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Symmetry Breaking with a Slant: Topological Defects after an Inhomogeneous Quench
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We show that in second-order phase transformations that are induced by an inhomogeneous quench
the density of topological defects is drastically suppressed as the velocity with which the quench
propagates falls below a threshold velocity. This threshold is approximately given by the ratio of
the healing length to relaxation time at freeze-out, which is the instant when the critical slowing
down results in a transition from the adiabatic to the impulse behavior of the order parameter.
[S0031-9007(99)09414-4]
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In a uniform cosmological phase transition characterizeqfo(rQ/7-0)1/4. This freeze-out healing length constrains
by an order parameter with a nontrivial homotopy groupthe domain size relevant for defect formation. The corre-
creation of topological defects is virtually inevitable. As sponding relaxation time 5 = (TQ’T())]/Z, and the charac-
pointed out by Kibble [1] some years ago, different do-teristic phase ordering speediis= &/# = vo(70/79)"/*,
mains shall select different low-temperature vacua, leadwhere vy = &,/79. This overdamped LG example can
ing to irreconcilable differences which condense out intobe generalized [3].
topological defects. Thus, special relativity implies disor- Homogeneous quenches are a convenient idealization
der in the context of the big bang, yielding a useful lowerand may be a good approximation in some cases. How-
bound on the initial density of defects. An analogous situ-ever, in reality, the change of thermodynamic parameters is
ation is also encountered in the condensed matter settingnlikely to be ideally uniform. Thus, the mass parameter
[2], suggesting the possibility of experimental investiga-¢(, ), varying in both time and space, must be considered
tion of a cosmological scenario. For this case, however, i defect formation. As a consequence, locations entering
lower bound based on the light-cone causal independenehe broken symmetry phase first could then communicate
is no longer useful. In condensed matter systems (and mogieir choice of the new vacuum as the phase ordered region
likely also in the cosmological second-order phase transispreads in the wake of the phase transition front. When
tions), the initial density of defects has to be computednhomogeneity dominates, symmetry breaking in various,
through arguments which rely on the dynamics of the oreven distant, locations is no longer causally independent.
der parameter [2,3]. The domain where the phase transition occurred first may

The estimate of defect density proposed by one of umpose its choice on the rest of the volume, thus suppress-
relies on the observation that, as a result of critical slowingng or even halting production of topological defects.
down, the state of the system which crosses the critical Experiments carried out iAHe [4,5], where a small
region at a finite pace will inevitably cease to keep upvolume of superfluid is reheated to normal state, and sub-
with the changes of thermodynamic parameters at somgequently rapidly cools to the temperature of the surround-
point sufficiently near the critical temperature [2,3]. In aings, are a good example of an inhomogeneous quench:
homogeneous quench, this will happen everywhere at thghe normal region shrinks from the outside. Yet, topo-
instant when the characteristic tirage, at which changes logical defects are created, thus suggesting that the phases
in the mass term of the effective Landau-Ginzburg (LG)of distinct domains within the reheated region are selected
potential V(¢) = [¢* — 2€(t)¢p?]/8 become faster than independently. Even ifiHe, where the transition can be
the relaxation time, i.es = 7le|™" in the overdamped induced by a change of pressure, it is difficult to rule out
case. Where(r) = t/7o, this leads to a freeze-out time the possibility that a quench may be somewhat nonuni-
7 = (rg79)"/?. Att = —17the order parametes becomes form, thus causing decrease of the density of defects, which
too sluggish to keep up with the evolving shape of thecould explain the recent evidence of nonappearance of
effective potential. An evolution dominated by dynamicsvortices [6].
driven by V(¢) shall resume after the phase transition,  Here we consider two idealized cases of inhomogeneous
which takes place where(r = 0) = 0. The interval quenches: (i) ahock wavén whiche(z, 7) is a propagating
[—17, +7] represents the impulse stage, namely, the periogtep in space and (i) lanear frontin which e(z, 7) linearly
during which the effect ofdV/d¢ is negligible, al- interpolates between the pre- and post-transition values.
though fluctuations and damping continue to matter. AfFor both scenarios, we investigate the threshold velagity
7, & = €(?) = (10/79)"?, which leads to the estimate atwhich the phase ordered region expands behind the
of the corresponding healing (or correlation) lengtk= 0 critical point. This velocity is given by the ratio of the
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healing length to relaxation time set by the dynamics. Inan (2) v < v;: The phase front is slow enough for a half-
inhomogeneous quench, will be—as it was anticipated kink to move in step with the front (¢,x) = H,(x — v1).
early on [2]—of the order ob. The symmetric vacuum decays into one definite nonsym-
In an insightful paper directly stimulated by thide ex-  metric vacuum, the choice is determined by the boundary
periments, Kibble and Volovik have argued that the initialcondition atx — —«. No topological defects are pro-
density of defects should conform with the homogeneousluced in this regime. To make sure that the field cannot
guench estimates of [2,3] when the velocityof the in-  flip, we must check if the stationary solutiéh, (x — vr)
homogeneous quench front exceédon the other hand, is stable against small perturbations.
the initial density of defects should be suppressed /&5 We investigate the stability in the — oo limit when
for the case of a slowly spreading phase transition [7]. Wehe system is overdamped and tiieterm in Eq. (4) can
find thatd indeed plays a crucial role. However, our studybe neglected.H, is most likely to be unstable for =
shows that the suppression is even more dramatic. Whesw'~. We use the ansatz

? > v, essentially no defects appear. $(t,x) = Hy (x — vi1)
Shock wave—To begin with, we consider a decay of a '
false symmetric vacuum to a true symmetry broken phase s nv;x
: : : e ) . + - v - — .
in a one-dimensional dissipativi* model. In dimension- S = viexg It 2 (7)
less units,

The eigenequation turns out to be time independent;

. _ — _ gl
brmb -+ @ —ap)=0, @ =W
€0 ?(v})?* 3 .,

whered (1, x) is a real order parameter aeglis a positive + |5 sgrlx) + T 4 S Hy () ().
constant. We look for a solutiofi(z, x) which interpolates ®8)
betweeng (1, —») = —,/€p and ¢ (¢, +>) = 0. Such a . — , . o
solution cannot be static; it is a stationary half-kink The “potential” in the square brackets is positive definite

» for v; = 3,/€p/2m. This proves the stability off,; at

Jeo (x — vir) sufficiently low noise temperatur
¢(t,x) = _\/6_0(1 T ex AL — (09)2]2 () In the opposite; — 0 limit the half-kink (2) just below
the thresholdvf = 1 becomes a step functioH,:(x —

moving with characteristic velocity vit) = Jeo[—1 + sgn(x — v;1)]/2. The potential on
29-1/2 the right-hand side of Eq. (8) is again positive for any
v = [1 + ( 21 ) } = 3\/6—0. 3) In summary, no topological defects are produced for
! 3/€o0 27 v <wv;. Atv = v}, there is a sudden jump in the den-

, sity of defects left behind the shock wave. Asncreases
Our shock wave quench is a sharp pressure front propgpovey?, the density saturates at a value characteristic for
gating with velocityv. Thatis, an instantaneous uniform quench wéttr, x) = o sgn).
. . B 1., With increasingé, the discontinuity atv = v; will be
b +nd— "+ E[d) — e(t,x)¢]=I(t,x), (4  softened. Fow 3 v?, where the quench is effectively
homogeneous, the density of defects will grow logarithmi-
where cally with ¢ [8].
e(t,x) = eosgn(t — x/v) (5) These expectations are borne out by the numerical study
of kink formation which uses the same code as in Ref. [9].
We illustrate them in Fig. 1 fo = €y = 1. For all but
the highest temperatu = 0.1, there are essentially no
(9, x)0(',x")) = 2n06(t — 1')6(x — x').  (6)  kinks produced in quenches with the velocity of less than
There is a unique vacuump(= 0) to the right of the 0.8, Whichis in good agreement with our analytic estimate

propagating frontx > vt), and the symmetry is broken v! = 0.83. However, for the highest temperature, defectg
(¢ = *./€ ) behind the frontf < vr). appear at a subthreshold velocity. We note that at this

The field in the¢p = 0 vacuum does not respond in- temperature potential barrier separating the two minima of
stantaneously to the passing front. There are two qualitdh® LG potential is comparable with _ _
tively different regimes: Linear front—Let us consider now the linear inhomo-
(1) v > v$: The phase front propagates faster than th&J€neous quench
false vacuum can decay. The half-kink (2) lags behind . ,, 1.3 _
the front (5); a supercooled symmetric phase grows with ¢ + 7¢ = "+ — [¢7 — e(t. )] = 8(1,%),
velocity v — v/. The supercooled phase cannot last for
long; it is unstable, and the nois® makes it decay into {_60’ €UTQ =X — VI,

is the space-time dependent effective mass @fdx) is
a Gaussian white noise of temperatéreith correlations

one of the true vacua. Since the noise does not have ang(t, x) = e —€UTg =x — vl = €uTg, (9)

vTp ?
bias, the decay results in production of kinks. eo,L X — vt = —€uTg.
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T L L— We rescalex = ¢;% and h, = c,h in Eq. (10), then set

L 1 c1 = [2vrp(1 — v?)]3? and ¢; = \Je;/vTy to obtain
the rescaled equation

Li[Rl&) =h" + ph! —%h — h* =0, (11)

with primes now denoting derivatives with respectito
Equation (11) has a single parameter

0.03

0.02 1/3
N _ 21/377U4/3TQ 12)
p (1 — v2)2/3
001 The half-kinkh becomes unstable at a threshpld= p,.

At this critical p,, i has a zero modé#, which satisfies
Lo[8h] (%) = 8h" + p,6h' — x8h — 3h%8h = 0.
(13)

L | e The value ofp, was found in two steps. First, we found
0.5 1 1.5 solutions to Eq. (11) for a range @f with the relaxation

scheme = Li[k]. We applied then the relaxation

FIG. 1. Density of kinksn as a function of velocityv for scheme sh = L2[5~h] to the linear Eq. (13) with the

the shock wave (5) withhp = ¢y = 1 (overdamped system). . ... -, s 0 - .
In this overdamped regime, the predicted threshold velocit))Q't'al condition 5h(z = 0,x) = 1. The field relaxed to

is v* = 0.83. The plots from top to bottom correspond to 0/(f — %,x) = 0 for p < p;, and it blew up without
0 =10"1, 1072 1074 107° 1078, and107°. Atlow 0, we limit for p > p,. Forp = p,, we observed a long lived
get a clear cutoff velocity at ~ 0.8, which is consistent with |ocalized zero mode structure. The threshold estimated in
the prediction. this way isp, = 6.5-6.6.

Defects can be produced for> v,, where

We assume that the linear part efz,x), namely, the — (14 21/2773/27'(13/2 2 1= ﬂ n v
interval —epvtg = x — vt = €uTy, IS much wider ve = pl? T on \m)

than the healing length to the left of the froRgyv 7y > (14)
1/\/€o. If not then the shock limit (5) applies.

In the absence of noise, the propagating linear front is The instability appears because the eigenvalue of the
followed by a stationary half-kinkb (z,x) = h,(x — vt).  |lowest mode of a linearized fluctuation operator aroapd
This half-kink lags a distancéx behind the front. 6x  passes through zero when= v,. The passage is smooth,
can be estimated by similar arguments as those whicho we do not expect any discontinuity in the density of
led to Eq. (3). Atéx behind the frontv = vr the mass defects as a function af. For the same reason, we expect
parameter ig5, = dx/v7g. The replacementy — €5,  the threshold at, to be gradually softened with increasing
in Eq. (3) gives a velocityv,(6x) the half-kink would  noise temperaturé. Forv > v,, the inhomogeneity of
propagate with if it were abx. The velocity increases the quench is irrelevant, and the density of defects can be
with 8x. The half-kink gets stuck at suché&x that this  estimated by scaling argument [2,3] as for a homogeneous
velocity is equal to the actual front velocity v,(6x) = v.  quench with a time scaley.

This takes place atx = 16n*v°74/81(1 — v?)?, which This analysis is confirmed by the numerical study of
grows quickly withv. linear quenches shown in Fig. 2. For the lowest tempera-

Whenv is greater than; in Eq. (3),6x > eyvtp and  tures, there are no kinks formed below the threshold, which
the half-kink does not stay in the linear regime. It enterSor our = 1isv, = 0.77. However, as temperature in-
the e = o area where it moves forward with velocity creases fron# = 107'°to # = 0.1, kinks begin to appear
vy < wv. Like in the shock limit the supercooled phaseat velocities as low as-0.42. This decrease of the thresh-
grows at a constant rate and decays giving rise to kinks. old for kink formation is now more gradual than for the

When v < vy, the half-kink remains confined in the shock wave case of Fig. 1.
linear regime. Even in this case, forgreater than certain Concluding remarks—We found that for both the
thresholdv,, the widthéx of the supercooled phase may shock and the linear inhomogeneous quench, the density
be large enough for this phase to be unstable. A half-kinlof defects is drastically suppressed for quench velocities

h,(x — vt) confined to the linear regime satisfies lower than the characteristic velocity ~ ©. This pre-
1 — 20" () + nok! _ dlctlon was yerlﬂed by numerical S|mulat|ons_ for kmk; in
( v, () + () one dimension. The theory can be generalized to higher
x hy(x) — 1 n(x) =0. (10) dimensions and to complex order parameter in a straight-
2uTg 2 forward manner.
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e ' the wall where the symmetry is broken first. Strings would
grow from some seeds and antistrings from the other. The
growth of individual (anti-)strings would not be perfectly
perpendicular to the front; they would be wandering around
in a chaotic manner. From time to time the growing ends
of a string and an antistring would meet and coalesce to
form a “jumping rope” with its other ends anchored at the
original seeds. For global strings (like vortices‘iHe)
the coalescences are accelerated by a long range mutual
string-antistring attraction. Such a rope would shrink to
the original wall thus disappearing from the bulk. At some
stage all possible coalescences would have already taken
place leaving only a net number of, say, strings, propor-
tional to the square root of the number of seeds. Some of
these survivors would be forced by their mutual repulsion
to terminate on the side walls. Only a fraction of them
L would reach the opposite wall spanning through the bulk

' ’ where they can be unambiguously detected. Their density

_ ) ) _ is likely to be, in any case, orders of magnitude below the
I'.:'G- 2. Density of kinksz as a function of velocity for the  oqimates based on [2,3]. A similar argument applies to
inear inhomogeneous quench (9) witly = 64 and n = 1. . - .
The predicted threshold is, = 0.77. This cutoff is achieved Membranelike solitons in [11]. _
for low 6. The plots from top to bottom correspond to We think that inhomogeneity is a factor which may
6 =10""',10"2,1074, 1075, 1078, and 10719, also need to be taken into account in interpretation of the
recent negativéHe experiment [6].
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