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Abstract. A framework for a fully implicit solution method is imple-
mented into (1) the High Order Methods Modeling Environment
(HOMME), which is a spectral element dynamical core option in the
Community Atmosphere Model (CAM), and (2) the Parallel Ocean Pro-
gram (POP) model of the global ocean. Both of these models are com-
ponents of the Community Climate System Model (CCSM). HOMME is
a development version of CAM and provides a scalable alternative when
run with an explicit time integrator. However, it suffers the typical time
step size limit to maintain stability. POP uses a time-split semi-implicit
time integrator that allows larger time steps but less accuracy when
used with scale interacting physics. A fully implicit solution framework
allows larger time step sizes and additional climate analysis capability
such as model steady state and spin-up efficiency gains without a loss
in scalability. This framework is implemented into HOMME and POP
using a new Fortran interface to the Trilinos solver library, ForTrilinos,
which leverages several new capabilities in the current Fortran standard
to maximize robustness and speed. The ForTrilinos solution template
was also designed for interchangeability; other solution methods and ca-
pability improvements can be more easily implemented into the models
as they are developed without severely interacting with the code struc-
ture. The utility of this approach is illustrated with a test case for each
of the climate component models.

1 Introduction

Climate simulation will not grow to the ultrascale without new algorithms to
overcome the scalability barriers blocking existing implementations. Until re-
cently, climate simulations concentrated on the question of whether the climate
is changing. The emphasis is now shifting to impact assessments, mitigation and
adaptation strategies, and regional details. Such studies will require significant
increases in spatial resolution and model complexity while maintaining adequate
throughput. The barrier to progress is the resulting decrease in time step without
increasing single-process performance [1].
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To be able to run higher resolution global climate models, several different
approaches have been taken to minimize computation time. For dynamical cores
with good scalability, the whole system is solved explicitly, and increasing pro-
cessor counts are utilized as grids are refined [2]. More commonly, the time
integration of the climate system is integrated semi-implicitly; the relatively
slower physics is solved explicitly with a larger time step size and the faster scale
physics is either subcycled or solved implicitly. Inherent limitations arise with
semi-implicit integration as newly resolvable physics on finer grids is included.

Fully implicit (FI) numerical frameworks provide several potential benefits
to large scale model development [3]. FI methods allow longer time steps or,
conversely, finer resolution at a particular time step. The time step is chosen to
resolve the physical processes of interest, which for climate models ranges from
over a thousand years in the deep ocean to parameterized physics and chemistry
occurring on the order of seconds. Enhanced accuracy is possible because all the
terms in the model equations are solved coherently, and the time discretization
determines the accuracy as the model is refined and time step increased. Also,
the FI framework creates a pathway to determine model sensitivities through
the exploration of parameter space.

Using a solver package that is under active development and maintenance
allows access to a suite of mature solvers and has maximized portability and
performance for large-scale multiphysics applications [4,5]. The recent devel-
opment of ForTrilinos, an interface between the C++ solver code and Fortran
within the Trilinos solver package, allows for a systematic implementation of new
solver and analysis capability with the Fortran-based global climate modeling
community. Climate models are large, complex, multiscale, multi-institutional
efforts that maintain scores of developers working in tandem, so implementing a
tested and benchmarked solver package with seamless interactions between the
climate code is a clear benefit.

Until recently, accessing C++ from Fortran required considerable compiler-
and platform-specific knowledge, including the chosen compilers’ name man-
gling conventions and the hardware representation of each language’s data types.
Achieving portability further required “flattening” interfaces by exporting C++
member functions as external procedures and flattening data structures into one-
dimensional lists, the elements of which had to be chosen from a small set of
types sharing common bit representations in Fortran and C++ [6]. ForTrilinos
capitalizes on recently expanded compiler support for Fortran 2003 [7], which
simplifies the above process and increases its portability. The commonly sup-
ported features include object-orientation, the ability to bind C structs and
function prototypes to their Fortran counterparts, and the ability to declare and
manipulate C types natively in Fortran.

In this brief paper, we will demonstrate the virtually seamless presence of
ForTrilinos with comparable results and scaling in atmospheric (HOMME) and
ocean (POP) component climate models (sections 3 and 4) of the Community
Climate System Model (CCSM) [8].
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2 Interchangeable Solution Framework for a Global
Climate Model

2.1 Nonlinearly Consistent Solution Algorithm

The Jacobian-Free Newton-Krylov (JFNK) fully implicit solver technique is used
to integrate the model equations and illustrate the utility of the ForTrilinos
framework. Future additions to the JFNK algorithm, including a suite of high
performance preconditioners and analysis tools mentioned in section 2.2, as well
as an extension to more realistic climate test cases, are ongoing within ForTrili-
nos. An extensive overview of the JFNK method is provided in Knoll and Keyes
(2004) [9] so only a brief explanation is provided here.

The nonlinear partial differential equation (PDE) set can be written in resid-
ual form as a nonlinear operator, F, on the vector of dependent variables, x,
of the problem to be solved. F(x) is evaluated at a time level and then with
updates for x at some future time, given δx,

xk+1 = xk + δxk, (1)

until the residual decrease has reached a specified tolerance. The nonlinear it-
eration index k of the update is generated by solving a linearized version of
the problem, a first-order Taylor series expansion of F about xk. The resulting
Jacobian vector product is approximated with a finite difference approximation,
rendering the operation “Jacobian-Free”. The linear solution is found with the
Generalized Minimum Residual Method (GMRES). The δx that satisfies the
linear tolerance criterion, which is set constant to ηl = 1×10−6 for this study, is
then sent to equation (1). The parameters used in this application of the JFNK
solver in ForTrilinos are set to maximize efficiency while maintaining accuracy
for the linear test case. The ability of JFNK to provide a scalable, efficient so-
lution within multiscale codes depends on a quality, scalable preconditioner, a
point illustrated in sections 3 and 4 below. To be consistent with the existing ex-
plicit and semi-implicit formulations in the component models, the explicit and
fully implicit JFNK method are discretized in time with a second order method
using leap-frog with an Asselin filter and Crank-Nicolson, respectively.

2.2 The Trilinos Framework of Scalable Solvers

The Trilinos framework of scalable solution algorithms [10] has a large set of
mature solvers under active development, several of which have the potential to
impact climate modeling. In terms of current capabilities, most Trilinos linear
algebra algorithms are based on the “Epetra” data structure for vector and
sparse matrix operations on distributed-memory parallel architectures. Several
iterative linear solver algorithms, such as common variants of GMRES and CG
solvers, can be invoked on Epetra data structures.

Above the linear algebra layer is the embedded analysis tool layer that
includes (1) LOCA, a continuation package for parameter studies and bifurcation
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analysis, (2) a time integration package, and (3) an iterative eigensolver for stabil-
ity analysis. The JFNK algorithm described in section 2.1 has been implemented
through the use of the nonlinear solve package NOX within LOCA. Exchanging
layers to access these capabilities requires only small extensions to the interface
for the nonlinear solver, and all of them make use of the Trilinos linear solvers
underneath as needed.

The implementation of NOX within a climate model component provides not
only an opportunity for improved accuracy and efficiency, but the enabling of
a framework for the use of sophisticated analysis tools, including sensitivity
and stability analysis, continuation and bifurcation studies, and the use of opti-
mization algorithms to calibrate model parameters to data. Further, long term
modeling development could benefit from several ongoing algorithm development
efforts in Trilinos. Development of fast linear algebra kernels for multi-core and
other modern computer architectures and work on new aggregation techniques
for multi-level preconditioners that improve performance for non-symmetric sys-
tems that arise in highly-convective flows is ongoing. Also under development is
a capability for solving for periodic orbits, which includes automatic discretiza-
tion and parallelism over the time domain, which can be used, for example, to
resolve steady annual cycles of ocean models.

2.3 Interfacing a Climate Component Code to Trilinos

Trilinos has been successfully connected with two component climate models.
This process confronts two main hurdles: (1) Trilinos is written in C++, while
climate codes are written in Fortran and (2) the solvers need to control the
application. The first issue further breaks down into two subtopics: the language
differences and the related programming paradigm differences. The component
models employ procedural programming whereas Trilinos uses object-oriented
programming in C++. For present purposes, the intersection between the climate
and solver codes (one procedure call on either side) proved insufficient to justify
simultaneously confronting the language and paradigm disparities. Hence, we
focus on language interoperability and defer the discussion of object-orientation
in Fortran 2003.

A general-purpose driver, doloca, facilitates invocation of the NOX nonlinear
solver within the LOCA package described in section 2.2 in a procedural fashion.
Portability derives from embedding a Fortran 2003 interface block of the form:

interface
subroutine doloca(vector_size,vector,comm, &

vector_container,residual_calculator) &
bind(C,name=’doloca’)
use iso_c_binding, only : c_int,c_double,c_ptr,c_funptr
integer(c_int) :: vector_size,comm
real(c_double), dimension(*) :: vector
type(c_ptr) :: vector_container
type(c_funptr), value :: residual_calculator
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end subroutine
end interface

This interface uses type parameters from the Fortran 2003 intrinsic module
iso_c_binding. These parameters facilitate the use of similarly named C prim-
itive types, including C pointers (c_ptr) and function pointers (c_funptr).
Furthermore, the value attribute enables passing the corresponding argument
by value instead of the Fortran default of passing by reference. Finally, the
bind(C,name=’doloca’) construct binds the Fortran interface body to a corre-
sponding C prototype and preserves case sensitivity on the C side via the name
argument. As of December 2008, the compilers supporting these features include
gfortran, g95 and those from Intel, IBM, Cray, Portland Group, and Pathscale.

The C++ code exports doloca via an extern "C" construct to suppress any
C++-specific name mangling. (The aforementioned bind construct automati-
cally handles any remaining name mangling.) The calling Fortran code encap-
sulates its solution vector and associated arguments needed to pass through the
residual calculator subroutine in a Fortran derived type object. It then passes
the size of the vector and the raw vector as the first and second argument to
doloca respectively; the MPI communicator as the third argument; a C pointer
to the derived type object as the fourth argument; and a C function pointer to
a residual calculation procedure as the fifth argument. Inside doloca, NOX per-
turbs the raw vector and calls the residual calculator, passing it the vector and
the derived type object, which is otherwise treated as a black box on the C++
side. Referencing the residual calculator via a C function pointer decouples the
climate and solver source codes by obviating the need to hardwire the residual
procedure name in the C++ source. Neither side dictates procedure names to
the other, thus easing any later transition to a different solver or application.

The algorithmic issues of interfacing the C++ Trilinos framework and the
Fortran coding are fairly simple. The vector object of the Epetra distributed
parallel data structure can be constructed from an MPI Communicator, an in-
teger length Np of the vector on the current processor, and a double precision
vector. These are all available in the Fortran code. Secondly, iterative implicit
solver algorithms need to be able to call the code which provides the residual
evaluation, F (x), as a stateless subroutine (function call), given a solution vec-
tor. Unlike the implicit version, the explicit code has the evaluation of the PDE,
time integration, and the update of the solution vector to the next time step all
mixed together in the same code.

Presently, the climate codes are rewritten to formulate the residual of the
function evaluation directly in terms of the solution vector and the time deriva-
tive of the solution vector. In POP, which is semi-implicit, this required creating
a right hand side of the governing equations (refer to section 4). Both codes had
their build system adapted to include the Trilinos libraries and compilation of
multiple code languages.
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3 JFNK Integration in HOMME Shallow Water Test
Case

The HOMME atmospheric component model option of the CCSM uses a spec-
tral element spatial discretization scheme, with a full description given elsewhere
[11,12]. The cubed sphere uses a tiled, inscribed cube mapped to the sphere,
which avoids the very disparate horizontal grid sizes near the poles that exist
within a traditional latitude/longitude discretization. Ideally, the spectral ele-
ment discretization on the cubed sphere retains the scalability and geometric
flexibility of finite elements combined with superior accuracy and exponential
convergence within each element, whereby the O(N3) cost associated with the
Legendre transforms is mitigated with the use of a lower order discretization rel-
ative to a full sphere. This balance of accuracy and expense provides a scalable
dynamic core option up to O(100K) processors [2]. The discretization notation
used here follows earlier convention, MxNxN, where M is the total number of
elements on the sphere and N is the polynomial degree.

A suite of tests exist to evaluate the quality of numerical methods within
a global scale atmospheric climate model [13], and the most basic test case
is presented here to illustrate the utility of the ForTrilinos solver framework.
The following linear example, named TC1, demonstrates the ability of HOMME
to solve the shallow water equations with a fixed velocity profile. The test case
specifies an initial cosine bell anomaly and the error is assessed after one rotation
around the globe. In advective and residual form, the height equation is

0 =
∂h

∂t
+ ∇ · (hv); v = {u, v}T , (2)

where h is the depth of the fluid above the topography features in the model and
the two-dimensional velocity field, v, is specified in Williamson et al. (1992) in
equations (75)-(76). Although only h is solved here, the full nonlinear solution
framework outlined in section 2 is fully implemented. The specific parameters
are matched to earlier TC1 runs with HOMME using the fully explicit [11] and
semi-implicit methods [12], whereby the anomaly is advected over the corners
of the cubed sphere edges using a fixed zonal rotation at an angle π/4 from the
Earth’s equatorial axis and the spatial grid is set to 96x16x16, which corresponds
to 24576 grid points and an average resolution of about 167 km (minimum 38 km
and corresponding CFL limit of 36 s).

The net time to solution for a 12 day simulation (throughout, day 1 is not
included) of the explicit and JFNK method with a 30 s time step size on the
Jaguar Cray XT4 on 96 processors is 4 min 53 s and 102 min 49 s with a final
L2 norm of error of 3 and 1.7 × 10−3 respectively. Because the JFNK method
requires multiple function evaluations of the residual at each time step, it is
more expensive than an explicit integration procedure using the same time step
size. However, the time step size using JFNK is not limited by the time scale
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Fig. 1. Strong (a) and weak (b) scaling of TC1 benchmark problem for the explicit
(green dashed line) and implicit (blue solid line) JFNK solution methods. SYPD is the
simulated years per day. For (b), the explicit time step for 96x16x16 matches [12] and
is reduced proportionally with grid refinement to maintain the same level below the
stability limit. The red dashed line represents the simulation time for the normalized
JFNK (see text), respectively. M is the number of elements on the sphere.

of the fastest waves in the system. When run with a 12 minute (720 s) time
step size, the error using JFNK is larger than explicit (8.5× 10−3), however the
JFNK simulation time is significantly reduced to 7 min 1 s. Note that the JFNK
method is currently not preconditioned, which would reduce the simulation time
and number of function evaluations further with no loss in accuracy.

The long term goal is to design a scalable method for finer resolution climate
modeling studies. Figure 1a shows the strong scaling of the ForTrilinos imple-
mentation of JFNK in HOMME in units of simulated years per day (SYPD),
and it is clear the method scales well up to the limits of the decomposition, one
element per processor for a finer 600x16x16 grid (avg. spacing of 66.8 km). At
this resolution and a 720 s time step, the JFNK method takes about the same
time to complete the simulation as the explicit method. Figure 1b displays the
SYPD for range of grids decomposed at 1 element per processor. This is a weak
scaling without an increase in the domain, so a necessary refinement of the grid
requires a smaller time step size for the explicit method and a corresponding
increase in simulation time, or decreased SYPD (green dashed line). Using the
JFNK method, the simulations can be completed using the same time step size
with grid refinement, however they experience the same increase in simulation
time (blue solid line). This is associated with the increased number of linear iter-
ations by the Krylov-based linear solver within the outer nonlinear iteration [14].
To illustrate this effect, the SYPD for each run is normalized to the finest grid
using a ratio of average number of iterations at the current and finest grid. The
weak scaling of the normalized JFNK simulations (red dot-dashed line) is mostly
flat with grid refinement. The action of a preconditioner is to flatten the blue
JFNK line at some level above the dashed red line.
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4 JFNK Integration in POP Channel Test Case

The JFNK implementation within HOMME has also been implemented in the
Parallel Ocean Program (POP), a state-of-the-art Ocean General Circulation
Model that is routinely run on a global domain at 0.1◦ spatial resolution [15],
and is the ocean component of the CCSM. With implicit time stepping being
implemented simultaneously in both the atmosphere and ocean components of
CCSM, we are working towards a coupled system where potential efficiency gains
can be obtained in its two most expensive components. Currently in POP, the
(fast) barotropic mode is split off, and solved implicitly. The remaining baroclinic
system is solved using an explicit leap-frog scheme. Still, increased resolution
puts a severe limit on the time step that can be taken, even when no additional
physical scales are included in the model.
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Fig. 2. Channel transport (in 106 m3 s−1), mean kinetic energy (kgm−1 s−2), and mean
temperature (in 10−3K), for a simulation of the POP model in a reentrant channel
configuration. The JFNK scheme (gray) matches the conventional POP time stepping
scheme (black).

In implementing implicit methods in POP, like HOMME, our main goals were
to invade the core code as little as possible, make it user-friendly, and make it
work for most, if not all, of the available physics options. Our implementation
consisted of 2 major developments. In the first phase, infrastructure was added
to allow for arbitrary time-stepping schemes without mode splitting, like 4th-
order Runge Kutta. This required adding capability to calculate tendencies of
the prognostic variables given a state vector, and to construct appropriate right-
hand side, or F (x), similar to [16]. Some extra routines and runtime switches
were added, but required only minor modifications to the core POP code. The
second phase of the development was specific to implicit stepping. It consisted of
coupling POP to the ForTrilinos framework as outlined in section 2.3 to access
the JFNK solution algorithms in Trilinos.
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To test the implementation of the implicit solver in POP, we used a simple
test case of the reentrant channel with an undersea bump [17]. The model is
forced by a wind stress, as well as a restoring of Sea-Surface Temperature (SST)
to a prescribed profile that changes linearly over the width of the channel. Fig-
ure 2 shows that the JFNK method with Crank-Nicolson implicit time stepping
produces the same solution as with the leap-frog time stepping. Thus using the
Trilinos solver package to integrate implicitly in POP can be achieved with little
change to the underlying climate component models. The JFNK method, like
HOMME, will not outperform the conventional method explicit method in terms
of runtime without preconditioning.

5 Summary

The implementation of the ForTrilinos interface to the Trilinos solver package
allows two Fortran-based climate components of the CCSM to take advantage
of a suite of high fidelity solution methods. ForTrilinos successfully reproduces
solutions to the corresponding test cases without significant alteration of the
code structure or degradation of the scaling behavior. Note also that the JFNK
method is called within the Trilinos LOCA package, so it is now possible to
perform analyses such as parameter continuation on the model with no addi-
tional solver coding or computational expense. Also, because the JFNK method
allows larger time step sizes, refined versions of the grids used for a simple bench-
mark study completes the simulation in the same time as the explicit method.
Weak scaling of HOMME using the JFNK method performs like explicit, with
increased simulation time upon grid refinement, but for different reasons. Unlike
the explicit method, the JFNK method has a way around this issue, which is
to reduce the number of linear iterations using a scalable preconditioner. With
a good preconditioner, previous work has shown minimal growth of linear iter-
ations with problem size [18]. This is the focus of future work using the JFNK
method in component climate models within the CCSM.
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