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A bifurcation study of the three-dimensional thermohaline
ocean circulation: The double hemispheric case

by Wilbert Weijer * and Henk A. Dijkstra *

ABSTRACT
Within a low-resolution primitive-equation model of the three-dimensional ocean circulation, a

bifurcation analysis is performed of double-hemispheric basin flows. Main focus is on the connection
between results for steady two-dimensional flows in a nonrotating basin and those for three-
dimensional flows in a rotating basin. With the use of continuation methods, branches of steady state
are followed in parameter space and their linear stability is monitored. There is a close qualitative
similarity between the bifurcation structure of steady-state solutions of the two- and three dimen-
sional flows. In both cases, symmetry-breaking pitchfork bifurcations are central in generating a
multiple equilibria structure. The locations of these pitchfork bifurcations in parameter space can be
characterized through a zero of the tendency of a particular energy functional. Although balance:
controlling the steady-state flows are quantitatively very different, the zonally averaged patterns of
the perturbations associated with symmetry-breaking are remarkably similar for two-dimensional
and three-dimensional flows, and the energetics of the symmetry-breaking mechanism is in essenc
the same.

1. Introduction

Transitions between different ocean circulation patterns are one of the potential source
of (past) climate changes (Broeckatral., 1985). As of now, there are many indications
that the ocean circulation in the North Atlantic was different in the past. For example,
during the Last Glacial Maximum the zonally-averaged northward flow likely was weaker
than today, with a correspondingly smaller poleward heat transport (Bradley, 1999). It is,
therefore, important to understand the equilibria of the ocean circulation under given
forcing conditions and to determine their sensitivity to perturbations. This knowledge will
also provide clues on the likelihood of the occurrence of rapid transitions from the present
state (Tziperman, 2000).

For some time, it has been known that an ocean model forced by two agents controlling
the surface buoyancy flux (heat and freshwater) allows for different circulation patterns
under the same forcing conditions (Stommel, 1961; Welander, 1986). In a representation c
a single-hemispheric ocean flow, for example in a two-box model, forcing conditions can

1. Institute for Marine and Atmospheric Research, Department of Physics and Astronomy, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, The Netherlamfsail: w.weijer@phys.uu.nl

599



600 Journal of Marine Research [59, 4

be found for which a flow with sinking at the equator and one with sinking at the pole exist
simultaneously. Different restoring times for salt and heat at the ocean-atmosphere
interface—as imposed through the boundary conditions—are central to the occurrence ¢
these equilibria. The limit of prescribed temperature and freshwater flux is referred to as
mixed boundary conditions, whereas the limit of both prescribed salinity and temperature
is referred to as restoring conditions.

The issue of multiple equilibria was addressed in a double-hemispheric set-up of the
Princeton General Circulation Model (GCM) by Bryan (1986). The solution of a single-
hemispheric version of the model (over the domain 0—90N), obtained under restoring
conditions with observed salinity, is reflected through the equator to get a symmetric state
with sinking at both poles. The freshwater flux is diagnosed from this solution, and mixed
boundary conditions are applied over the whole domain. When a negative salinity anomaly
of 1 psu is (instantaneously) added poleward of 45S, an asymmetric state is reached withi
50 years with sinking in the north. Adding a positive salinity anomaly of 2 psu in the same
region (poleward of 45S) leads to an asymmetric southern sinking state in about 200 year

Over the last decade, many studies have tried to explain the results of Bryan (1986
within a simpler model set-up. For a double-hemispheric basin, multiple flow patterns
occur under equatorially symmetric mixed boundary conditions within a large class of
models. In box models (Welander, 1986) and two-dimensional Boussinesg models (Thua
and McWilliams, 1992; Quon and Ghil, 1992; Cessi and Young, 1992; Dijkstra and
Molemaker, 1997) these multiple equilibria arise through symmetry-breaking pitchfork
bifurcations. In addition to symmetric solutions with sinking at both poles (called TH
states) or solely at the equator (called SA states), also pole to pole solutions exist, the latte
having either southern (SPP states) or northern (NPP states) sinking. Note that in thes
models, the effect of rotation is completely ignored and dominant momentum balances ir
the flow are between buoyancy forcing and friction. In zonally-averaged models, where the
effect of rotation is somehow parameterized, transitions between TH and NPP/SPF
equilibria were found as well (Wright and Stocker, 1991). Also in these cases, a pitchfork
bifurcation is at the origin of the multiple equilibria (Vellinga, 1996) and the bifurcation
diagram is qualitatively similar to that for the two-dimensional Boussinesq models.

In Klinger and Marotzke (1999), an attempt is made to determine bifurcation diagrams
of the three-dimensional double-hemispheric configuration by calculating steady state:
within a low-resolution GCM for many values of parameters. A clever way is found to
determine asymmetric states under equatorially symmetric conditions by independently
varying the temperature differences over the northern and southern part of the flow domair
Several equilibria are found in the symmetric double-hemispheric configuration. For the
case when the equator-to-pole temperature difference is the same in both hemispheres, t
structure of equilibria appears to arise through a (subcritical) pitchfork bifurcation. A case
with a smaller temperature difference in the northern hemisphere leads to several differer
asymmetric states and the bifurcation diagram is more complicated. Although precise
statements on the bifurcation structure and symmetry-breaking cannot be obtained throug
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a number of time-dependent simulations (since the unstable steady states will alway
remain hidden), the results suggest a good qualitative correspondence with those i
two-dimensional models.

Itis only very recently that techniques of numerical bifurcation theory have reached the
stage to be able to handle three-dimensional thermohaline ocean flows (Dgkstla
2001). We use these technigues here to study the relation between the equilibrium solutior
in two-dimensional and three-dimensional models. Starting at essentially two-dimensiona
results as in Dijkstra and Molemaker (1997), the effect of rotation, wind forcing and
convective adjustment on the bifurcation diagram is studied systematically. Main contribu-
tions of the paper are (i) to demonstrate the qualitative similarity of the structure of steady
solutions in the two- and three-dimensional cases under mixed boundary conditions, an
(ii) to characterize the locations of the pitchfork bifurcation responsible for the multiple
equilibria energetically. Using this characterization we show that the physical mechanism
of symmetry-breaking is essentially the same in two- and three-dimensional cases
although the balances controlling the steady flow are substantially different.

2. The ocean model

a. Equations and forcing

Consider a sector flow domain, Ag] X [dbg, dy] representing an ocean basin on a
sphere with radius,. The basin has constant defithand is rotating with angular velocity
QO = n;Q,, where(), is the rotation rate of the earth amg € [0, 1] is a dimensionless
parameter controlling the rate of rotation. The ocean velocities in eastward and northwarc
directions are indicated hyandyv, the vertical velocity is indicated by, the pressure by
and the temperature and salinity byandS, respectively. Vertical and horizontal mixing of
momentum and of heat and salt is represented by eddy diffusivities, with horizontal and
vertical friction coefficientsA,, and A, for momentum and horizontal and vertical
diffusivities K, andK,, for heat. The mixing coefficients of salt are taken equal to those of
heat. A linear equation of state is taken with expansion coefficeep@sndag, reference
temperaturel,, salinity S, and densityp,. The governing equations, using the shallow
layer approximatiom/r, < 1, are

Du uvtand o Ly Sind — 1 ap+A82u
dt o bV Sind = pofo COSh N ¥ 92
. (1a)
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ap
97- P9 (1c)
O_aw 1 du  d(vcosd) 1d
_E+rocos¢ N ad (1d)
DT—V KyVaT i K il 1
H— H.(HH)+£ VE (e)
DS_ o oo (S
a— H'(KH H)+£ KVE (1f)
p=po(l—oiT—Ty) +alS—S)) (19)
with:
DF_aF u oF v oF oF
dt ot T rocosban read Wz
v F—( 1 oF 1 oF
H™ 7 \rp cosd O\ "1y 0d
I S Lo,
Ho T rgcosd an +rocos¢£( cos¢)

whereF andF = (F*, F*) are an arbitrary scalar and vector, respectively.

The ocean circulation is driven by a wind stregs, ¢) = 74(t", ), wherer, is the
amplitude and™(\, ¢) and (A, &) provide the spatial pattern. The thermohaline
component of the circulation is driven by heat and freshwater fluxes at the surface. The
downward heat fluQ,, is assumed proportional to the temperature difference between the
ocean surface temperature and a prescribed atmospheric temp&réiuré); i.e.,Q,, =
B+(n+Ts — T), with B; being an interfacial exchange coefficient of heat (Haney, 1971)
andr; a dimensionless parameter controlling the amplitud€fThe freshwater flux is
converted to an equivalent salt flux and is simply a prescribed (dimensionless) function
F<(N, ¢) with dimensional amplitudg&,,.

The transfer of heat, freshwater and momentum from the surface downward occurs ir
thin boundary layers; for example in an Ekman layer, which cannot be resolved explicitly.
Hence, as in low-resolution GCMs, the surface forcing is distributed as a body forcing over
a certain depth of the upper ocean, using a vertical profile fungifah More explicitly,
the right-hand side of the horizontal momentum (1a, 1b), temperature (1e) and salinity (1f)
equations are extended with the source terms

To . b _ To "
PonT ’ Q-r - g(Z) PonT (Za)

Q=92
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Qr=g( ) Qs— g(z) (2b)

whereH,, is a typical vertical scale of variation of the functigfz) andr is a restoring
time scale to the atmospheric forcing. Using these source terms, the appropriate bounda
conditions for temperature, salinity and wind stress at the ocean-atmosphere boundary a
no-flux conditions. This guarantees, for example, that the surface integral of the heat flux is
zero for each steady solution (Weaver and Hughes, 1996).

A nondimensional temperatuiie salinity S and pressurp are introduced through =
To + ATT, S= S, + ASSandp = —pg9z + 2Qr UpoP. A characteristic horizontal
velocity is indicated byJ, and the governing equations are further nondimensionalized
using scales,, D, U, DU/rgy andry/U for horizontal length, vertical length, horizontal
velocity, vertical velocity and time, respectively. They become
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DS d 4S
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where the hats are dropped for convenience. On the lateral walls, slip conditions are
prescribed to allow for two-dimensional solutions in particular cases, and the heat and sal
fluxes are zero. The bottom of the ocear= —1 is assumed to be flat, isolated and
impermeable to salt. The nondimensional boundary conditions are hence formulated as

ou ov JaT  9S

Z:_LO:&:KZ:W:EZEZO (4&)
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Note that the model formulated here does not guarantee stably stratified solutions. As in al
other large-scale ocean models the effect of convection, which occurs when the stratifica
tion is not statically stable must be explicitly parameterized. Such a parameterization is
usually referred to as ‘convective adjustment’ and its effects on the results is explicitly
considered in Section 3d.

The parameters in the set of equations (3) are the Rossby nuwppéne Rayleigh
numberRa, the vertical and horizontal Ekman numbdfs and E,,, the wind stress
coefficienta ., the buoyancy ratioR, the vertical and horizontal inversédtet number®,,
and P,,, the Biot numberB and the freshwater flux strength Expressions for these
parameters are
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When rotation is present)f = 1), a geostrophic balance between the pressure gradient
and the Coriolis force is expected, and the Rayleigh nuntdarcan be cast in its
geostrophic formRay:

Ra= Rag:m (6)

In absence of rotation, however, pressure forces are balanced by (horizontal) friction, an
the Rayleigh number effectively becom@s; = RaE,; = Rg,/E,;. This means that the
velocities increase characteristically by a factdg,J ivhen the rotation rate is reduced to
zero. In order to facilitate comparison between the two-dimensional and three-dimensiona
model, the Rayleigh number is expressed as:

Ra=[n;+ (1 — n)ExIRa, (7)

Form; = 0 the Rayleigh number is rescaled by a faggrto compensate for the frictional
balance, whereas faf; = 1 Raattains its geostrophic value (6).

Apart from the parameterg; and;, the system appears to contain 10 parameters.
However, only 8 of these are independent; when the salt field is rescaled by axfattier
producto = Ay appears, which is an independent parameter. Moreover, the velocity scale
U can be chosen as a function of other parameters, reducing the number of paramete
again by one.
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The continuous steady equations are invariant with respect to reflection around the
equator, which is represented by

U()\, _¢v Z) = U()\, (ba Z), V()\v _Cb, Z) = _V()\, d)v Z), W()\v _¢v Z) = W()\v d)a Z)
8)
P\, —d,2) = p\, b, 2; T\, =, 2 = T(\, b, 2); S\, —d, 2 = S\, b, 2).

The equations are discretized in space using a control volume discretization method on
staggered (Marker and Cell or Arakawa-{Cgrid, that places thp, T andS points in the
center of a grid cell, and the, v, andw points on its boundaries. This method is
second-order accurate, and preserves the reflective symmetry of the system. The spatial
discretized model equations can be written in the form

du
M g F(u) = L(u) + N(u, u) (9)

where the vectou contains the unknownsu( v, w, p, T, S) at each grid point. The
operatordV andL are linear andN represents the nonlinear terms in the equations. Steady
solutions of this system are calculated, and branches of steady states are followed throuc
parameter space using the technique of pseudo-arclength continuation. The stability of th
solutions is considered by performing a linear stability analysis; the Jacobi-Davidson
QZ-method is used to determine the eigenvectors and the associated eigesvalsies

is; (wheres, ands; are the real and imaginary parts, respectively). Transitions that mark
qualitative changes, such as transitions to multiple equilibria (pitchfork or saddle node
bifurcations) or periodic behavior (Hopf bifurcations), can be detected. More details on the
continuation method and the linear stability analysis are given in Appendix A.

b. The double-hemispheric basin set-up

The domain chosen is comparable in size to the Atlantic: it is a sector of 64° wide (with
Aw = 286° and\ g = 350C°) and 120° long (withbg = —60° and¢, = 60°), and has a
constant deptld = 4000 m. Aresolution ofd\ X dd X dz= 4° X 3.75 X 250 mis
chosen, which is accomplished by a gridddfx M X L = 16 X 32 X 16 boxes. For a
similar parameter regime, a comparable resolution in a single-hemispheric basin turned ot
to be sufficient to reproduce results obtained with higher resolution with reasonable
accuracy (Dijkstreet al.,2001).

The wind stress forcing considered is an idealized profile for the Atlantic mimicking a
double-gyre wind stress in each hemisphere, i.e. in dimensionless form

¢_¢s
(bN_d)S

™) = —cos 4 (10a)

= 0. (10b)
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Figure 1. The forcing functions for wind stress, the atmospheric temperatui®; and the
freshwater fluxF .

The surface temperatures and surface freshwater fluikg are prescribed, similar to
Klinger and Marotzke (1999), as

Tdd) = COSTr(E) (11a)
1
Fad) = cosd cosw (E)N (11b)

The temperature profile, the zonal wind stress and the freshwater flux are shown in Figure
and need no further discussion. Note that, because of the introduction of the pargmeter
the dimensional equator-pole temperature difference over the sector is equglAd .2
The freshwater forcing is such that the integral over the surface is zero, which is a
necessary condition for the existence of steady-state solutions.

The functiong(z), appearing in Egs. (3), is chosen as

9(2) = %H(z— 2.4, €p) (12)

where z, _, is the bottom level of the uppermost grid cell, a#flis a continuous
approximation to the Heaviside function. For the latter we use

1 X
H(X; ey) = 5 (1 + tanh) (13)

2 €4
wheree,, = 10~ °. In this way, the input of each quantity through the ocean-atmosphere
surface (zonal and meridional momentum, heat and salt) is distributed as a source terr
over the uppermost level.
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Table 1. Standard values of parameters used in the numerical calculations.
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20, = 1.4 - 10°* s o= 6.4-10° m]
=10 -10* [Nm~—3 D=4.0-10° m|
Fo=10 -10°7 [psums? U=1.0-10" ms™Y]
po=10 -1C° [kg m~3] AT =1.0 K]
ar =10 -10°° K-t =175 [days]

A,=16.0-10° [m?s™} A,=1.0-10"3 m?s— Y

Ky=1.0 -10° [m?s™Y K,=1.0-10"% m%s Y
AS=1.0 [psu] ag=7.6-10"" psu Y]
S, = 35.0 psu]
nggg) %mfﬂ T, = 15.0 K]
m= m
Ra=42 -10 2 E,=27-103
N=T76 Ey=4.3-107
vy=26 - 10 P, = 1.5-10
ny = 10.0 PS=3.9-10 4
B =10.0 PS, =1.0-10°
€ =0 o, = 2.9-102

Most of the parameters are fixed at values as used in low-resolution GCMs, and thes
values are listed in Table 1. For these parameter values, the Rossby niribesmall
(0(10™%) and is set to zero in our calculations. Note that in the standard case, the
horizontal friction coefficienf is rather large. The value &{, is bounded from below by
the boundary layers which develop near the continents. Near the western boundary, th
Munk frictional boundary layer thickness at latitudg scales with @A.,/Bo)*'3, where
Bo = 20, cos by/ry monitors the variation of the Coriolis parameter. With a typical
horizontal resolution of 4°, this leads to a typical lower bound\gf= 5.0 X 10° m?s™*
atdy = 45°. However, the thickness of the Ekman layers near the continental walls has &
typical width of (A,/fo)*'2, wheref, = 2Q sin ¢, which restricts the value @, to be
larger than 1.0< 10" m?s™ 2. In typical ocean models, values much smaller are taken, but it
has been shown that this leads to numerical waves near these boundaries (Winton, 199
Killworth, 1985) which show up as wiggles in the steady-state solutions (Dijlested.,
2001).

3. Results

In the results below, steady states are computed as a function of the strength of th
freshwater fluxo. By plotting a norm of the solution versus this control parameter, for
every steady state computed, a so-called bifurcation diagram is obtained. As a norm, th
maximum of the meridional overturning streamfunctiow,{) is chosen, which is
computed as follows. The nondimensional overturning streamfundtisdefined by

) ) "
V=0 W (14)

where
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NPP/SPP

0 0.05 0.1 0.15 0.2 0.25 0.3
(o)

Figure 2. Bifurcation diagram for the two-dimensional nonrotating agse 0, usinge = y\ as
control parameter. On the vertical axis, the maximum of the meridional overturning streamfunc-
tion is plotted (in Sv). Solid lines denote branches of stable solutions, while unstable branches ar
dashed. For low values @f only thermally driven solutions (TH) are possible. At the pitchfork
bifurcationP this branch becomes unstable, and asymmetric pole-to-pole solutions (NPP and SPP
branch off. The latter are symmetry-related and cannot be distinguished in this plot.

\E \E
v= J vV cOSd d\; W = J w cos¢ di. (15)
Aw Aw
With the scaling used, the maximum dimensional volume transpgrt= r,UD max¥
and this is expressed in Sv, where 1:510° m% 1.

The presentation of the results in this section is as follows. First, the case in which
rotation and wind-forcing are absent is considered, allowing for fully 2-dimensional
solutions. Then explicitly, the transition to the rotating buoyancy-driven flows is presented
and the robustness of the results with respect to the presence of wind forcing anc
convective adjustment is discussed.

a. Two-dimensional solutions

As conditions on the eastern and western boundary are assumed free-slip, stricth
two-dimensional solutions exist in case rotation and wind forcing are absent){i-e.
a, = 0). To connect the results here to those in earlier two-dimensional studies, we first
study these two-dimensional solutions. The bifurcation diagramfor 0, o, = 0 and
Ra= EyRa, = 1.2- 10~ *is shown in Figure 2. For small values @ unique solution
exists (labeled TH) that is thermally driven and has equatorial symmetry (Fig. 3a—b). This
solution becomes unstableat= 0.13 through a super-critical pitchfork bifurcatién At
P, equatorially asymmetric circulations arise, with major downwelling either on the
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Figure 3. Overturning streamfunctidhand zonally averaged densjiyor the TH solution at- = 0
(a—b), the SPP solution at= 0.13 (c—d), and the NPP solutionat= 0.24 (e—f). The SPP state at
o = 0.13 is close to the pitchfork bifurcatid? in Figure 2, and displays only a slight degree of
asymmetry. The NPP stateat= 0.24 shows a much stronger degree of asymmetry, and displays
a clear pole-to-pole circulation. The dimensional density can be computedgffom p, =
poATap, as can be deduced from the scaling in Section 2.

southern hemisphere (southern sinking pole-to-pole, SPP; Fig. 3c—d) or on the norther
hemisphere (northern sinking pole-to-pole, NPP; Fig. 3e—f). Note that by plotting the
overturning strengti’,, as a norm in the bifurcation diagram, the two branches NPP and

SPP cannot be distinguished: since the forcing is symmetric around the equator, botl
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4 L N N X . 4
0 0.2 0.4 0.6 0.8 1
T
Figure 4. The response of the overturning strength upon introducing rotation for a TH sotution (

0) and an SPP solutiowr (= 0.30). Rotation off (on) is representedhy= 0 (n; = 1). Note that
the Rayleigh number is rescaled accordin®Ri® = [n; + (1 — m¢) E4]Ra,, whereRg, is the
original ‘geostrophic’ form of the Rayleigh number. The curves connect the TH and SPP branches
in the bifurcation diagrams of Figures 2 and 6.

solutions are symmetry related through (8) and hence their overturning strength is the
same.

Clearly, the results for these two-dimensional solutions in a three-dimensional model are
qualitatively very similar to the results for two-dimensional Boussinesq models in a
rectangular ocean basin (Dijkstra and Molemaker, 1997). A pitchfork bifurc&tigives
rise to equatorially asymmetric circulations, and is thus the origin of the multiple
equilibria. Hence, the effects of the spherical geometry do not alter the qualitative aspect
of the solution structure.

b. Effect of rotation

For the same values of parameters as in the previous section, the two-dimensione
solutions are followed into the rotating regime by varying the dimensionless Coriolis
parametern; from zero to unity. Simultaneously, the Rayleigh number is rescaled
according to (7), and attains its original ‘geostrophic’ valuerfpr 1.

The response of the overturning strength of an SPP solutios ¢t0.30) and a TH
solution (ato = 0.0) is shown in Figure 4. It is influenced by two effects: the initial
increase in overturning strength of both circulation patterns reflects the increase in the
Rayleigh number (and scales accordingltg, = Ra''? in both cases). The subsequent
decrease in overturning strength is caused by the Coriolis term taking over from friction in
balancing the pressure force, onggeis large enough. The dominant momentum balance
changes from frictionally controlled to geostrophically controlled, so that the meridional
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Figure 5. The overturning streamfunctioh and the surface velocity field (vector plot of the
horizontal velocity and contour plot of the vertical velocity) of the SPP circulation pattemns=at
0 (a—b) andy; = 1 (c—d) in Figure 4.

pressure gradient induced by the surface forcing now generates zonal, rather tha
meridional, flow. These zonal transports, in turn, generate a zonal pressure gradient ths
ultimately drives a meridional overturning. This indirect forcing of the meridional
circulation by a meridional pressure gradient is less efficient and explains the decrease i
overturning strength of both the TH and SPP modes with increaging

The change of the SPP solution from the nonrotating to the rotating case is showr
through the solutions af; = 0 andn; = 1 in Figure 5. To represent the three-dimensional
flows, the overturning streamfunctions and the velocity fields-at— 125 m are plotted.
The zero-rotation solution (Fig. 5a—b) is the pure SPP solutien=at0.30. The surface
velocity plot shows that it is indeed perfectly two dimensional. The overturning is weak,
and the downwelling takes place in a broad region poleward of 20S. Under intermediate
rotation, the flow becomes more and more zonal and the downwelling region is severely
narrowed. In the full rotating case (Fig. 5¢c—d), a strong zonal flow has developed in the
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18 T : :
16
e NPP/SPP
= 14 ¢
12 L .
TH _,j
P
10 L

0 0.05 0.1 0.15 0.2 0.25 0.3
o .

Figure 6. Bifurcation diagram in the control parametefior the case of full rotation{; = 1) and
parameters similar to those of Figure 2. The PP branches lose their stability at the limit point
but regain stability at,. The limit points close ter = 0.25 reflect minor rearrangements of the
steady state patterns.

southern hemisphere. The main downwelling has been concentrated in a small area in tf
southeastern corner of the model at about 45S. The bifurcation diagram for thg eade
is presented in Figure 6, again usim@s a control parameter. The overturning strength of
the TH solution remains quite constant despite the increase of the freshwater flux
amplitude. The solution in Fig. 5¢c—d is indeed on an SPP branch which arises through «
super-critical pitchfork bifurcationR) at ¢ = 0.19 (not far from that in the two-
dimensional case). At limit poirit,, the PP branches become unstable, but regain stability
through a second limit poirit,. The overturning increases strongly withon this branch.
Although patterns of the steady states change markedly in a rotating basin because of tf
strong zonal flow developing, the qualitative properties of the bifurcation diagram are
robust and in agreement with that of the two-dimensional solutions. There is even a fair
quantitative agreement, once the proper rescaling of the Rayleigh number is made; with th
rescaling as above, the pitchfork bifurcations can be found at approximate vataes of

c. Most unstable mode

From the linear stability analysis, the pattern of the mode destabilizing the TH state at
the symmetry-breaking pitchfork bifurcation is determined from the eigenvedtofA5)
corresponding to the eigenvalde = s; = 0 atP in Figure 6. The steady state Rtis
plotted in Figure 7. In addition to zonally averaged profile3 0§ andp (panels a—c), the
overturning streamfunction (panel d) and the velocity fields at 100 m and 3000 m depth
(panels e and f) are shown. All fields are equatorially symmetric and the density field is
stably stratified except at high latitudes. Note that due to rotation the flow is mainly zonal,
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except in the western boundary layers. The main downwelling is confined to small areas ir
the north- and southeastern corners of the domain. The same fields for the most unstab

eigenvector at the pitchfork bifurcation are shown in Figure 8. Note that, if an
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eigenvector,—x is an eigenvector as well. The eigenvector plotted here will favor a
transition to an SPP state.

Despite the zonal structure that results from the presence of rotation, the zonally
averaged structures of the destabilizing perturbation are strikingly similar to those in purely
two-dimensional models (Dijkstra and Molemaker, 1997) or zonally averaged models
(Vellinga, 1996). Both the salinity and the temperature perturbations have a bi-polar
structure (panels a and b), which is positive on the southern hemisphere, and negative in tt
north. This gives rise to an equatorially antisymmetric density perturbation (panel c). Its
mainly positive sign in the southern hemisphere shows that it is dominated by salinity,
although the thermal perturbation wins at mid-depth between 40S and 40N. This bi-
polarity of the anomalous density field sets up an interhemispheric pressure difference &
depth. This generates deep cross-equatorial flow that is confined to the viscous westel
boundary layer (panel f). A return flow at shallower levels is established for reasons of
continuity (panel e). From this, the perturbation overturning streamfunction can be
understood (panel d). Furthermore, the density at the surface and at depth increase
southward and, through the thermal wind balance, this sets up a zonal flow. In the souther
hemisphere, this flow is eastward at the surface and westward at depth, in the north itis th
other way around (panels e and f).

The overturning perturbation advects heat and salt from (sub)tropical regions south:-
ward, and enhances the thermal and saline anomalies on that hemisphere. When tl
meridional salinity gradient is strong enough, the density anomaly is controlled by salinity,
and the density perturbation, that initially generated the overturning anomaly, is amplified.
The surface salt flux amplitude must, therefore, exceed a critical value for the TH
circulation to become unstable.

d. Robustness: wind stress and convective adjustment

Before we explore the physics of the symmetry-breaking bifurcation in more detail, we
will first have to convince ourselves that the pitchfork bifurcation is a robust feature of the
three-dimensional flow. We have to show that it does not disappear when wind stress i
added, or when convective adjustment is used to obtain stably stratified solutions. The
bifurcation diagram for the model with full wind stress forcing (witfy having the
standard value) is plotted in Figure 9. Comparison with Figure 6 shows that the position of
the limit point L, has hardly changed, but that the limit poini and the pitchfork
bifurcation P have shifted dramatically to larger values ®f Consequently, a large
window has opened where more than two stable equilibria can be found. Beiiegh
ando (P), three stable equilibria coexist, namely the symmetrical TH solution, and the two
pole-to-pole solutions. Between(P) anda(L,) no less than four stable equilibria are
present, the strong pole-to-pole branches of the NPP and SPP solutions, and two weak
varieties. It is clear that the TH circulation is stabilized considerably by the equatorially
symmetric wind stress. This is due to the fact that the wind-induced meridional transports
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Figure 9. Bifurcation diagram for the rotational case with full wind stress. Note the shift of the
pitchfork bifurcationP to larger values ofr, opening a large window where multiple equilibria
exist.

modify the background density structure to such an extent that the destabilizing sal
advection feedback is severely hindered.

The broadening of the region of multiple equilibria is interesting from a paleoclimatic
point of view. It creates possibilities for explaining rapid transitions in the thermohaline
circulation regime by switches between equilibria other than just the SPP and NPP state
alone (e.g. Stocker, 2000). Admittedly, the effect of the wind-driven circulation is taken
into account in a rudimentary way because of the low resolution and high friction used. But
the present result shows that purely three-dimensional features that are not represented
two-dimensional models, may impact considerably on the bifurcation structure.

Since convection, which occurs in the case of an unstable stratification, is not resolvec
by the hydrostatic model, an explicit representation is needed to obtain stably stratifiec
solutions. One way to do this is to increase the vertical mixing coefficients locally when the
density stratification is unstable, i.e.,

ap

whereP? is the background inverse’ €let numberPS is the convective inverse” Blet
number (which is much larger tha®?) and % is a continuous approximation to the
Heaviside function (13) witle,; = 0.1.Unfortunately, the continuation to stably stratified
solutions may be very problematic. Upon increas®jgor the unstably stratified solutions

of, for instance, Figure 6, an endless series of limit points may be encountered that severel
hinders the progression to sufficiently large value®9Hf(cf. Vellinga, 1998). Therefore,

an alternative algorithm was developed to construct a stably stratified solytitiom a
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Figure 10. (a) Zonally averaged density field and (b) overturning streamfunction of a stably stratified
solution, obtained from the steady TH state at the pitchfork bifurc&ionFigure 6.

solutionu of system (A2), the Global Adjustment Procedure (GAP). We must note that the
‘irreversible’ nature of the algorithm makes it impossible to continuate in stably stratified
solutions, hence no bifurcation diagrams of stably stratified solutions can be constructed
The procedure of the GAP is described in Appendix B. The Global Adjustment Procedure
was applied to the TH state at the pitchfork bifurcat®rn Figure 6. In an iteration of

N, = 12 steps, and witP{, = 10° (Table 1) we reached a stably stratified TH solution.
Figure 10a shows that the GAP has indeed removed the static instabilities of the origina
solution (Fig. 7c¢). Moreover, the counter-rotating polar overturning cells in 7d have
disappeared (Fig. 10b). The overturning strength increased considerably, from 10.9 Sv t
17.2 Sv. Computation of the most unstable mode shows that the stably stratified solution i
unstable with respect to an asymmetric perturbation (Fig. 11) with the same bi-polar
structure as in the unstably stratified case (Fig. 8). Comparison of the spatial patterns of th
most unstable eigenvectors shows that the patterns are very much alike, although th
structure at high latitudes is clearly removed by convective mixing. This suggests that the
destabilizing mechanism of symmetry-breaking is presumably not affected by the convec:
tive adjustment procedure. In fact, for the class of stably stratified solutions the symmetry-
breaking pitchfork bifurcation is situated at lower valuesootthan for the unstable
solutions; the real part of the eigenvalgie> 0 for the stably stratified eigenvector at

o = o(P), whereas;, = 0 for its unstably stratified counterpart.

4. Energetics of the instability mechanism

As can be concluded from the results above, the symmetry-breaking pitchfork bifurca-
tion is central to the connection between results of the two- and three-dimensional
solutions. Zonally averaged patterns of the destabilizing perturbations are remarkably
similar, despite the large differences in the local momentum balance. To determine a mor
detailed relation between the instability mechanisms in both cases, an energy analysis |
applied. As in all instabilities, a perturbation exchanges energy with the mean state by
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Figure 11. Most unstable eigenvector corresponding to the stably stratified basic state in Figure 1C

Same fields as in Figure 7.
nonlinear interaction, and the sign of the energy flow determines whether the perturbatior

grows or not.
Let us denote the basic solution by, (T, S) and the destabilizing perturbation at the
pitchforkP as (', T’, S'), withp = A\S— Tandp’ = \S' — T'. Volume integration will

be denoted by brackets, so tljad = [ - dV.We define an energy functional through
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€ =legu'-u) +3RA(P)? (17)

which is the sum of the kinetic energy of the perturbation and the (squared) norm of the
anomalous density field. The latter term resembles the (linearized form of) Available
Potential Energy, as used by Bryan and Lewis (1979). The condition for linear instability
of the basic state is thuké/dt > 0. Since inertia does not play a role in this system where
er = 0, the sources and sinks of kinetic energy instantaneously match, and the
perturbation cannot grow by extracting kinetic energy or momentum from the basic state.
The time-derivative o¥ can be determined using:

o WG0ST) o

where the time-evolution equations for the salinity and temperature anomalies follow from
insertingT + T’ andS + S’ (andu + u’) in Egs. (3e) and (3f). After some manipulations,
and absorbing Rain €, the time-derivative o€ can be shown to satisfy:

de ) 9p"\2
dt = _<P/ul . Vp) + B(p'T'g(Z)) - <PH(VHp,)2> - <Pv(az) > =Pp+ Pg+ Dy + Dy

(19)

According to this expression, the initial growth (or decay) of the anomalous density field

is governed by interaction between the velocity anomaly and the background density
distribution (P,), by interaction with the atmosphereg), and by mixing processes in the
ocean, which are parameterized as diffusidn, (andD,,). The terms in Eq. (19) were
evaluated for the most unstable eigenvectors at the pitchfork bifurceRiomg-igures 2

and 6. The ternf?, was evaluated for the interaction between each particular eigenvector
and the basic states at (= o(P)) and surroundingd = o(P) = Ac) the bifurcation.
Although the most unstable eigenvectbthe pitchfork bifurcation may be suboptimal for

o = o(P) * Ao, the changes in the eigenvector will be small compared to changes in the
basic states, which respond directly to the changed forcing.

Figure 12 shows that the pitchfork bifurcatiolsin Figures 2 and 6 are indeed
associated with zero-crossingsa/dt. The instability appears to be strongly promoted
by the surface boundary conditiorBg: the positive thermal anomaly on the southern
hemisphere (Fig. 8a) enhances the surface heat loss, and amplifies the positive (salinii
dominated) density anomaly (Fig. 8c) on that hemisphere. Note that when restoring
conditions are applied on bothandS (say, with relaxation constai), the termPg in
Eq. (19) becomes B(p’'(AS' — T')g(2)) = —B{((p')?9(2)), which is negative definite.
This analysis thus readily demonstrates why a TH circulation, which is stable under
restoring boundary conditions, may become unstable when a switch to mixed boundan
conditions is made (e.g. Bryan (1986)); the stabilizing influence of restoring conditions on
bothT andS (Pg < 0) at once becomes destabilizing (wRlg > 0) when the restoring
condition onSis removed.
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Figure 12. The terndé/dt and its components (Eq. 19) for the most unstable eigenvector at the

pitchfork bifurcationP and the surrounding basic states; (a) for the rotationless case of Figure 2
and (b) for the rotational case of Figure 6. The plot shows that the pitchfork bifurcations are
associated with zero-crossingsdi¥/dt. Fordé/dt > 0 the most unstable perturbation will grow,
rendering the basic TH state unstable. Note that the contributions of the boundary conditions
Pg ((8): 66, (b): 4.6), horizontal diffusioD,, ((a): —17, (b): —3.7) and vertical diffusio®,, ((a):
—19, (b): —2.0) are relatively large and summed up for convenience. Contrary to the advective
termP,, which also depends on the (changing) background state, these terms only depend on th
specific perturbation and are constant. Note that the plots cannot be compared quantitatively, sinc
the amplitudes of the eigenvectors are undetermined.
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The perturbation is damped by the horizontal and vertical diffusion tebps D,, <
0), which represent turbulent mixing processes in the ocean. However, given the perturbe
tion, Pg, D, andD,, are fixed and cannot be held responsible for the zero-crossing of
d€é/dt at the pitchfork bifurcation. It is up to the interaction between the perturbation
and the (changing) background stratificatié?) to determine whether the perturbation
will grow or not. This background stratification is determined by both the salinity and
temperature fields. The terf, can therefore be split into a saline componé®t, =
—\{p'U’ - VS) and a thermal contributioR} = (p’u’ + VT). Each term furthermore
consists of zonal, meridional and vertical components, giverPi)y = —\Np'Uu'Sy,
Pay= —Mp'V'S), PR, = —\(p'W'S,), etc. Identifying the feedback that is responsible
for the increase i, with o, and thus ultimately for the instability, is not straightforward.
Figure 13a shows the two feedbacks that contributtin the rotationless case (Figs. 2
and 12a). The arrow labeldd, points to the components of the meridional advective
feedback, P, Px,), whose total amplitude is given b§,, = PA, + Px,. This
feedback is negative for heat and positive for salt, since the positive density anomaly in the
southern hemisphere is attenuated by (anomalous) southward advection of heat from tt
tropical regions, whereas it is enhanced by advection of salt from the evaporative
(sub)tropics. The arrow indicated b, indicates the (much weaker) vertical advective
feedback. This feedback is positive for temperature and negative for salt, and it is mainly
generated in the unstably stratified polar regions. Here, cold (fresh) surface water is
advected downward and enhances (attenuates) the positive density anomaly at depth.

Although the sum of the advective feedbacks) is negative in this rotationless case
(see also Fig. 12a), and the perturbation is thus basically damped by the interaction with th
background state (mainly due to the meridional temperature advection feedback), the
strength of this damping is reduced whemcreases from slightly below to slightly above
the pitchfork bifurcation. Figure 13b shows that the tendenck ot the pitchforkP is
indeed positive when is increased. The direction and amplitude of the arrow labilgd
in Figure 13b indicates that the increase in the meridional salt advection feedback is mainly
responsible for the positive tendencyR)y{. The increase in the surface salt flux amplitude
o enhances the meridional salt gradient at the surface, and strengthens the meridional s:
advection feedback. This tendency is weakly counteracted by a decrease in the (positive
vertical advective feedback/()). This decrease reflects the cooling and freshening of the
polar surface waters, resulting from a reduced overturning and an increased freshwate
flux. This energy analysis is consistent with the mechanistic view of earlier work
(Marotzkeet al., 1988; Quon and Ghil, 1992; Vellinga, 1996; Dijkstra and Molemaker,
1997) that the meridional salt advection feedback is the main mechanism responsible fo
the symmetry-breaking bifurcation of the two-dimensional TH state. The situation changes
when rotation is added. Figure 14a shows the interaction terms between the destabilizin
perturbation and the background state at the pitchfork bifurcé&ionFigure 6. Clearly,
the importance of the meridional feedback is strongly reduced with respect to the vertica
feedback, despite the fact that the addition of rotation and the applied rescaliRkg of
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Figure 13. (a) The termB3 andP . that make up the advective feedbdtkand (b) their tendencies
with changingo for the rotationless case. The saline contributions are set out against the thermal
contributions (solid arrows), and a subdivision is made into the meridional and vertical feedbacks
(dashed arrows denoted M, andV,, respectively). The arrows point at the scalar values of the
terms corresponding to the interaction between the basic state and its most unstable eigenvector
the pitchfork bifurcatiorP in Figure 2. The total amplitude of a feedback (or its tendency) is given
by (0/dc)P, = (dldc)PL + (8/dac)PS (NB: this is not proportional to the length of the
corresponding arrow). Points above the line= —x have a positive contribution t@{dc) P4,
whereas points below this line have a negative contribution. For points in the regionsywaere
|x| the thermal contributions dominate, whereas otherwise the saline components are dominant.
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Figure 14. Same as Figure 13 but now for the rotational case, i.e. for the basic state (Fig. 7) anc
destabilizing eigenvector (Fig. 8) at the pitchfork bifurcat®in Figure 6. Rotation breaks the
zonal symmetry of the system and generates zonal structure in the eigenvector and the basic stat:
giving rise to a (weak) zonal advective feedback (denagd The meridional salt advection
feedback ,) is reduced in strength with respect to the vertical advective feedbagk The
destabilizing tendencies of several feedbacks are responsible for the zero-croskindtof
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increased the basic overturning considerably (Fig. 4). However, under influence of rotatior
and the increased overturning, the main downwelling is forced to take place in narrow
boundary layers close to the southern boundary (Figs. 7d—f), rather than in the broac
downwelling areas that characterized the rotationless case (Fig. 3a). This enhances tt
importance of the downwelling in the unstably stratified regions, and strengthens the
vertical advective feedback.

The tendency oP , with increasingr at the pitchfork is positive, as shown in Figure 14b
(and Fig. 12b). However, it is not dominated by an increase in the meridional salt advectior
feedback, as was the case in the rotationless situation (Fig. 13b). Instead, it reflect
destabilizing changes in all but one of the feedbacks; only the vertical salt advection
feedback strengthens its stabilizing influence. Thus, in the rotational case, the changes |
the background state across the pitchfork bifurcation are complex and result in severs
destabilizing changes in the advective feedbacks. There is not one advective mechanis
responsible for generating the instability Rt The dominant role that is played by the
vertical advective feedback when rotation is included is remarkable. It clearly originates in
the unstably stratified polar regions, and it thus may be expected to lose its importanct
when the static instabilities are removed. Therefore, we calculated the same terms as i
Figure 14, but now for the eigenvector corresponding to the stably stratified basic state:
(Fig. 11). Figure 15a shows that the meridional feedback has re-established its role as
dominant feedback mechanism. The vertical feedbacks have strongly decreased in streng
and have reversed their sign. Now the stable (unstable) thermal (saline) stratification in th
extra-polar regions provide for a negative (positive) feedback.

Upon changings, the increase of the meridional salt advection feedback is again to a
large extent responsible for the positive tendencyPgf(Fig. 15b). This feedback has
benefitted from the strengthening of the mean meridional salinity gradient by the enhance
surface salt flux. An increase in the mean meridional temperature gradient is responsibl
for the negative tendency @f,T\,y. Nonetheless, the role of the vertical advective feedback
has not completely vanished. Its stabilizing influence has diminished by a decrease in thi
negative heat advection feedback. Inspection of the thermal fields shows that the increas
in o has increased the temperatures at depth in the extra-polar regions. The resultin
decrease in the background (positive) vertical temperature gradient means a reduction i
the negative feedback.

5. Discussion

The value of two-dimensional or zonally averaged models of the thermohaline circula-
tion has often been questioned. The main concern is the absence (or poor parameterizatic
of Coriolis effects on these flows. Indeedpriori it would seem that by poorly modeling
(or not even representing at all) the dominant geostrophic balance, many correspondenc
of the two-dimensional and three-dimensional flows would disappear. On the other hand
for the double-hemispheric configuration, many results in low-resolution GCMs (Bryan,
1986; Klinger and Marotzke, 1999) are easily interpreted in terms of those of two-
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Figure 15. Same as Figure 14, but now for the associated stably stratified basic state (Fig. 10) an
eigenvector (Fig. 11). Note that the meridional advective feedbacks have re-established thei
dominant role at the expense of the vertical advective feedbacks. Nonetheless, the decrease of t
(negative) vertical heat advection feedback does play a role in destabilizing the basic state.
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dimensional models. In particular, the ‘guessed’ bifurcation diagram in Klinger and
Marotzke (1999) is qualitatively very similar to that in Dijkstra and Molemaker (1997).
Using the present results, a more definite statement can be made on the relation betwet
steady states in two- and three-dimensional models. Note that this correspondence |
restricted to the steady-state structure and not immediately to transient flows; in three
dimensional models, oscillatory instabilities are found (Chen and Ghil, 1995; Te Raa and
Dijkstra, 2001), which have no counterpart in two-dimensional models. Furthermore, other
purely three-dimensional features may influence the bifurcation structure considerably, a
has been shown here for the wind-driven circulation.

Bifurcation studies on two-dimensional equatorially symmetric models, whether in the
rotationless limit (Dijkstra and Molemaker, 1997; Quon and Ghil, 1995; Vellinga, 1996;
Weijer et al., 1999), or in zonally averaged formulation (Stocker and Wright, 1991;
Vellinga, 1996), all show that multiple equilibria arise through a pitchfork bifurcation
located on the TH branch (Dijkstra, 2000). A similar pitchfork bifurcation is found here in
the three-dimensional model, and it turned out to be robust with respect to wind forcing anc
convective adjustment. Whether the pitchfork bifurcation is sub- or super-critical depends
on the model configuration and parameters. In two-dimensional models, both types o
bifurcations are found (Dijkstra and Molemaker, 1997), whereas in the three-dimensional
cases here, only super-critical pitchfork bifurcations are found. In Klinger and Marotzke
(1999), a subcritical pitchfork was suggested, but the bifurcation diagram in Figure 9
shows how one easily can get fooled by only computing stable steady states throug!
transient integration. By following the NPP/SPP branch for smaller valuesafransition
to the TH state will occur below values corresponding fjoFollowing the TH branch with
increasingo then leads to an estimate of the location of the pitchfork bifurcaBon
However, one would be very lucky to find a solution on the stable branch befvaedL ,
and one would tend to conclude (based on the relative locatidn, @éind P) that the
pitchfork is sub-critical, whereas detailed bifurcation analysis shows that it is super-
critical.

Whereas the type of pitchfork bifurcation may be considered a minor issue, the main
point of discussion is: are the physical processes responsible for this symmetry-breakin
the ‘same’ in all these models? In each case, instability sets in when a critical value of the
freshwater flux strengthr is exceeded. This means that amplification of the perturbation
density occurs only when the basic state salinity gradient is sufficiently strong. Moreover,
the zonally averaged patterns of the mode destabilizing the TH state (determined from th
eigenvector at the pitchfork bifurcation) correspond remarkably well. They are character-
ized by antisymmetric temperature and salinity perturbations. The salinity perturbation
dominates the density perturbation, which is equatorially antisymmetric as well.

At this point, differences between rotationless and rotational models arise. In two-
dimensional Boussinesg models such as antisymmetric density perturbation forces a dire
frictional-buoyancy-driven perturbation flow. In the three-dimensional case, it sets up a
mainly zonal perturbation flow; a meridional flow is only generated indirectly through a
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perturbation east-west pressure gradient. The spatial patterns of the perturbation flows tht
obviously differ between rotationless and rotational cases. Also, as the structure of the
basic states is quite different between these models, and the valueé&Pyfdiffer
quantitatively, the importance of the salt advection feedback in each case is not very cleat
it is difficult to assess whether the mechanisms are indeed the ‘same.’

This notion can be made more precise by characterization of the pitchfork bifurcation
through energy analysis, using the norm of the density perturbafforas energy
functional. Indeed, the location of the pitchfork bifurcations in parameter space is in both
two- and three-dimensional cases associated with a zefé/aft. This zero is determined
by the strength of the diffusive damping of the density perturbation, and by possible
amplification mechanisms like energy exchange with the basic skte dr surface
forcing (Pg). The present analysis indicates that the restoring condition on surface
temperature is an important factor destabilizing the TH st&g & 0). It readily
demonstrates why a TH circulation, that is stable under restoring boundary conditions, may
become unstable when a switch to mixed boundary conditions is made (e.g. Bryan (1986))
restoring conditions on botlh and S make the ternPg in Eqg. (19) negative, and thus
strongly stabilize the circulation. Upon switching to mixed boundary conditiis,
becomes positive, and the boundary conditions tend to destabilize the flow.

The most relevant energy-producing terms are associated with spatial correlation:
between the density anomalies that drive the perturbation flow, and those which are
generated by this perturbation flow, via anomalous advection of basic-state temperatur
and salinity. The volume integrated values of these production tétfnandP3z, largely
determine the location of the critical value ®f The results for the two-dimensional case
show that the ternPy ,, associated with the meridional salt advection feedback, is the
dominant destabilizing term. This feedback has been shown to play an important role in the
stably stratified three-dimensional case too. However, its identificatitireaestabilizing
mechanism is not fully justified here; the increase iaffects the basic-state temperature
and salinity fields to such an extent, that other feedbacks display destabilizing tendencies ¢
well.

There are subtleties in the production of energy when an unstable stratification of the
basic state is present. Small regions of unstable stratification in the background flow may
lead to an additional energy production, which in principle destabilizes the symmetric TH
flow. This may explain the result found in Marotzke (1991), that the flows using the
classical adjustment scheme in the MOM model are more unstable than those using
scheme which guarantees stably stratified solutions. However, convective adjustment i
shown here to perform two tasks at the same time: by removing static instabilities these
‘artificial’ energy production terms are reduced to near zero, but by modifying the global
pressure distribution the overturning strength of the basic state increases, enhancing tt
energy production term associated with meridional salt advection. In the model configura-
tion here, the net effect is a more destabilized TH state, but these effects may be quit
model-dependent.
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Although details of the instability mechanism determine the exact location of the
pitchfork bifurcation in parameter space and may be quite model-dependent, the meridi
onal salt advection feedback may be regarded as the destabilizing mechanism that is centi
in two- and three-dimensional models; it is the only feedback that directly depends on the
surface salt flux amplitude. We thus conclude that the physical mechanism of symmetry-
breaking is essentially the same in both two- and three-dimensional models. It indeec
appears that the details of the momentum balances are not central to this symmetry
breaking mechanism as long as there is an overturning response to a meridional densi
gradient.
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APPENDIX

A. Continuation of steady states and their stability
The spatially discretized model equations can be written in the form

du
M at F(u) = L(u) + N(u, u) (A1)
where the vectou contains the unknownsu( v, w, p, T, S) at each grid point and hence
has dimensio = 6 X N X M X L. The operator$! andL are linear andN represents

the nonlinear terms in the equations. Steady state solutions lead to a set of nonlinee
algebraic equations of the form

F(u,p)=0 (A2)

where the parameter dependence of the equations is made explicit throygtiirtensional
vector of parametegsand hencé is a nonlinear mapping frolR%*P — RY. As can be readily

seen from the continuous form of the steady equations, the salinity is determined up to a
additive constant. Moreover, also the pressure is determined up to an additive constant. T
calculate a steady-state solution of the system of equations, the equations are regularized (st
that the Jacobian matrix is nonsingular) by fixing the pressure at a particular point (in our case
the point {\, M, L)). In addition, an integral condition f@&is substituted for the last equation
from the salinity equation, such that salt is conserved exactly within the domain. Since the tota
dimensional salt content VS, whereV is the total volume of the basin, the scaling for
salinity provides the dimensionless form as

f Scosbdhdd dz=0 (A3)

\
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which is a constraint on the deviation of the salinity field from uniform conditions. To
determine branches of steady solutions of the equations (A2, A3) as one of the parameter
sayu, is varied, the pseudo-arclength method (Keller, 1977) is used. The brangkgs (
w(s)) are parameterized by an ‘arclength’ paramstekn additional equation is obtained

by ‘normalizing’ the tangent

Ug(U — Uo)io(pr — o) — As=10 (A4)

where (g, o) is an analytically known starting solution or a previously computed point
on a particular branch ankks is the step-length. To solve the system of equations (A2—A4),
the Newton-Raphson method is used. The linear systems are solved with the BICGSTAE
method using the MRILU preconditioning technique (Dijksttal., 2001).

When a steady state is determined, the linear stability of the solution is considered ant
transitions that mark qualitative changes, such as transitions to multiple equilibria
(pitchfork or saddle node bifurcations) or periodic behavior (Hopf bifurcations), can be
detected. The linear stability analysis amounts to solving a generalized eigenvalue probler
of the form

asix = BRBX (AS)

whered{ is the Jacobian matrix (the derivati¥g) and?% = —M, which are in general
nonsymmetric matrices. 8 is nonsingular, the problem reduces to an ordinary eigenvalue
problem for the matrix3~*s{. Because only real matrices are considered, theredare
eigenvalues which are either real or occur as complex conjugate pairs. Howexels if
singular, the eigenvalue structure may be more complicated; the set of eigenvalues may k
finite, empty or even the whole complex plane (Golub and Van Loan, 1983). In the
particular model herep is a singular diagonal matrix because time derivatives are absent
in the continuity equation and vertical momentum equation. The problem (A5) is solved by
the Jacobi-Davidson QZ-method (JDQZ). With this method, one can compute several, sa
m, eigenvalues and optionally eigenvectors near a specified targéte details of the
method are described elsewhere (Sleijpen and Van der Vorst, 1996) and the implements:
tion of JIDQZ in an earlier version of our continuation code in Van Dorsselaer (1997). For
a # 0, we writes, + is; = B/« for the real and imaginary parts of the eigenvalue.

B. The Global Adjustment Procedure

The Global Adjustment Procedure (GAP) starts off with= u, and a constant field of
vertical diffusivity PL(\, &, 2) = P9, with PJ the standard value of vertical diffusivity as
in Table 1. Within a stef of an iterative loop oveN, steps, a stably stratified solutiot;,
is constructed fronnX, using the convective adjustment procedure of Rahmstorf (1993). A
linear combination is taken:

Gk = (1 - (.Ok)uk + (L)kuls(t k = 1, Na (Bl)
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wherew, increases from zero to unity M, steps (according te, = %(1 — cosmk/Ny)).
The vertical diffusivities are adjusted according to

P{‘,). _ apfoz

k+1 _ pc - = —
Py Py tanh(F Pe op¥loz

(B2)

whereP{, is an upper bound on the vertical diffusivities. In regions that are stabilized by a
pass of the adjustment procedufe> 1. For modest changes in the stratification (e.g.,
when o, is still small), this procedure guarantees that the vertical diffusive fluxes of
buoyancy associated wifif andu® are the same. For large valuedofi.e., in well mixed
areas whermn, — 1), the vertical diffusivity is bounded b¥{. A Newton step is
performed orii¥ to obtain a new estimaig**, which includes an update of the velocity
field. After N, steps, the procedure is repeated with= 1 for k > N, until convergence

is reached. The resulting solutien, is stably stratified, has enhanced diffusivities in the
regions where convection took place, and has a velocity field that is consistent with the
density field.

REFERENCES

Bradley, R. S. 1999. Paleoclimatology: Reconstructing Climates of the Quaternary, Harcourt/
Academic Press, San Diego, CA, 613 pp.

Broecker, W. S., D. M. Peteet and D. Rind. 1985. Does the ocean-atmosphere system have more th:
one stable mode of operation? NatuB#5,21-26.

Bryan, F. O. 1986. High-latitude salinity effects and interhemispheric thermohaline circulations.
Nature,323,301-304.

Bryan, K. and L. J. Lewis. 1979. A water mass model of the world ocean. J. Geophys8&es.,
2503-2517.

Cessi, P. and W. R. Young. 1992. Multiple equilibria in two-dimensional thermohaline circulation. J.
Fluid Mech.,241,291-309.

Chen, F. and M. Ghil. 1995. Interdecadal variability of the thermohaline circulation and high-latitude
surface fluxes. J. Phys. Oceanoge,161-167.

Dijkstra, H. A. 2000. Nonlinear Physical Oceanography, Kluwer Academic Publishers, Dordrecht,
The Netherlands, 456 pp.

Dijkstra, H. A. and M. J. Molemaker. 1997. Symmetry breaking and overturning oscillations in
thermohaline-driven flows. J. Fluid Mecl331,195-232.

Dijkstra, H. A., H. Oksuzoglu, F. W. Wubs and E. F. F. Botta. 2001. A fully implicit model of the
three-dimensional thermohaline ocean circulation. J. Comp. Physics, (submitted).

Golub, G. H. and C. F. Van Loan. 1983. Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, 642 pp.

Haney, R. L. 1971. Surface thermal boundary conditions for ocean circulation models. J. Phys.
Oceanogr.1,241-248.

Keller, H. B. 1977. Numerical solution of bifurcation and nonlinear eigenvalue problems,
Applications of Bifurcation Theory, P. H. Rabinowitz, ed., Academic Press, NY, 359-389.

Killworth, P. D. 1985. A two-level wind and buoyancy driven thermocline model. J. Phys.
Oceanogr.15,1414-1432.

Klinger, B. A. and J. Marotzke. 1999. Behavior of double-hemispheric thermohaline flows in a single
basin. J. Phys. Oceanodg29,382—-399.



2001] Weijer & Dijkstra: Thermohaline ocean circulation 631

Marotzke, J. 1991. Influence of convective adjustment on the stability of the thermohaline circula-
tion. J. Phys. Oceanog®],903-907.

Marotzke, J., P. Welander and J. Willebrand. 1988. Instability and multiple steady states in a
meridional-plane model of thermohaline circulation. Teld/3,162—-172.

Quon, C. and M. Ghil. 1992. Multiple equilibria in thermosolutal convection due to salt-flux
boundary conditions. J. Fluid Mecl245,449—-484.

_1995. Multiple equilibria and stable oscillations in thermosolutal convection at small aspect
ratio. J. Fluid Mech.291,33-56.

Rahmstorf, S. 1993. A fast and complete convection scheme for ocean models. Ocean Mddlel.,
9-11.

Sleijpen, G. L. G. and H. A. Van der Vorst. 1996. A Jacobi-Davidson iteration method for linear
eigenvalue problems. SIAM J. Matrix Anal. Appl7,410-425.

Stocker, T. F. 2000. Past and future reorganizations in the climate system. Quater. Scl9Rev.,
301-319.

Stocker, T. F. and D. G. Wright. 1991. A zonally averaged ocean model for the thermohaline
circulation. II: Interocean circulation in the Pacific—Atlantic Basin System. J. Phys. Oce&iqgr.,
1725-1739.

Stommel, H. 1961. Thermohaline convection with two stable regimes of flow. T2|l244—-230.

Te Raa, L. and H. A. Dijkstra. 2001. Instability of the thermohaline ocean circulation on interdecadal
time scales. J. Phys. Oceanogr. (in press).

Thual, O. and J. C. McWilliams. 1992. The catastrophe structure of thermohaline convection in a
two-dimensional fluid model and a comparison with low-order box models. Geophys. Astrophys.
Fluid Dyn.,64,67-95.

Tziperman, E. 2000. Proximity of the present-day thermohaline circulation to an instability
threshold. J. Phys. Oceano@Q,90-104.

Van Dorsselaer, J. J. 1997. Computing eigenvalues occurring in continuation methods with the
Jacobi-Davidson QZ method. J. Comp. Physi&8,714-733.

Vellinga, M. 1996. Instability of two-dimensional thermohaline circulation. J. Phys. Ocea6égr.,
305-3109.

_1998. Multiple equilibria of the thermohaline circulation as a side effect of convective
adjustment. J. Phys. Oceano@8, 305-319.

Weaver, A. J. and T. M. Hughes. 1996. On the incompatibility of ocean and atmosphere and the nee
for flux adjustments. Climate Dyrl2,141-170.

Weijer, W., W. P. M. De Ruijter, H. A. Dijkstra and P. J. Van Leeuwen. 1999. Impact of interbasin
exchange on Atlantic overturning. J. Phys. Ocean@$,.2266—-2284.

Welander, P. 1986. Thermohaline effects in the ocean circulation and related simple inddsige
Scale Transport Processes in Oceans and Atmosphere, J. Willebrand and D. L. T. Anderson, ed:
D. Reidel, 163-200.

Winton, M. 1996. The role of horizontal boundaries in parameter sensitivity and decadal-scale
variability of coarse-resolution ocean general circulation models. J. Phys. Oced@&@89—

304.

Wright, D. G. and T. F. Stocker. 1991. A zonally averaged model for the thermohaline circulation,

Part I: Model development and flow dynamics. J. Phys. Oceariigi1713-1724.

Receivedb December, 200Qevised:22 May, 2001.



