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ABSTRACT

For the first time, the (linear) stability of the global ocean circulation has been determined explicitly. In a
low-resolution general circulation model, a steady state is computed directly by solving the elliptic boundary
value problem. The stability of this solution is determined by solving the generalized eigenvalue problem.
Although the steady global circulation is (linearly) stable, there are two interesting oscillatory modes among
the least stable ones, with periods of about 3800 and 2300 yr. These modes are characterized by buoyancy
anomalies that propagate through the ocean basins as they are advected by the global overturning circulation.
The millennial timescale is set by the time it takes for anomalies to travel, at depth, from the North Atlantic to
the North Pacific. Further analyses confirm that the advective feedback between the steady flow and buoyancy
anomalies is an essential process in the propagation mechanism. The growth rate of the millennial modes is
controlled by vertical mixing. It is argued that these internal ocean modes may be a relevant mechanism for
global climate variability on millennial timescales.

1. Introduction

More and more evidence on past variability of the
climate system suggests that distinct millennial time-
scale variations have occurred. This so-called sub-Mil-
ankovitch variability can be found in ocean sediment
and ice-core data (Bond et al. 1997; Mayewski et al.
1997), and seems to pervade the entire late Pleistocene
(Oppo et al. 1998). Bond et al. (1997) have argued for
a pervasive 1–2-kyr oscillation in the climate system,
which is the origin of the Dansgaard–Oeschger cycles
during glacial times and of the less strong variations in
the Holocene, such as the Medieval Warm Period and
the Little Ice Age.

The mechanism underlying this climatic rhythm is
still under debate. There are some indications that the
Holocene part of the 1.5-kyr cycle is linked to variability
in solar irradiance (Bond et al. 2001). Hence, the var-
iability could be forced by a periodic component of the
external forcing. Linear amplification mechanisms with-
in the climate system should then operate to amplify the
weak signal into a noticeable and recordable climatic
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signal. However, it seems unlikely that this weak source
of variability in external forcing is sufficient to explain
the large-amplitude response of the climate system as-
sociated with the Dansgaard–Oeschger cycles; the in-
ternal nonlinear dynamics of the climate system is likely
to be important, with a dominant role for the ocean’s
thermohaline circulation (Broecker 2000).

Most of the hypotheses to explain the Dansgaard–
Oeschger cycles gather around two possibilities; the first
ascribes this climate rhythm to switches between equi-
libria or ‘‘excitable states’’ of the thermohaline circu-
lation (e.g., Broecker et al. 1985; Weaver and Hughes
1994; Ganopolski et al. 2001). These switches may be
excited by stochastic components in the forcing (co-
herence resonance), in which case the transitions are
irregularly paced. However, when the noise is assisted
by a weak periodic component (stochastic resonance:
Alley et al. 2001; Ganopolski and Rahmstorf 2002), then
the pacing between the transitions may become more
regular, as observed for the Dansgaard–Oeschger cycles.

An alternative explanation is advocated by Sakai and
Peltier (1995, 1996, 1997, 1999), who suggest that the
variability on millennial timescales is generated by in-
ternal ocean modes. Indeed, (damped) oscillatory mo-
tion can already be found in the simplest models to
capture characteristics of thermohaline circulation and,
in fact, two of these prototype oscillations seem to have
counterparts in more realistic models of the ocean cir-
culation. First there is Welander’s (1982) so-called flip-
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flop oscillator, which features two boxes that are stacked
vertically. The water in these boxes mix when the den-
sity of the upper layer exceeds that of the lower layer.
The density difference is determined by the competing
effects of salinity and temperature. This model contains
oscillations that are characterized by a slow and dif-
fusive buildup of potential energy that is suddenly re-
leased in a catastrophic overturning episode. A similar
mechanism is responsible for the so-called deep-decou-
pling oscillations or flushes that are found in many prim-
itive equation models of the thermohaline circulation
(e.g., Marotzke 1989; Winton and Sarachik 1993). The
oscillations are generally in the millennial range.

The other type of oscillation is generally referred to
as loop or overturning oscillation (Welander 1986). It
is characterized by the advection of (mainly) salt anom-
alies by the basic circulation, modifying the overturn-
ing strength in an oscillatory fashion. In the classical
two-box model of Stommel (1961), two reservoirs are
coupled through pipes and exchange fluid at rates pro-
portional to the density differences between the boxes.
Regions in parameter space exist where both a ther-
mally driven and a salinity driven solution can be sta-
ble. Stommel (1961) shows that the thermally driven
solution is a stable node but that the salinity driven
solution is a stable spiral, thus attracting trajectories
in an oscillatory fashion. Although Dewar and Huang
(1995) exclude the possibility that the model of Stom-
mel (1961) contains self-sustained oscillations, spon-
taneous instabilities do occur in related versions of this
model: for instance, the four-box model of Tziperman
et al. (1994), Welander’s (1986) loop oscillator, and
double-hemispheric box models (Scott et al. 1999; Titz
et al. 2002) (albeit as an unstable limit cycle). The time
scale of this type of oscillation depends on the basin
size and is generally in the centennial range for At-
lantic-size basins.

The overturning oscillation seems to have counter-
parts in primitive-equation models, as well. It is found
in two- and three-dimensional models of single-hemi-
spheric flows (Winton and Sarachik 1993), and in lat-
itude–depth models of double-hemispheric thermoha-
line circulation (Mysak et al. 1993; Quon and Ghil 1995;
Schmidt and Mysak 1996; Sakai and Peltier 1995; Dijk-
stra and Molemaker 1997). Sakai and Peltier (1996)
extent their work on double-hemispheric flows by cou-
pling three latitude–depth models in the south through
a circumpolar channel as a representation of the global
ocean. They find small-amplitude overturning oscilla-
tions with centennial timescales, and show that the pe-
riod increases when freshwater is added to the North
Atlantic. When this freshwater input exceeds a certain
threshold, the dominant mode of variability changes into
large-amplitude deep-decoupling oscillations with mil-
lennial timescales. This behavior is consistent with their
results of a single-basin model (Sakai and Peltier 1995),
and is robust when the ocean model is coupled to an

atmospheric energy balance model (Sakai and Peltier
1997).

In a fully three-dimensional global context, however,
this mode of variability seems harder to find. Although
the 320-yr oscillation found in the Hamburg large-scale
geostrophic (LSG) model by Mikolajewicz and Maier-
Reimer (1990) stands out as the best known example
of an overturning oscillation in a three-dimensional
global model, Pierce et al. (1995) and Osborn (1997),
in fact, argue that this oscillation is rather an expression
of Welander’s flip–flop oscillator active in the Southern
Ocean. Yet, Sirkes and Tziperman (2001) were able to
identify a damped oscillatory mode using the adjoint of
the Geophysical Fluid Dynamics Laboratory (GFDL)
climate model. They claim that this mode may be re-
sponsible for interdecadal variability in the North At-
lantic. However, the mode lacks the three-dimensional
pattern that is characteristic for (inter-)decadal oscilla-
tions in a single-hemispheric basin (e.g., Te Raa and
Dijkstra 2002). The 530-yr period of the oscillatory
mode suggests that it may be an overturning mode.

In this paper, we report on the explicit identification
of multiple internal ocean modes of the global ocean
circulation within a low-resolution ocean general cir-
culation model. These modes are detected by investi-
gating the (linear) stability of the global ocean circu-
lation. Systematic investigations of the stability and var-
iability of the large-scale ocean circulation have been
performed before, for instance in two-dimensional mod-
els of the thermohaline circulation (Schmidt and Mysak
1996; Vellinga 1996; Dijkstra and Molemaker 1997) and
in simplified three-dimensional geometries (Huck and
Vallis 2001; Weijer and Dijkstra 2001). Sirkes and Tzip-
erman (2001) used an adjoint model of the GFDL model
to assess the stability of the global circulation. But never
before has the complete eigenvalue problem been solved
explicitly for the fully three-dimensional global ocean
circulation.

It is shown that in this model internal oscillations
with typical millennial timescales appear as damped
modes. The focus in the paper is on the physical mech-
anisms of propagation of the anomalies and the char-
acterization of the eigenvalues in terms of energy pro-
duction and decay. In section 2, the model configuration
is outlined, whereas in section 3a the basic steady so-
lution is presented. A description of its most dangerous
oscillatory modes is found in section 3b, and the phys-
ical mechanism is discussed in section 3c. Section 4
discusses the results and concludes this paper.

2. The global implicit ocean model

The model that is used in this study has been de-
scribed in Weijer et al. (2003). Here the basic equations
and parameterizations are shortly revisited. The model
here extends that in Dijkstra et al. (2001) by applying
the equations below to a global configuration with the
inclusion of realistic bathymetry, wind forcing, and ther-
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mohaline forcing. The ocean velocities in eastward and
northward directions are indicated by u and y, the ver-
tical velocity by w, the pressure by p, and the temper-
ature and salinity by T and S. Vertical and horizontal
mixing of heat and salt are represented by eddy diffu-

sivities with (constant) horizontal and vertical diffusiv-
ities kh and ky for heat. The mixing coefficients of salt
are taken equal to those of heat.

The governing equations are

Du uy tanf 1 ]p
l u2 2 2V y sinf 5 2 1 Q 1 F , (1a)0 tdt r r r cosf ]l0 0 0

2Dy u tanf 1 ]p
f y1 1 2V u sinf 5 2 1 Q 1 F , (1b)0 tdt r r r ]f0 0 0

]p
5 2rg, (1c)

]z

]w 1 ]u ](y cosf)
0 5 1 1 , (1d)[ ]]z r cosf ]l ]f0

2DT ] T
25 k ¹ T 1 k 1 Q , (1e)h h y T2dt ]z

2DS ] S
25 k ¹ S 1 k 1 Q , and (1f)h h y S2dt ]z

r 5 r(T, S), (1g)

with

DF ]F u ]F y ]F ]F
5 1 1 1 w ,

dt ]t r cosf ]l r ]f ]z0 0

1 ]F 1 ]F
= F 5 , , andh 1 2r cosf ]l r ]f0 0

1 ] 1 ]
l f= · F 5 F 1 (F cosf),h r cosf ]l r cosf ]f0 0

where F and F 5 (Fl, Ff) are an arbitrary scalar and
vector, respectively.

The ocean circulation is driven by a wind stress
t (l, f) 5 t0(t l, t f), where t0 is the amplitude and
where t l(l, f) and t f(l, f) provide the spatial patterns.
These patterns are constructed by interpolating the Tren-
berth et al. (1989) wind stress data onto the model grid.
As in many low-resolution ocean general circulation
models, the surface forcing is distributed as a body forc-
ing over a certain depth of the upper ocean using a
vertical profile function g(z):

t t0 0l l f fQ 5 g(z) t and Q 5 g(z) t , (2a)t tr H r H0 m 0 m

where Hm is a typical vertical scale of variation of the
profile function g(z). This function is taken to be 1 in
the upper layer and zero below so that Hm is typically
the depth of the upper layer.

In the present configuration, a linear friction param-
eterization is adopted:

u y(F , F ) 5 2n(u, y). (3)

The choice for Rayleigh friction, instead of a harmonic
formulation, relaxes the need to resolve narrow fric-
tional boundary layers. We have to face that in no way
the dynamics of the western boundary currents can be
realistically represented in a coarse-resolution model
context as applied here. Nonetheless, linear friction
gives rise to Stommel boundary layers, whose thick-
nesses vary with latitude along with b. With the grid
spacing in the zonal direction varying with cosf as well,
the boundary layer is worst resolved in equatorial re-
gions. In order to minimize friction while still resolving
the spatial scales required by the Stommel boundary
layer thickness, the friction parameter n is taken to de-
pend on latitude according to

2n(f) 5 n cos f.0 (4)

Density r is related to temperature and salinity via
an equation of state that is linear in salinity and third-
order in temperature. It is based on the polynomial ex-
pression by Winton and Sarachik (1993):

2 3r(T, S) 5 r (1 1 a S 2 b T 2 b T 1 b T ). (5)0 1 1 2 3

Thermohaline forcing is accomplished by restoring tem-
perature and salinity to observed fields of annual mean
temperature TL and salinity SL as compiled by Levitus
and Boyer (1994) and Levitus et al. (1994), hereinafter
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TABLE 1. Values of parameters used in the calculations.

2V
r0

kh

n0

cp

a1

b2

t 0

5
5
5
5
5
5
5
5

1.46 3 1024

1.0 3 103

4.0 3 103

1.46 3 1025

4.2 3 103

7.6 3 1024

6.3 3 1026

3.6 3 1021

(s21)
(kg m23)
(m2 s21)
(s21)
(J kg21 K21)
(psu21)
(K22)
(N m22)

r0

Hm

k v

H
g
b1

b3

t s

5
5
5
5
5
5
5
5

6.37 3 106

60
2.0 3 1024

5.0 3 103

9.8
5.6 3 1025

3.7 3 1028

74

(m)
(m)
(m2 s21)
(m)
(m s22)
(K21)
(K23)
(days)

jointly referred to as L94. These fields are interpolated
onto the model grid and are smoothed using Laplace
filtering. This defines the source terms QT and QS in
Eqs. (1e) and (1f ), which will be specified below. Using
these source terms, the appropriate boundary conditions
for temperature, salinity, and wind stress at the ocean–
atmosphere boundary are no-flux conditions.

Note that the model formulated here does not guar-
antee stably stratified solutions. As in all other large-
scale ocean models the effect of convection, which oc-
curs when the stratification is statically unstable, must
be explicitly parameterized. Such a parameterization is
usually referred to as ‘‘convective adjustment.’’ Several
parameterizations can be used for this model, such as
the locally implicit mixing parameterization and the
global adjustment procedure (Weijer and Dijkstra 2001).
However, their use is often awkward and time consum-
ing, and, since a completely stable stratification is not
crucial for the existence of the oscillatory modes, no
convective adjustment is applied in the results below.

The implicit formulation of the model enables the
direct computation of steady states without the need for
laborious time integrations. Instead, steady states are
followed through parameter space using so-called pseu-
doarclength continuation (Keller 1977). The procedure
starts off with the zero solution and the forcing set to
zero. The steady state is followed when increasing the
forcing amplitudes with small steps until the full-forcing
case is reached. The sensitivity of a solution to param-
eterizations can easily be studied by continuation in the
direction of the relevant parameters. Furthermore, bi-
furcations can be detected, which are indicative of qual-
itative changes to the steady solutions. Examples are
saddle-node bifurcations (also known as limit points)
and Hopf bifurcations, where periodic solutions arise.

Last, each solution can be checked for its (linear)
stability by solving a generalized eigenvalue problem
of the form

Au 5 §Bu. (6)

This problem arises by perturbing the steady state with
infinitesimally small perturbations and by considering
the evolution of these perturbations. Two methods are
currently available to solve Eq. (6): the Jacobi–David-
son QZ method (Sleijpen and Van der Vorst 1996) and
the Simultaneous Iteration Method (e.g., Dijkstra 2000);
the latter is used here. The procedure returns a specified
number (say, 10) of least stable eigenmodes, with ei-
genvectors u (or ur 1 iu i when a complex conjugate
pair is found) and their eigenvalues § 5 §r 1 i§ i. Note
that while the amplitudes of the resulting eigenvectors
are—in principal—undetermined, the relative ampli-
tudes of the dynamical fields (T, S, u, y, w, and p) within
each eigenvector are internally consistent.

The set in Eq. (1) and the associated eigenvalue prob-
lem in Eq. (6) are discretized in space using a control-
volume discretization method on a staggered (Arakawa
C) grid, which is second-order accurate.

3. Results

a. The basic steady solution

The model domain covers the World Ocean between
758S and 758N. The model grid consists of N 3 M 3
L 5 72 3 30 3 14 boxes, yielding a horizontal res-
olution of 58 3 58. With six variables, this yields a
dynamical system of over 180 000 degrees of freedom.
The grid is stretched in the vertical with layer depths
ranging from 60 m at the surface to 736 m at the bot-
tom. The bathymetry is derived from the ETOPO-10
dataset, which is interpolated onto the model grid and
smoothed. Standard values of the parameters are listed
in Table 1. Although the mixing of heat and salt is
modeled in a crude way by just assuming constant hor-
izontal and vertical exchange coefficients, the values
listed in Table 1 are typical for low-resolution ocean
models. With these parameters, the inertial terms in Eqs.
(1a) and (1b) are small and can be neglected.

In the surface layer, temperature and salinity are re-
stored to the L94 dataset with a time constant of 74
days. However, it turns out that, in that case, no steady
state exists for the parameter values at this resolution.
Unresolved processes (mainly in the Southern Ocean)
give rise to grid-scale fluctuations that defy the presence
of a steady solution. Indeed, time integrations show that
pronounced variability is present. To obtain a steady
state for the parameter values listed in the table, we
retain a very weak restoring condition on temperature
in the interior as well.

Hence, the formulation of the restoring terms is di-
vided into a surface component that applies to the sur-
face layer only and, for temperature, an internal term
that applies to the subsurface ocean. The source terms
in Eqs. (1e) and (1f ) then become

g(z) 1 2 g(z)
Q 5 (T 2 T ) 1 (7)T L [ ]t t (z)s d

g(z)
Q 5 (S 2 S) . (8)S L t s

Here, ts is the timescale for surface relaxation and is
taken equal for heat and salt, while td controls the in-
ternal relaxation. This timescale is taken inversely pro-
portional to the grid spacing at depth and ranges from
11.5 yr for the subsurface layer to 108 yr for the deepest
layer.
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FIG. 1. The (a) Atlantic, (b) Pacific, and (c) global overturning streamfunctions and (d) global barotropic streamfunction
for the steady solution. Positive, zero, and negative contours are solid, dotted, and dashed, respectively. Contour interval
is 2 Sv in (a)–(c) and 5 Sv in (d).

TABLE 2. The timescales of decay (t decay 5 1/§r) and oscillation
(t oscillation 5 2p /§i) of the least stable eigenvectors of the basic solution.
Eigenmodes 1, 3, and 7 are complex, indicating oscillatory instabil-
ities, whereas modes 2, 4, 5, and 6 are real. Symbols in fourth column
correspond to those used in Figs. 8 and 9.

No. t decay (yr) t oscillation (yr) Symbol

1
2
3
4
5
6
7

380
329
202
179
138
135
105

3827

2372

2674

▫
m
C
●
m
.
#

The steady solution (Fig. 1) shows a decent global
circulation. It features a strong downwelling cell in the
Atlantic (Fig. 1a), whereas in the Pacific large-scale
upwelling takes place (Fig. 1b). There is 13.5 Sv (Sv
[ 106 m3 s21) outflow of water deeper than 1500 m
from the Atlantic into the rest of the World Ocean,
whereas there is 12 and 5.5 Sv of upwelling across this
level in the Pacific and Indian Oceans, respectively. The
excess of 4 Sv deep-water upwelling in these basins
must have its origin south of 308S. If interpreted as
Antarctic Bottom Water (AABW), this amount agrees
well with observed estimates (Broecker et al. 1998). The

main deficit of the present steady circulation is the ab-
sence of bottom water in the Atlantic basin.

The barotropic streamfunction (Fig. 1d) represents the
basic structures of the main subtropical and subpolar
gyres. Most gyres display a transport exceeding 10 Sv,
while the South Pacific gyre transports over 20 Sv. The
most prominent feature, however, is the Antarctic Cir-
cumpolar Current. Its strength is 60 Sv, which is about
one-half as strong as suggested by observations (Nowlin
and Klinck 1986).

b. Linear stability analysis and mode characteristics

For solving the eigenvalue problem in Eq. (6) as-
sociated with the linear stability of the steady state of
the previous section, the relaxation terms at the surface
and in the interior are set to zero and no-flux conditions
are maintained at the surface. The resulting modes are
hence not affected by the restoring terms of the steady
state.

In Table 2, the eigenvalues of the seven least stable
modes are presented as the associated timescales of de-
cay and oscillation. Two types of eigenmodes are pres-
ent: modes 2, 4, 5, and 6 are real, whereas 1, 3, and 7
are complex conjugate pairs. The latter are indicative
of internal oscillatory modes of variability.
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FIG. 2. Anomalous overturning streamfunction in the (left) Atlantic and (right) Pacific for the
oscillatory mode 1. Shown are four snapshots during the first half of the oscillation, 1/8 of an
oscillation period apart. The second half is identical to the first, albeit with signs reversed. Note
that the amplitudes of the eigenvectors are undetermined; although the contour interval is the
same for all panels, absolute values of the contours are not relevant.

The fact that all eigenvalues have negative real parts
shows that the steady solution is linearly stable. But
when the steady state is disturbed and the time evolution
of the perturbation is determined, these eigenmodes will
take longest to decay. Consequently, in the transient
response of the circulation to randomly applied distur-
bances, for instance induced by stochastic components

in the forcing, these modes are expected to dominate in
the long term response (Griffies and Tziperman 1995).

Note that the patterns of the eigenmodes are fully
consistent with the governing equations—they satisfy
the equations linearized around the steady state—and
boundary conditions. In this way, they differ completely
from empirical orthogonal functions (EOF) or other sta-
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tistically determined modes, which lack the property
above [a probable exception being the empirical normal
modes, as developed by Brunet (1994)]. The eigen-
modes are therefore much more appropriate to deter-
mine physical mechanisms of the propagation and
growth of specific perturbations. This motivates to look
at characteristics of the patterns in the next subsections.

1) MERIDIONAL OVERTURNING

Oscillatory mode 1 has a period t of 3827 yr at stan-
dard values of the parameters. It displays interesting
anomalies in the overturning streamfunction (Fig. 2).
At phase t 5 (1/8)t, a positive anomaly overlies a neg-
ative anomaly in the Atlantic. The boundary between
these cells can be seen to migrate upward in time, until
one half of a period later a negative anomaly overlies
a positive one. The Pacific overturning anomaly also
features a layered pattern, with a negative cell overlying
a positive one during the first half of the oscillation.
Contrary to the Atlantic, this pattern does not migrate
upward in time; it just amplifies [t 5 (2/8)t and (3/8)t],
attenuates [t 5 (4/8)t], and reverses sign in the second
half of the oscillation.

Oscillatory mode 3, which has a period t of 2372 yr,
shows overturning anomalies that are similarly layered.
But interestingly, in mode 3 the roles of the Atlantic
and the Pacific seem to be reversed (Fig. 3); now the
layered overturning structure in the Pacific seems to
migrate upward, whereas the anomalies in the Atlantic
display a standing pattern.

2) PROPAGATION OF ANOMALIES

A characteristic of loop oscillations is the propagation
of thermohaline anomalies along the overturning circu-
lation. The propagation of salinity anomalies displays the
same pattern as the dispersion of their thermal counter-
parts. In fact, thermal and saline anomalies are of the same
sign and largely, but not completely, density compensating
throughout the oscillations. Hence, only the thermal anom-
alies are shown. For modes 1 and 3 it is shown here that
anomalies indeed follow the path of the global overturning
circulation. The journey of a thermal anomaly can best be
followed through the zero-phase line {T9 5 0 | . 0}T9t
(‘‘the anomaly’’) that separates negative anomalies (de-
noted blue) from positive anomalies (red).

For mode 1, the phase line starts off in the deep North
Atlantic [t 5 (1/16)t, Fig. 4] and is advected southward
by the deep branch of the Atlantic overturning. It reach-
es the Southern Ocean [t 5 (2/16)t] and spreads out
into the deep Indian Ocean [t 5 (3/16)t]. Although the
propagation west of the date line is fairly rapid, it takes
a while before the anomaly enters the deep Pacific. At
this depth, the gap between Tasmania and Antarctica is
as wide as Drake Passage in this model (108), and it is
probable that this submarine topography inhibits the in-
teraction between the Indian and Pacific sectors of the

Southern Ocean. In fact, although Drake Passage is open
at this model level, no anomalies pass through this con-
duit. It takes until t 5 (7/16)t before the anomaly sets
out for the Pacific and at t 5 (9/16)t it finally reaches
its northern rim. Here, it takes some time before it sur-
faces [t 5 (12/16)t in Fig. 5]. Once picked up by the
upper branch of the overturning circulation, the anomaly
spreads out rapidly, and reaches the North Atlantic al-
ready at t 5 (14/16)t.

Similarly for mode 3, the anomaly (Figs. 6 and 7)
starts off in the deep North Atlantic [t 5 (2/16)t] and,
when it reaches the Southern Ocean, it propagates east-
ward [t 5 (6/16)t] and fills the deep Indian [t 5 (9/
16–11/16)t] and Pacific Oceans [t 5 (14/16–19/16)t].
But rather than a single anomaly traveling through the
deep ocean, two anomalies are present in the abyss at
the same time. So when a positive anomaly sets off in
the deep North Atlantic [t 5 (2/16)t, Fig. 6], another
anomaly is still working its way north in the deep Pa-
cific. With two anomalies running after each other
through the abyssal ocean, anomalies are generated in
the shallow North Pacific twice as often as in mode 1.
If one considers mode 1 as an ‘‘n 5 1’’ mode, where
n is referring to the number of zeroes of an eigenfunction
in classical stability problems, such as the Eady problem
(Pedlosky 1987), then mode 3 can be considered as an
‘‘n 5 2’’ mode. Indeed, the ratio of 0.6 between the
periods of modes 3 and 1 comes close to the 0.5 that
would be expected for such a mode.

From the propagation characteristics it is clear that
the oscillatory period is determined by the time it takes
for thermal (and saline) anomalies to travel the deep
branch of the overturning circulation. This can be re-
garded as the slow phase of the oscillation. Indeed, for
mode 1 it takes exactly one-half (one-quarter for mode
3) of an oscillatory period for the zero phase-line to be
carried from the North Atlantic into the deep North
Pacific. The passage between Tasmania and Antarctica
seems to cause the most delay and is the slowest part
of this journey. The propagation of the anomalies at
shallow levels, on the contrary, is much faster (close to
‘‘instantaneous,’’ when compared with the oscillation
period). This is the rapid phase of the oscillation, and
it hardly influences the timescale.

3) LINKING THE DEEP AND SHALLOW BRANCHES

From the patterns, one observes that the deep and
shallow branches of the global journey of the anomalies
are linked in the North Pacific and North Atlantic
Oceans, but the details of this link need further analysis.
What generates the anomalies in the deep North Atlan-
tic, and what causes anomalies to emerge in the shallow
North Pacific? What determines the time lag between
the arrival of an anomaly in the shallow North Atlantic
and the generation of an anomaly at depth (vice versa
for the North Pacific)?

It seems that several advective mechanisms are im-



2204 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 3. As in Fig. 2 but now for oscillatory mode 3.

portant for the propagation of the anomalies. First there
is northward advection of the warm anomaly, coming
in from the Pacific, that warms the shallow layers of
the North Atlantic. Downwelling of this anomaly by the
steady-state overturning warms the deep layers, which
are at a temperature minimum at that point. The time
lag between arrival of the positive anomaly at shallow
levels and the generation of a positive anomaly at depth
is set by this downwelling. In addition, another advec-
tive mechanism is present that assists in warming the

deep layers and cooling the shallow anomaly. At the
time of arrival of the shallow positive temperature
anomaly, an overturning anomaly is present that features
a negative anomaly overlying a positive one [cf. the
pattern depicted in Fig. 2; t 5 (3/8)t]; the upwelling at
shallow levels advects cold water upward, and cools the
anomaly, while at depth the downwelling warms the
deep layers. This mechanism hence amplifies the deep
anomaly, counteracting the ubiquitous attenuation by
diffusion.
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FIG. 4. Mode-1 propagation of temperature anomalies at 3000-m depth. Positive (negative) anomalies are
denoted by solid (dashed) contours and red (blue) colors. Note again that the amplitudes are undetermined,
but understood to be small. Contour levels are the same for all panels.

Also in the North Pacific, a phase differences exist
between anomalies at depth and at shallow levels. A
positive anomaly emerges at shallow levels when the
deep anomaly has reached its maximum. Again, basic-
state upwelling plays a role in warming the upper layers.
But also in the North Pacific does the anomalous over-

turning amplify the positive anomaly at shallow levels;
its layered structure, at this time with a negative cell
overlying a positive one [Fig. 2; t 5 (1/8)t], tends to
warm the upper 1500 m. At deeper levels, where the
background temperature gradient is small, its contri-
bution is negligible.
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FIG. 5. Mode-1 propagation of temperature anomalies at 500-m depth. Contouring and coloring conventions
are as in Fig. 4. Note that the second half of the oscillation is displayed, following on the sequence shown
in Fig. 4.

c. Physical mechanism

Ideally, the mechanism of an oscillation is described
in terms of conversions between potential and kinetic
energy anomalies (e.g., Te Raa and Dijkstra 2002).
However, the modes do not become neutral and, hence,
the methodology to arrive at a consistent description of

the oscillatory mechanism based on energy conversions
cannot be used. In this section, another method is ap-
plied to infer the importance of certain terms for the
dynamics of the oscillation: the strength of the several
feedbacks is controlled by changing relevant parameters
in the eigenvalue calculations.
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FIG. 6. Mode-3 propagation of temperature anomalies at 3000-m depth. Contouring and coloring
conventions are as in Fig. 4.

Thermal (and saline) anomalies satisfy the following
equation:

2]T9 ] T9
25 F 1 F 1 k ¹ T9 1 k , (9a)1 2 h h y 2]t ]z

with

F 5 2m u · =T9 and F 5 2m u9 · =T, (9b)1 1 2 2

where the steady solution is denoted by an overbar and
the anomalies by a prime, and where m1 5 m2 5 1. For
convenience, the interaction between the background
flow and thermal (and saline) anomalies will be denoted
as F1, whereas the interaction between the flow anom-
alies and the background thermal (and saline) stratifi-
cation as F2.

To determine the importance for each of the terms on
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FIG. 7. Mode-3 propagation of temperature anomalies at 500-m depth. Contouring and coloring
conventions are as in Fig. 4.

the growth rate and period of the oscillatory modes,
parameters are varied in the linear stability problem
while the steady state is fixed. In particular, the param-
eters m1 and m2 are introduced to control the strength
of the advective feedbacks. A strong response of either
§r or §i to changing a parameter may identify the cor-
responding feedback as being essential for either decay
or oscillation of the eigenmode. The advantage is that

a change in the eigenvalues or -vectors can be due only
to (controlled) changes in the dynamics, and not to
changes in the basic state. This allows for a more ac-
curate identification of the relevant mechanisms. Be-
sides, we do not need to calculate a new basic state for
each new value of the parameters, making the procedure
computationally very efficient.

In the appendix, it is shown how the growth rates and
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FIG. 8. Real parts of the eigenvalues of the least stable eigenmodes
as function of (a) the vertical diffusivity ky and (b) the advective
feedback parameters m1 and m2. Note that §r is inversely proportional
to growth (decay) rate. For ky , 0.2 m2 s21, only the eigenvalues of
the two dominant real modes could be determined with sufficient
accuracy, whereas no accurate eigenvalues could be computed for m1

, 0.5. Open (solid) symbols represent complex (real) modes. Vertical
line in (a) denotes value of vertical diffusivity of the basic steady
solution; modes on this line correspond to modes listed in Table 2.

FIG. 9. As in Fig. 8 but now for the imaginary parts of the ei-
genvalues. Note that § i is inversely proportional to the oscillation
period.

oscillation periods can be expressed in terms of volume
integrated quantities involving the interactions between
the spatial patterns of the eigenmode and the back-
ground steady state. For some terms the parameter de-
pendence is explicit, while for others it is implicit; a
change in an implicit parameter may work through via
the direct terms when it affects the eigenfunctions.
Equation (A5a) shows that §r may depend directly on
F2 and on the diffusion terms, but not on F1. Advection
of anomalies by the background flow can only modify
§r indirectly, when it changes the spatial structure of the
eigenmodes and hence affects the diffusive feedbacks
or F2. Similarly, § i directly depends on both advective
feedbacks only [Eq. (A5b)]; diffusion can only change
the oscillation timescale indirectly, when it changes the
spatial patterns and thereby the strength of the advective
feedbacks. Oscillatory motion therefore only exists in
the presence of advective feedbacks: diffusion may

modify the timescale; however, it can never be respon-
sible for oscillatory motion in this system.

In Fig. 8, the growth rates of the least stable modes
are shown as a function of ky , m1, and m2. The almost
linear relationship between §r and ky shows that vertical
diffusion strongly controls the growth rate of all modes.
Especially some of the real modes closely approach §r

5 0 for ky → 0. The oscillatory modes seem to remain
stable for ky 5 0, although we could not determine these
modes with sufficient accuracy here. On the other hand,
there is only weak response to a change in the advective
feedback parameters m1 and m2 (Fig. 8b) as well as to
the horizontal mixing coefficient kh (not shown).

Vertical diffusivity influences the oscillation periods
of modes 1 and 3 to some extent, albeit with no clear
systematic trend (Fig. 9a). For higher values of ky ,
modes 1 and 3 display a tendency of increasing § i (short-
er periods) for decreasing ky , whereas for lower values
of ky this tendency is reversed. The response of mode
7 (open diamonds) is very strong, showing a spectacular
drop in § i when ky is reduced. The period increases from
2.5 kyr for ky 5 1.8 3 1024 m2 s21 to almost 10 kyr
for small ky . According to Eq. (A5b), the response of
the oscillation periods must be ascribed to changes in
the advective feedbacks caused by modifications of the
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spatial patterns of the eigenmodes. The response of § i

to changes in kh is very weak (not shown).
On the other hand, the periods of the oscillatory

modes do show a particularly strong (and linear) re-
sponse to a change in m1 (Fig. 9b). This parameter con-
trols the amplitude of advection by the background flow.
This dependency indicates that the timescale of the os-
cillations is largely set by the advection timescale of the
steady flow. Again, mode 7 is exceptional by also re-
sponding strongly to a change in m2 as well. This most
stable mode of the ones presented here shows an enor-
mous decrease in § i, and becomes a real mode for a
short segment of m2. This indicates that for this mode
interaction between the background stratification and
the anomalous flow is important as well.

This analysis demonstrates that the growth rate of the
eigenmodes is clearly controlled by vertical diffusion.
Although Eq. (A5a) shows that horizontal diffusion and
the second advective feedback have the potential to in-
fluence the stability as well, they appear to play only a
minor role. The oscillatory periods of the two least sta-
ble oscillatory modes 1 and 3, on the other hand, are
clearly determined by the first advective feedback, that
is, the advective timescale of the global circulation. Ad-
vection of anomalies by the global circulation (F1) is
hence the crucial element of the oscillation, as also con-
cluded from the propagation of anomalies. The feedback
F2 is of no importance for setting the timescale, despite
its theoretical potential to do so [Eq. (A5b)]. These re-
sults qualify the modes to be global loop or overturning
oscillations.

4. Discussion and conclusions

As far as we are aware, this is the first time that the
linear stability of a global ocean flow has been calcu-
lated explicitly by directly solving the generalized ei-
genproblem. It resulted in the explicit identification of
multiple internal oscillatory modes. It has been shown
that the basic oscillatory mechanism of the two least
stable oscillatory modes is the advection of thermal and
saline anomalies over the global overturning oscillation.
The timescale is set by the propagation of anomalies
from the North Atlantic to the North Pacific at depth.
The least stable mode (mode 1) has a period of 3827
yr, which is the time it takes for an anomaly to complete
a full cycle over the global circulation. In the second
oscillatory mode (mode 3) two anomalies are traveling
the global circulation at the same time. This almost
halves the period to 2372 yr. Vertical mixing is the
mechanism that controls the growth rate of these modes.

The overturning anomalies of modes 1 and 3 show
an interesting layered structure in the Atlantic and Pa-
cific Oceans. Since the temperature and salinity anom-
alies are nearly compensating, it may seem that the non-
linearity in the equation of state is crucial. Salinity
anomalies would dominate density at depth, whereas at
shallower levels thermal anomalies would be dominant.

So a given meridional temperature and salinity gradient
of the same sign will generate a density gradient at depth
that points in the same direction as the gradients of T
and S, whereas at shallower levels it opposes the gra-
dients of T and S. This reversal of the density gradient
at middepth is reflected in the sign reversal of the anom-
alous overturning cells. However, it turns out the non-
linear equation of state is not essential for the existence
of the oscillation. When the nonlinearity in the equation
of state is reduced in the eigenvalue problem, there is
no response in either the real or imaginary parts of the
eigenvalues of modes 1 and 3. The nonlinear equation
of state is therefore not responsible for the density anom-
alies that are required to generate anomalous flow nor
are these anomalies caused by different boundary con-
ditions on T and S anomalies (no-flux conditions were
taken for both); they must be ascribed to the differences
in the background distributions of T and S. Interaction
of flow anomalies with these different background dis-
tributions will generate the different thermal and saline
anomalies that are required to generate density anom-
alies.

The fact that the steady state in the present model is
linearly stable does not exclude the possibility that
modes like the ones found here play a role in shaping
climate variability. First of all, the present model con-
figuration features relatively strong diffusion and rela-
tively high friction in the equatorial regions. It is likely
that the oscillatory modes are much less stable when
more realistic values of the damping parameters are
used. Indeed, Fig. 8a shows that the stability of the
modes is strongly reduced when vertical diffusivity is
decreased toward more realistic values. Second, damped
oscillations may be excited by stochastic components
in the forcing, like low-frequency variability of the at-
mospheric circulation (Mikolajewicz and Maier-Reimer
1990; Griffies and Tziperman 1995). Last, Sirkes and
Tziperman (2001) point at the possibility of nonnormal
growth in which a disturbance of a steady state, which
in itself is linearly stable, may grow initially due to
nonlinear interactions of eigenmodes (e.g., Farrell and
Moore 1992). Other techniques have to be applied to
detect nonnormal modes of variability.

Admittedly, the model configuration presented here
needs improvements and inclusion of many physical
processes to yield a reliable representation of the global
ocean circulation. Arguably one of the major deficien-
cies of the results presented here may be that they were
produced in absence of a convective adjustment pro-
cedure. Although parameterizing the effects of small-
scale convection may be of quantitative importance for
the strength of the overturning and the temperatures in
the deep ocean, it is not essential for generating ther-
mohaline circulation (Marotzke et al. 1988; Marotzke
and Scott 1999). Its inclusion may have resulted in an
increase of the basic-state overturning strength in this
model, and it may have reduced the periods of the os-
cillations to some extent because of a more efficient
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FIG. 10. Temperature anomalies at 900-m depth in the North At-
lantic and North Pacific Oceans for one oscillatory cycle of modes
1 and 3. Time is scaled with the period of each oscillation; the am-
plitudes of the anomalies are undetermined, but the amplitudes are
mutually consistent. Note that the Pacific and Atlantic signals in mode
3 are in perfect antiphase, whereas in mode 1 they are almost 1/4
out of phase.

exchange between the deep and shallow layers in the
subpolar basins. Yet, the existence of the overturning
modes presented here is likely to be robust. One may
argue that the absence of convective adjustment ex-
cludes the possibility that deep-decoupling oscillations
are found. Dynamically, these deep-decoupling oscil-
lations differ from overturning oscillations in that the
latter arise through a Hopf bifurcation that destabilizes
a steady state (‘‘soft’’ loss of stability), whereas the
former is characterized by a global bifurcation in which
the steady state ceases to exist and the oscillation im-
mediately acquires a finite amplitude (‘‘hard’’ loss of
stability, Cessi 1996). Hence, deep-decoupling oscilla-
tions can not be found as eigenmodes of the system.

Although this model has some obvious shortcomings,
we think that the results presented in this paper show
that the combination of advanced numerical methods
and dynamical systems theory may provide powerful
tools that complement the common ocean modeling
practice in unraveling the complex nonlinear dynamics
of the ocean circulation. The identification of the os-
cillatory modes may be considered as a first step toward
a complete and systematic description of the ultralow
frequency variability of the global ocean circulation.
Indeed, oscillations like the ones found here may be
underlying the variability that appears to pervade the
present Holocene period, giving rise to global climate
events like the Medieval Warm Period and the Little Ice
Age (Bond et al. 1997). Geochemical observations sug-
gest that these oscillations are indeed accompanied by
reorganizations in the deep ocean circulation (Broecker
2000). Furthermore, these linear modes may evolve into
large-amplitude oscillations once they are properly ex-
cited (Sakai and Peltier 1996). It is therefore not im-
possible that similar modes lie at the heart of the Dans-
gaard–Oeschger cycles.

The answer to the question of whether these modes
really play a role in shaping climate variability on mil-
lennial timescales must be sought in paleoceanographic
data. Especially phase relationships between distinct
parts of the global ocean may provide the necessary
constraints to identify the oscillation responsible for a
certain mode of variability. As an example, our oscil-
latory modes 1 and 3 display a distinctive phase rela-
tionship between the North Atlantic and Pacific Oceans
(Fig. 10). This would leave a unique imprint in the
sedimentary record that could be used to identify the
mode responsible for the variability. With the steadily
increasing number and quality of sediment cores, prox-
ies, and dating techniques, establishing such phase re-
lationships between ocean basins on millennial time-
scales seems to be within reach. Indeed, Kiefer et al.
(2001) found strong evidence for an antiphase relation-
ship between the North Atlantic and the North Pacific
sea surface temperatures during Dansgaard–Oeschger
events, as displayed by mode 3 in Fig. 10. Time will
tell whether such interocean correlations can be estab-

lished for variability with much smaller amplitude as
well.
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APPENDIX

Temporal Evolution of Eigenmodes

Suppose that we perturb the steady state at t 5 0, and
that the perturbation has a small amplitude and the spatial
structure of ur, which is the real part of a complex con-
jugate pair of eigenvectors u 5 ur 1 iui. Then the time
evolution of the thermal anomaly T9(x, t) is given by

(§ 1i§ )tr iT9 5 (T 1 iT )er i

§ tr5 e [(T cos§ t 2 T sin§ T ) (A1)r i i i

1 i(T sin§ t 1 T cos§ t)],r i i i

and its time derivative is given by

]T9
§ tr5 e [T (§ cos§ t 2 § sin§ t)r r i i i]t

2 T (§ sin§ t 1 § cos§ t)]i r i i i

§ tr1 ie [T (§ sin§ t 1 § cos§ t)r r i i i

1 T (§ cos§ t 2 § sin§ t)]. (A2)i r i i i

Dynamically, this time derivative satisfies
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2]T9 ] T9
25 F 1 F 1 k ¹ T9 1 k , (A3a)1 2 h h y 2]t ]z

with

F 5 2m u · =T9 and F 5 2m u9 · =T, (A3b)1 1 2 2

where the steady solution is denoted by an overbar and
the anomalies by a prime and where m1 5 m2 5 1. For
convenience, the interaction between the background
flow and thermal (and saline) anomalies will be denoted
as F1, whereas the interaction between the flow anom-
alies and the background thermal (and saline) stratifi-
cation as F2. Inserting Eq. (A1) in the right-hand side
of Eq. (A3), equating Eqs. (A3) and (A2), and taking
the sines and cosines together, yields the following ex-
pressions:

§ T 2 § T 5 2m u · =T 2 m u · =Tr r i i i r 2 r

2] Tr21 k ¹ T 1 k and (A4a)h h r y 2]z

§ T 1 § T 5 2m u · =T 2 m u · =Tr i i r 1 i 2 i

2] Ti21 k ¹ T 1 k . (A4b)h h i y 2]z

Eliminating § i or §r from these equations, taking the
volume integral (denoted by ^ · &), and inserting the
boundary conditions, yields

1
§ 5 m ^T(u · =T 1 u · =T )&r 2 r r i i2 2 [^T 1 T &r i

2 22 k ^(= T ) 1 (= T ) &h h r h i

2 2
]T ]Tr i2 k 1 (A5a)y71 2 1 2 8]]z ]z

and

1
§ 5 [m ^u · (T =T 2 T =T )&i 1 i r r i2 2^T 1 T &r i

2 m ^T(u · =T 2 u · =T )&]. (A5b)2 r i i r

These expressions show how the growth rate and os-
cillation period depend on the several feedback param-
eters and on correlations between the spatial patterns of
the eigenmodes and the basic state. In particular, the
growth rate directly depends on F2 and on vertical and
horizontal mixing, whereas the period directly depends
on the advective feedbacks only.
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