal number of species containing a symmetric dimer of

EGFR, and (48
2 ) = 1128 species containing an asymmetric

dimer of EGFR. In addition to these receptor-containing

species, there are seven cytosolic chemical species and free

extracellular EGF.

Are all of these chemical species important? Probably not.

Nevertheless, a consideration of all possible chemical spe-

cies implied by mechanistic assumptions, at least initially,

would seem valuable. One reason is that there is usually no

basis for discarding chemical species from consideration.

One can make complicated assumptions (e.g., that com-

plexes like the one illustrated in Figure 1a cannot form) and

derive a minimalist model, or one can make minimalist

assumptions and derive a complicated model and then try to

deal with it. An advantage of a complicated model is the

possibility of predicting, on the basis of reaction dynamics,

which molecular complexes are formed appreciably and

which reaction routes are prevalent, as in the theoretical

study of Levchenko et al. (2000). Further motivation to

consider models that incorporate all complexes implied by

known molecular interactions is provided by the advent of

proteomic methods for monitoring protein modifications and

protein–protein interactions on a multiple protein scale

(Aebersold and Mann, 2003; Mann and Jersen, 2003; Meyer

and Teruel, 2003). Proteomic studies have revealed that

activated receptors, including EGFR, associate with a large

number of proteins (Blagoev et al., 2003; Bunnell et al.,

2002; Husi et al., 2000), which implies a spectrum of protein

complexes. To make sense of such observations using a

mathematical model, the complexity of the data must

be matched by the complexity of the model used to analyze

the data.

The potential need to consider a large number of chemical

species simply to model early membrane-proximal signaling

events is not at all unique to the EGFR system. In fact, this

problem of combinatorial complexity is common if not

universal and has been recognized by a number of modelers.

For example, Endy and Brent (2001) pointed out that the

interactions of Ste5p, Ste11p, Ste7p, and Fus3p, illustrated

in Figure 1c, can lead to the formation of 25,666 distinct

chemical species, and Arkin (2001) mentioned that the

tumor suppressor protein p53 (Vogelstein et al., 2000) can

occupy 227 = 134,217,728 phosphoforms, because it

contains 27 sites at which phosphate can be added or

removed. Wofsy et al. (1997) made similar comments

concerning the phosphorylation states of aggregated immu-

noreceptors. Of course, we do not expect estimates about the

possible number of phosphoforms of a protein or a protein

complex to reflect the number of phosphoforms that are

realized during signal transduction, which is impossible, for

example, when the number of potential phosphorylation

states exceeds the number of molecules available for

phosphorylation. Direct experimental observations also

indicate that the realizable diversity of molecular phospho-

forms is sometimes limited. For example, Kersh et al. (1998)

observed that only certain ligands induce complete phos-

phorylation of the � chain of the T cell receptor (TCR).

Nevertheless, for each molecule subject to phosphopho-

rylation that one might wish to consider, it seems reasonable

to expect multiple phosphoforms. It also seems reasonable

to expect identification of the relevant phosphoforms to be

clouded by the combinatorial possibilities. Recently, Bray

(2003) called attention to the problem of combinatorial

complexity, dubbing it molecular prodigality. What are the

practical modeling approaches to this problem? To answer

this question, we now consider the FceRI system and a

mathematical model that has been developed for early

events in FceRI-mediated signal transduction.

FceeeRI-Directed Assembly of Complexes

The intracellular nucleus of the multicomponent complex

illustrated in Figure 1b is an antigen-induced dimer of

FceRI, which forms long-lived complexes with IgE antibody

and triggers allergic reactions. For an overview of the FceRI

system, see Kinet (1999) and Turner and Kinet (1999).

FceRI is quite different from EGFR. Signaling by FceRI can

be triggered by any multivalent antigen (e.g., a foreign

protein) that is recognized by the variable antigen-combin-

ing sites of IgE in complex with FceRI. Consequently,

because receptor aggregation depends on ligand properties,

a spectrum of receptor aggregates, not just dimers, can form

as a result of ligand-receptor interaction. Furthermore,

unlike EGFR, FceRI lacks intrinsic kinase activity, although

phosphorylation of FceRI is just as critical for generating

signals as in the case of EGFR. Despite the functional and

mechanistic differences between EGFR and FceRI, signal-

ing by both receptors involves the directed assembly of

intracellular complexes.

The intracellular components of the complex illustrated

in Figure 1b are the cytoplasmic polypeptide chains of

FceRI and two PTKs, Lyn and Syk. FceRI when expressed

on mast cells and basophils, is a tetrameric complex that

consists of an a chain, which contains the extracellular IgE

binding site, a h chain, which interacts with the Src-family

PTK Lyn, and two identical disulfide-linked g chains,
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which interact with the PTK Syk. The g chain is essential

for signaling, while the h chain is dispensable but acts as a

signal amplifier. The h and g chains each contain a single

cytoplasmic ITAM. The h and g ITAMs, when phospho-

rylated, serve as binding sites for Lyn and Syk. Lyn, which

is anchored to the inner cell membrane, interacts with the h
chain in two ways: weakly through its unique domain when

the h chain is unphosphorylated and more tightly through

its SH2 domain when the h ITAM is phosphorylated. Syk

binds the g ITAM with high affinity through its two SH2

domains when the g ITAM is doubly phosphorylated.

A critical early event in FceRI signaling is the activation

of Syk. FceRI triggers activation of Syk roughly as follows

(Kinet, 1999; Turner and Kinet, 1999). Upon ligand-

induced receptor aggregation, the h and g ITAMs are

phosphorylated by receptor-associated Lyn. Phosphoryla-

tion of the g ITAM recruits cytosolic Syk to receptors. Syk

is then phosphorylated by Lyn and by itself at multiple

sites, with Syk being primarily responsible for phospho-

rylating tyrosine residues in its activation loop. Autophos-

phorylation of Syk is required for full Syk activity and

downstream Syk-dependent events (Zhang et al., 2000).

Modeling Early Events in FceeeRI Signaling

Like early events in EGFR signaling, early events in FceRI

signaling have been modeled. A mathematical model for

FceRI-mediated activation of Syk has been developed based

on the understanding of FceRI summarized above (Faeder

et al., 2003; Goldstein et al., 2002). The model characterizes

the interactions of four molecules: a bivalent ligand that

recognizes a single receptor site (e.g., a chemically cross-

linked dimer of IgE), the receptor, Lyn, and Syk. Processes

considered in the model include ligand-induced aggregation

of receptors, reversible binding of Lyn and Syk to receptor

subunits, the context-dependent kinase activities of Lyn and

Syk, and phosphatase activity, with phosphatases being

considered implicitly. The model tracks 354 chemical

species in a network of 3680 unidirectional reactions.

The 354 chemical species arise as follows. The receptor is

considered to consist of three domains: an extracellular a

domain that binds ligand, an intracellular h domain that

binds Lyn, and an intracellular g domain that binds Syk. The

a, h, and g domains are allowed to occupy, respectively, two

states (free or bound), four states (naked, phosphorylated, or

bound to Lyn loosely or tightly), and six states (naked,

phosphorylated, or bound to any of four different phospho-

forms of Syk). Thus, from combinatorics, there are 2 � 4 �
6 = 48 monomeric receptor species, 4 � 6 = 24 symmetric

dimeric receptor species (note that the a domains of both

receptors in a dimer are necessarily bound), and (24
2 ) = 276

asymmetric dimeric receptor species. In addition, there are

six non-receptor species (free ligand, free Lyn, and the four

phosphoforms of Syk in the cytosol).

How was the FceRI model, consisting of 354 ODEs and

including a rate constant for each of 3680 reactions,

formulated? To characterize the transitions among the

chemical species, a set of reaction rules was specified. The

rules represent a description of the local activities of protein

domains in the FceRI system, which are characterized by a

relatively small set of rate constants (21) and stereochemical

and spatial constraints (Faeder et al., 2003). In other words, a

description of protein domain activities and interactions was

used to characterize the interactions of a set of whole

molecules that each contain multiple protein domains. For

each of the 354 chemical species, the domain-based reaction

rules were used, with the aid of a computer, to exhaustively

enumerate and classify the possible binding and enzymatic

reactions. During this process of network generation, each

reaction deemed possible was assigned a rate constant

specified for its class of domain activity, with reactions of

the same class being assigned the same rate constant. For

example, a single rate constant was used to characterize each

of the 24 distinct reactions that involve association of free

ligand with FceRI. (Note that there are 24 reactions because

there are 24 possible states of a receptor that is unbound to

ligand). Although the total number of reactions in the model

is large for combinatorial reasons, the number of reaction

types, which is related to the number of molecular domains,

is relatively small. The number of parameters in the model is

comparable to the number of molecular domains, not the

number of chemical species or reactions.

The software used to accomplish the task of generating the

FceRI reaction network is available at cellsignaling.lanl.gov.

The output of this software is a list of reactions that can be

used to automatically build either a system of dynamic mass

balance equations (i.e., ODEs) or a Monte Carlo stochastic

simulation algorithm (SSA) (Gillespie, 1976; 1977). This list

of reactions provides a description of the FceRI model that is

complete in microscopic detail for the scope of domain

interactions considered. Of course, generation of the reaction

network is based on the assumption that the activity of each

molecular domain is independent of its context except as

explicitly specified, and we are unlikely to know all the

context-dependent constraints that are relevant for a large

reaction network. However, this rule-based domain-oriented

approach to modeling offers a starting point that matches the

level of complexity likely to be involved in signaling and

from which model refinement can begin.

THE DOMAIN-ORIENTED MICROSCOPIC
VIEWPOINT

The FceRI model (Faeder et al., 2003; Goldstein et al., 2002)

represents a domain-oriented microscopic view of signal

transduction. We use the term ‘‘domain oriented,’’ because

the mathematical description accounts for the interactions,

modifications, and activities of molecular domains, and we

say ‘‘microscopic,’’ because the description tracks the full

spectrum of molecular complexes implied by the specified

domain interactions. The level of modeling detail is less than

atomistic but greater than molecular. The FceRI model

differs fundamentally from the usual sort of dynamic models

that are currently being developed for signal transduction
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systems (cf., Kholodenko et al., 1999; Schoeberl et al.,

2002), which provide less complete descriptions of the

possible interactions among signaling molecules and the pos-

sible multicomponent signaling complexes. Although much

can be learned from simple models, we feel many of the

interesting questions that one can ask about signal trans-

duction are best addressed using mathematical models that

incorporate the domain-oriented microscopic viewpoint.

The level of detail in a domain-oriented model is

consistent with the large body of evidence indicating that

molecular domains, not molecules, are the fundamental

elements of signal transduction systems (Pawson and Nash,

2003). A model that incorporates detail at the level of

molecular domains can be used to interpret the results of

most types of experiments that are performed to study the

behavior of signal transduction systems. The experimentalist

typically alters or replaces domains and deletes or over-

expresses molecules. These perturbations can be readily

mapped to parametric and structural variations of a domain-

oriented model, just as experimental readouts can be readily

mapped to model variables.

Modeling at the domain level also facilitates stepwise

model development and validation. Because the parameters

in a domain-oriented model are concentrations and single-

site rate constants for domain activities, these parameters are

independent of systemic properties and, in principle, can be

measured experimentally in isolation. After parameters of

component interactions and activities are measured, a

systems-level model incorporating these interactions and

activities can be built and tested against measurements of

system behavior. Also, if a parameter value is chosen so that

a model is consistent with observed system behavior, the

value of this parameter can then be compared with the value

determined in an independent experiment. In our opinion,

the main difficulty involved in parameterizing a signaling

network is a lack of understanding of how the interactions,

modifications, and activities of molecular domains are

affected by context, i.e., our ignorance of, for example,

induced (conformational) changes that affect activity/

affinity (Chigaev et al., 2001; Shimaoka et al., 2003),

cooperative interactions (Prehoda and Lim, 2002), effects of

spatial compartmentalization (Haugh et al., 1999), steric

clashes (Nishimura et al., 1993), etc. Steric limitations could,

perhaps in many cases, be dealt with through a combination

of homology modeling and molecular docking studies

(Smith and Stemberg, 2002; Tovchigrechko et al., 2002),

because three-dimensional structures are available for

representatives of a number of the protein domains involved

in signaling (Bateman et al., 2002; Berman et al., 2000) and,

in the absence of an experimentally determined structure, ab

initio structure predictions are available for many of the

major protein families (Bonneau et al., 2002).

Domain-oriented models of signal transduction present

challenges. They lead immediately to the problem of

combinatorial complexity, the need to account in some

way for a vast chemical reaction network. For some systems,

the possible chemical species can be enumerated, local

domain-based rules can be defined and used to generate the

underlying reaction network for molecular interactions, and

standard numerical methods can be applied to analyze the

model obtained without major computational difficulties

(Faeder et al., 2003; Goldstein et al., 2002). For other

systems, such as those in which polymerization reactions are

possible, the scale of the computational challenge is larger. It

can be quite difficult to formulate a model for an aggregating

system that involves intermolecular chain-propagation and

intramolecular ring closure reactions (Bray and Lay, 1997;

Dembo and Golstein, 1978; Goldstein and Perelson, 1984;

Macken and Perelson, 1985; Perelson, 1984; Perelson and

DeLisi, 1980; Posner et al., 1995b), and these reactions can

definitely arise during signal transduction. The ternary

complex of FcgRIIB, SHIP1, and Grb2 (Fong et al., 2000),

illustrated in Fig. 1d, provides an example of a complex

formed through ring closure. In theory, FcgRIIB, SHIP1, and

Grb2 can also form aggregate chains. For example, the

complexes FcgRIIB �SHIP1 and FcgRIIB �Grb2 might

combine through the interaction of SHIP1 and Grb2

(Osborne et al., 1996). Other systems that are likely to pose

computational difficulties include those in which the number

of potential chemical species greatly exceeds the number of

molecules available to populate the various species. As

discussed by Endy and Brent (2001), the MAPK cascade of

Fig. 1c is an example of such a system.

A promising modeling approach for the types of systems

mentioned above might be simultaneous network generation

and Monte Carlo simulation of reaction dynamics along the

lines suggested by Faulon and Sault (2001) for chemical

systems described by the Dugundji-Ugi model (Ugi et al.,

1993). This approach is feasible for signal transduction

systems if one can formulate rules for network generation,

because it is possible to implement a SSA without full

knowledge of the elements in a reaction network. To

advance a Monte Carlo simulation of chemical reaction

dynamics, we require only knowledge of the chemical states

that are populated at the current time, the empty chemical

states that neighbor these states, and the reaction propen-

sities that characterize transitions among the states in play

(Faulon and Sault, 2001; Gillespie, 1976, 1977). When a

chemical state becomes populated for the first time, reaction

rules can be used to modify the governing SSA, if necessary,

to account for the newly occupied state and any elements of

the reaction network that are newly accessible, i.e., the rules

can be applied to update the probability distributions used in

the SSA to select reaction events. Other approaches that

might prove useful include agent-based models (Le Novère

and Shimizu, 2001; Morton-Firth and Bray, 1998) and

formal mathematical descriptions of molecular interactions

(Priami et al., 2001).

EFFECTS OF COMPLEX FORMATION ON SIGNAL
TRANSDUCTION

Why is the directed assembly of multicomponent complexes

so prevalent in signal transduction systems and what are the
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functional consequences of complex formation? In many

cases, the assembly of a complex brings an enzyme into

proximity of a substrate, which increases the local substrate

concentration and, thus, the substrate-specific activity of the

enzyme (DeLisi, 1980; Haugh and Lauffenburger, 1997;

Kholodenko et al., 2000). Ptashne and Gann (2002) have

called this phenomenon regulated recruitment and have

identified it as a common mechanism by which specificity is

imposed on enzymes, especially in regulatory systems.

Consider, for example, the MAPK cascade of Figure 1c.

Recently, Park et al. (2003) have shown that the specificity

of this cascade is due largely to regulated recruitment, in that

the cascade still responds, specifically, to a-factor phero-

mone when heterologous protein–protein interactions re-

place the native interactions between Ste5p and its binding

partners. Thus, simple recruitment of the MAP kinases to

Ste5p is sufficient for signal transduction. Proper positioning

of the kinases via native interactions contributes to signaling

but is not absolutely required. Of course, stereochemical

constraints can be critical. For example, steric constraints are

believed to explain why some ligands that induce aggrega-

tion of FceRI, which is usually sufficient for signaling, fail to

stimulate cellular responses (Harris et al., 1997; Paar et al.,

2002; Posner et al., 1995a).

To say that complex assembly during signal transduction

controls enzyme activity is just to scratch the surface. The

functional consequences of complex assembly are multi-

faceted (Burack et al., 2002; Ferrell, 1998; Kholodenko et al.,

2000; O’Rourke and Ladbury, 2003; Prehoda and Lim,

2002). Below, we discuss some of the surprising ways that

ligand-induced complex formation can influence receptor-

mediated signal transduction. We also review results from

modeling studies, primarily of FceRI, which indicate that the

assembly of complexes can determine how cellular

responses are influenced by ligand-receptor binding kinetics

and a ligand stimulus. In addition, we consider how the

dynamics of complex assembly can affect the response of a

system to a perturbation of the system’s structure. The

examples we discuss illustrate how the qualitative behavior

of a signal transduction system can depend on quantita-

tive factors.

Energy-Driven Complex Assembly Introduces Kinetic
Proofreading

One of the more influential models of signal transduction has

been the simple kinetic proofreading model of McKeithan

(1995), which has prompted both experimental (Liu et al.,

2001; Torigoe et al., 1998) and theoretical (Faeder et al.,

2003; Hlavacek et al., 2001; 2002) studies of the effects of

ligand-receptor binding kinetics on FceRI signaling. Ac-

cording to the model of McKeithan (1995), a receptor must

undergo a series of modifications before generating a pro-

ductive signal. These modifications are imagined to involve

receptor phosphorylation, an ATP-consuming process, and

phosphorylation-dependent assembly of signaling com-

plexes. If a ligand dissociates before receptor modifications

are completed, the generation of a productive signal is

prevented. Thus, one expects that slowly-dissociating

ligands will generate stronger cellular responses than rapidly

dissociating ligands. Moreover, signaling events that require

a smaller number of receptor modification steps should be

less sensitive to ligand-binding kinetics than signaling events

that require more receptor modification steps (Hlavacek

et al., 2002).

In the case of FceRI, these predictions have been con-

firmed for certain cellular responses (Torigoe et al., 1998).

However, a particular late response to FceRI signaling,

synthesis of a chemokine mRNA, has been found to be

insensitive to differences in ligand-receptor binding kinetics

(Liu et al., 2001). In light of this result, the model of

McKeithan (1995) was extended in several ways to bring this

phenomenonological model, developed with TCR signal

transduction in mind, into closer correspondence with

molecular mechanisms, particularly of the FceRI system,

and these model extensions were studied to determine their

potential impact on kinetic proofreading (Hlavacek et al.,

2001; 2002). It was found that the involvement of a cytosolic

messenger, such as a transcription factor that translocates to

the nucleus after receptor-mediated activation in the cytosol,

can explain how slowly and rapidly dissociating ligands can

stimulate similar cellular responses: in this case, both ligands

cause messenger activation to saturate. Signaling by

receptors in an intermediate state of modification can also

explain how ligands with different kinetic properties might

trigger similar responses or even responses in which the

expected sensitivity to ligand-receptor binding kinetics is

reversed (Hlavacek et al., 2002).

Recently, kinetic proofreading was examined using the

domain-oriented FceRI model discussed earlier (Faeder

et al., 2003). The network structure of this model differs

dramatically from the linear cascade considered in the model

of McKeithan (1995), but kinetic proofreading still emerges

(Faeder et al., 2003). This result, because it is derived from

a mechanistic description of FceRI signaling and not a

phenomenological model, provides theoretical support for

McKeithan’s intuitive insight that the energy-driven reac-

tions of signal transduction can cause cellular responses to

depend on ligand-receptor binding kinetics.

The model of Faeder et al. (2003) also allows new insights

into kinetic proofreading. In Figure 2, we can compare the

cellular responses that the model predicts for slowly and

rapidly dissociating ligands. The comparison is controlled,

as in experimental comparisons (Liu et al., 2001; Torigoe

et al., 1998), in that the ligands differ intrinsically only in the

dissociation rate constant that characterizes ligand-receptor

binding and the concentrations of the two ligands are such

that receptor aggregation is the same in each case at equilib-

rium. As can be seen, after a transient, Syk autophospho-

rylation is more extensive when signaling is stimulated by

the slowly-dissociating ligand, which is consistent with the

model of McKeithan (1995). Likewise, phosphorylation of

the g ITAM of FceRI is more extensive, but only slightly so.

In contrast, during the initial transient, the rapidly dissociat-
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ing ligand is more effective than the slowly dissociating

ligand at eliciting phosphorylation of the receptor and

autophosphorylation of Syk. This result is obtained because

receptor aggregation, as indicated in Figure 2, approaches

equilibrium faster in the case of the rapidly dissociating

ligand than in the case of the slowly dissociating ligand

(Hlavacek et al., 2002). Thus, receptor aggregates, which

facilitate receptor and Syk phosphorylation, are more

abundant initially in the case of the rapidly dissociating

ligand, and this fact compensates for the lower stimulatory

capacity of this ligand that is manifested at later times. As

recent studies and Figure 2 indicate, ligand recognition

based on kinetic proofreading is more complicated than

originally thought, depending not simply on the lifetime of a

ligand-receptor bond but also on the mechanistic details of

signal transduction, quantitative factors, and perhaps even

the kinetics of kinetic proofreading.

Complex Assembly Can Determine If a Ligand
Stimulus Induces or Represses a Cellular Response

Burack and Shaw (2000) pointed out that scaffolds, like

Ste5p (Fig. 1c), when overexpressed could have either

negative or positive effects on signal transduction as a result

of multivalent binding, as in immune precipitation (Day,

1990). Contemporaneously, Levchenko et al. (2000) devel-

oped a mathematical model for a MAPK cascade that

explicitly incorporates a scaffold molecule and showed that

there is an optimal scaffold concentration for signal trans-

duction, which can be attributed to multivalent binding. At

low scaffold concentration, a scaffold nucleates complexes,

which enhances signal transduction. The scaffold brings

its two binding partners, enzyme and substrate, together. Up

to a point, an increase in scaffold concentration causes an

increase in the number of scaffold-associated complexes that

contain both enzyme and substrate. However, after this

point, an increase in scaffold concentration is inhibitory,

because it becomes unlikely that both binding partners of the

scaffold will be bound to the same scaffold molecule. The

scaffold, when present in excess, acts to separate its binding

partners. In a related earlier work, Bray and Lay (1997)

discussed the potential inhibitory effect of a multivalent

protein on formation of multimeric complexes.

Similar potential for complex assembly to negatively or

positively affect signaling, as a result of multivalent binding,

has also been predicted on the basis of the model for FceRI-

mediated activation of Syk (Goldstein et al., 2002). In

Figure 3, autophosphorylation of Syk at steady state is shown

as a function of bivalent ligand concentration for two

hypothetical cells with different concentrations of Syk. The

first cell, in which the number of Syk molecules matches the

number of receptors, corresponds to the bell-shaped curve.

The second cell is identical to the first cell with the exception

that Syk is l0-fold less abundant. As illustrated, varying the

concentration of a component in a signal transduction system

can have nonlinear effects on signaling that are even more

Figure 2. Sensitivity of cellular responses to ligand-receptor binding

kinetics. Aggregation of FceRI (solid curve), autophosphorylation of Syk

(broken curve), and Lyn phosphorylation of the g ITAM of FceRI (dotted

curve) are followed as a function of time after ligand stimulation. Two

bivalent ligands that recognize a single receptor site and that have different

kinetic properties are considered. The first ligand forms short-lived bonds

with receptors (the dissociation rate constant is 0.5 s�1) and is introduced at

total concentration 7.0� 10�9 M. The second ligand forms long-lived bonds

with receptors (the dissociation rate constant is 0.05 s�1) and is introduced at

total concentration 7.6 � 10�11 M. Both ligands are characterized by a

forward rate constant for ligand-receptor binding of 106 M�1 s�1 and a

forward rate constant for receptor crosslinking, scaled by the total receptor

surface density, of 0.5 s�1. Calculations are based on the model and

parameter values, except as noted above, of Faeder et al. (2003). Each curve

indicates the response stimulated by the slowly dissociating ligand relative

to that stimulated by the rapidly dissociating ligand. Note that the two ligand

stimuli each induce receptor aggregation to the same extent at steady state,

which is approached within 5 min.

Figure 3. Diverse nonlinear ligand dose-response curves. Steady-state

levels of FceRI aggregation (solid curve) and Syk autophosphorylation

(broken and dotted curves) are shown as a function of total ligand

concentration. The ligand considered is the slowly dissociating ligand of

Figure 2. The broken and dotted curves correspond to cases in which there

are 4 � 105 and 4 � 104 molecules of Syk per cell. In each case, for purposes

of illustration, we have increased the total amount of available Lyn from the

empirical 2.8 � 104 molecules per cell (Wofsy et al., 1997) to 4 � 105

molecules per cell, which enhances ligand-induced receptor phosphoryla-

tion and makes the shape of the ligand dose-response curve for Syk

autophosphorylation more sensitive to the abundance of Syk. Calculations

are based on the model and parameter values, except as noted avove, of

Faeder et al. (2003).
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complicated than those discussed in the paragraph above.

The ligand dose-response curve for Syk autophosphorylation

can exhibit not only a maximum but also two maxima

depending on the abundance of Syk.

Complex input–output behavior arises because, in the

model, the mechanism of Syk autophosphorylation is trans-

phosphorylation (Faeder et al., 2003). Thus, Syk autophos-

phorylation depends on juxtaposition of two Syk molecules,

which depends on the number of receptor aggregates with

two Syk binding sites (i.e., aggregates in which two receptors

contain a phosphorylated g ITAM), which, in turn, depends

on the concentration of bivalent ligand. In the case of the first

hypothetical cell, Syk autophosphorylation simply follows

ligand-induced receptor aggregation, which peaks at an

optimal ligand concentration. In contrast, in the case of the

second hypothetical cell, because of the lower concentration

of Syk, receptor dimers able to mediate juxtaposition of Syk

become available in excess before receptor aggregation

peaks. When these dimers are in excess, it becomes unlikely

that two molecules of Syk will join the same receptor

aggregate. As a result, juxtaposition (and autophosphoryla-

tion) of Syk peaks before receptor aggregation is maximal,

and Syk autophosphorylation fades as the extent of receptor

aggregation increases. Subsequently, Syk autophosphoryla-

tion recovers, peaking a second time, as receptor aggregation

decreases as a result of excess ligand. It seems unlikely that

the type of system behavior illustrated in Figure 3 could be

predicted without quantitative characterization of the factors

that govern the revelant protein–protein interactions and

without a mathematical model for these interactions.

The Dynamics of Intracellular Complexes Can
Influence Signaling

Lin et al. (1996) observed that the h ITAM of FceRI acts as

an amplifier of signaling, in that signaling is attenuated when

the h ITAM is absent. Surprisingly, analysis of the FceRI

model has revealed that the h ITAM can act as either an

amplifier or attenuator of signaling (Faeder et al., 2003),

which is explained as follows. The amplifier function of the

h ITAM depends on a balance between competing processes

that have been called kinetic proofreading and serial

triggering in the context of TCR signaling (Lanzavecchia

et al., 1999). The bond between the SH2 domain of Lyn and a

phosphorylated h ITAM is relatively long-lived compared to

the weak bond formed between the unique domain of Lyn

and the h chain. By allowing more time for Lyn to trans-

phosphorylate neighboring receptors, the long-lived SH2-

ITAM bond can promote overall receptor phosphorylation if

Lyn is slow-acting (i.e., unable to catalyze significant

phosphotransfer in the time allowed by the weak bond

between Lyn and h). This outcome is the kinetic proof-

reading effect. However, the SH2-ITAM interaction also

limits the number of receptors bound by Lyn within a given

period of time. This ITAM-dependent sequestration of Lyn

can limit overall receptor phosphorylation if Lyn is fast-

acting, especially because the amount of Lyn available to

interact with receptors is limited (Torigoe et al., 1997; Wofsy

et al., 1997). This outcome is the serial triggering effect. As

illustrated in Figure 4, the balance between kinetic proof-

reading and serial engagement can be shifted by varying the

rate constant for Lyn phosphorylation of the g ITAM.

CONCLUSIONS AND FUTURE DIRECTIONS

Signal transduction systems consist of interacting multi-

valent molecules, the domains of which have conditional

activities. Understanding conditional multivalent binding

reactions, and the assembly of multicomponent complexes

directed by these reactions, is central to our understanding of

signal transduction. To achieve this understanding, we need

mathematical models that account for the interactions,

modifications, and activities of molecular domains, includ-

ing the potential array of chemical species that can form

during signal transduction. If we are to engineer cells for

biotechnological applications in complex environments or

develop new strategies to intervene in signaling for ther-

apeutic purposes, we must begin to embrace the challenges

of modeling signal transduction from the domain-oriented

microscopic viewpoint. The technology is available or will

be available soon not only to perturb signal transduction

systems systematically but also to monitor signal trans-

duction events comprehensively. For the most part, models

have yet to be developed that approach the needs of this

coming challenge. To develop and exploit these models,

we expect that new computational tools and methods of

Figure 4. Changing the rate at which Lyn phosphorylates the g ITAM of

FceRI can switch the behavior of the h ITAM of FceRI from an amplifier to

an attenuator of Syk autophosphorylation. This plot shows the predicted

effect of eliminating recruitment of Lyn to receptors via Lyn interaction with

the phosphorylated h ITAM for two cases. The first case, in which Lyn

phosphorylation of the g ITAM is slow, is consistent with the experimental

observation that the h ITAM acts as an amplifier of FceRI signaling (Lin

et al., 1996) and is based on the model and parameter values of Faeder et al.

(2003). In the second case, Lyn phosphorylation of the g ITAM is fast; the

rate at which Lyn phosphorylates the g ITAM has been increased to match

the rate at which Lyn phosphorylates the h ITAM (cf., Faeder et al., 2003).

The vertical axis indicates the level of Syk autophosphorylation after 30 min

of stimulation with 1.6 nM of chemically crosslinked IgE dimers.
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analysis will be needed. In addition, the efforts of model-

ers and quantitative experimentalistists will have to be tight-

ly integrated.

We thank Daniel Coombs and Carla Wofsy for constructive criticism.
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