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Symmetry Breaking with a Slant: Topological Defects after an Inhomogeneous Quench
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We show that in second-order phase transformations that are induced by an inhomogeneous quench
the density of topological defects is drastically suppressed as the velocity with which the quench
propagates falls below a threshold velocity. This threshold is approximately given by the ratio of
the healing length to relaxation time at freeze-out, which is the instant when the critical slowing
down results in a transition from the adiabatic to the impulse behavior of the order parameter.
[S0031-9007(99)09414-4]
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In a uniform cosmological phase transition characterize
by an order parameter with a nontrivial homotopy grou
creation of topological defects is virtually inevitable. As
pointed out by Kibble [1] some years ago, different do
mains shall select different low-temperature vacua, lea
ing to irreconcilable differences which condense out in
topological defects. Thus, special relativity implies diso
der in the context of the big bang, yielding a useful lowe
bound on the initial density of defects. An analogous sit
ation is also encountered in the condensed matter sett
[2], suggesting the possibility of experimental investiga
tion of a cosmological scenario. For this case, however
lower bound based on the light-cone causal independe
is no longer useful. In condensed matter systems (and m
likely also in the cosmological second-order phase tran
tions), the initial density of defects has to be compute
through arguments which rely on the dynamics of the o
der parameter [2,3].

The estimate of defect density proposed by one of
relies on the observation that, as a result of critical slowin
down, the state of the system which crosses the critic
region at a finite pace will inevitably cease to keep u
with the changes of thermodynamic parameters at so
point sufficiently near the critical temperature [2,3]. In
homogeneous quench, this will happen everywhere at
instant when the characteristic timeey Ùe, at which changes
in the mass term of the effective Landau-Ginzburg (LG
potentialV sfd ­ ff4 2 2estdf2gy8 become faster than
the relaxation time, i.e.,t ­ t0jej21 in the overdamped
case. Whenestd . tytQ , this leads to a freeze-out time
t̂ . stQt0d1y2. At t ­ 2t̂ the order parameterf becomes
too sluggish to keep up with the evolving shape of th
effective potential. An evolution dominated by dynamic
driven byV sfd shall resumêt after the phase transition,
which takes place whenest ­ 0d ­ 0. The interval
f2t̂, 1t̂g represents the impulse stage, namely, the peri
during which the effect of≠Vy≠f is negligible, al-
though fluctuations and damping continue to matter. A
t̂, ê ; est̂d ­ st0ytQd1y2, which leads to the estimate
of the corresponding healing (or correlation) lengthĵ ­
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j0stQyt0d1y4. This freeze-out healing length constrain
the domain size relevant for defect formation. The corr
sponding relaxation time iŝt ­ stQt0d1y2, and the charac-
teristic phase ordering speed isŷ ­ ĵyt̂ ­ y0st0ytQd1y4,
where y0 ­ j0yt0. This overdamped LG example ca
be generalized [3].

Homogeneous quenches are a convenient idealiza
and may be a good approximation in some cases. Ho
ever, in reality, the change of thermodynamic parameter
unlikely to be ideally uniform. Thus, the mass paramet
est, $rd, varying in both time and space, must be consider
in defect formation. As a consequence, locations enter
the broken symmetry phase first could then communic
their choice of the new vacuum as the phase ordered reg
spreads in the wake of the phase transition front. Wh
inhomogeneity dominates, symmetry breaking in variou
even distant, locations is no longer causally independe
The domain where the phase transition occurred first m
impose its choice on the rest of the volume, thus suppre
ing or even halting production of topological defects.

Experiments carried out in3He [4,5], where a small
volume of superfluid is reheated to normal state, and s
sequently rapidly cools to the temperature of the surroun
ings, are a good example of an inhomogeneous quen
The normal region shrinks from the outside. Yet, top
logical defects are created, thus suggesting that the pha
of distinct domains within the reheated region are selec
independently. Even in4He, where the transition can be
induced by a change of pressure, it is difficult to rule o
the possibility that a quench may be somewhat nonu
form, thus causing decrease of the density of defects, wh
could explain the recent evidence of nonappearance
vortices [6].

Here we consider two idealized cases of inhomogene
quenches: (i) ashock wavein whichest, $rd is a propagating
step in space and (ii) alinear front in whichest, $rd linearly
interpolates between the pre- and post-transition valu
For both scenarios, we investigate the threshold velocityyt

at which the phase ordered region expands behind thee ­
0 critical point. This velocity is given by the ratio of the
© 1999 The American Physical Society 4749
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healing length to relaxation time set by the dynamics. In a
inhomogeneous quench,yt will be—as it was anticipated
early on [2]—of the order of̂y.

In an insightful paper directly stimulated by the3He ex-
periments, Kibble and Volovik have argued that the initia
density of defects should conform with the homogeneo
quench estimates of [2,3] when the velocityy of the in-
homogeneous quench front exceedsŷ; on the other hand,
the initial density of defects should be suppressed asyyŷ

for the case of a slowly spreading phase transition [7]. W
find thatŷ indeed plays a crucial role. However, our stud
shows that the suppression is even more dramatic. Wh
ŷ . y, essentially no defects appear.

Shock wave.—To begin with, we consider a decay of a
false symmetric vacuum to a true symmetry broken pha
in a one-dimensional dissipativef4 model. In dimension-
less units,

f̈ 1 h Ùf 2 f00 1
1
2

sf3 2 e0fd ­ 0 , (1)

wherefst, xd is a real order parameter ande0 is a positive
constant. We look for a solutionfst, xd which interpolates
betweenfst, 2`d ­ 2

p
e0 and fst, 1`d ­ 0. Such a

solution cannot be static; it is a stationary half-kink

fst, xd ­ 2
p

e0

√
1 1 exp

" p
e0 sx 2 ys

t td
2f1 2 sys

t d2g1y2

#!21

(2)

moving with characteristic velocity

ys
t ­

"
1 1

√
2h

3
p

e0

!2#21y2
h!`
ø

3
p

e0

2h
. (3)

Our shock wave quench is a sharp pressure front prop
gating with velocityy. That is,

f̈ 1 h Ùf 2 f00 1
1
2

ff3 2 est, xdfg ­ q st, xd , (4)

where

est, xd ­ e0 sgnst 2 xyyd (5)

is the space-time dependent effective mass andq st, xd is
a Gaussian white noise of temperatureu with correlations

kq st, xdq st0, x0dl ­ 2hudst 2 t0ddsx 2 x0d . (6)

There is a unique vacuum (f ­ 0) to the right of the
propagating front (x . yt), and the symmetry is broken
(f ­ 6

p
e0 ) behind the front (x , yt).

The field in thef ­ 0 vacuum does not respond in-
stantaneously to the passing front. There are two quali
tively different regimes:

(1) y . ys
t : The phase front propagates faster than th

false vacuum can decay. The half-kink (2) lags behin
the front (5); a supercooled symmetric phase grows wi
velocity y 2 ys

t . The supercooled phase cannot last fo
long; it is unstable, and the noiseq makes it decay into
one of the true vacua. Since the noise does not have a
bias, the decay results in production of kinks.
4750
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(2) y , ys
t : The phase front is slow enough for a hal

kink to move in step with the front,fst, xd ­ Hysx 2 ytd.
The symmetric vacuum decays into one definite nonsy
metric vacuum, the choice is determined by the bounda
condition atx ! 2`. No topological defects are pro-
duced in this regime. To make sure that the field cann
flip, we must check if the stationary solutionHysx 2 ytd
is stable against small perturbations.

We investigate the stability in theh ! ` limit when
the system is overdamped and thef̈ term in Eq. (4) can
be neglected.Hy is most likely to be unstable fory ­
ys2

t . We use the ansatz

fst, xd ­ Hy
s
t sx 2 ys

t td

1 fsx 2 ys
t td exp

√
Gt 2

hys
t x

2

!
. (7)

The eigenequation turns out to be time independent;

2Ghfsxd ­ 2f 00sxd

1

"
e0

2
sgnsxd 1

h2sys
t d2

4
1

3
2

H2
y

s
t
sxd

#
fsxd .

(8)

The “potential” in the square brackets is positive defini
for ys

t ­ 3
p

e0y2h. This proves the stability ofHy
s
t at

sufficiently low noise temperatureu.
In the oppositeh ! 0 limit the half-kink (2) just below

the thresholdys
t ø 1 becomes a step functionHy

s
t sx 2

ys
t td ø

p
e0 f21 1 sgnsx 2 ys

t tdgy2. The potential on
the right-hand side of Eq. (8) is again positive for anyx.

In summary, no topological defects are produced f
y , ys

t . At y ­ ys
t , there is a sudden jump in the den

sity of defects left behind the shock wave. Asy increases
aboveys

t , the density saturates at a value characteristic
an instantaneous uniform quench withest, xd ­ e0 sgnstd.
With increasingu, the discontinuity aty ­ ys

t will be
softened. Fory ¿ ys

t , where the quench is effectively
homogeneous, the density of defects will grow logarithm
cally with u [8].

These expectations are borne out by the numerical st
of kink formation which uses the same code as in Ref. [
We illustrate them in Fig. 1 forh ­ e0 ­ 1. For all but
the highest temperatureu ­ 0.1, there are essentially no
kinks produced in quenches with the velocity of less th
0.8, which is in good agreement with our analytic estima
ys

t ­ 0.83. However, for the highest temperature, defec
appear at a subthreshold velocity. We note that at t
temperature potential barrier separating the two minima
the LG potential is comparable withu.

Linear front.—Let us consider now the linear inhomo
geneous quench

f̈ 1 h Ùf 2 f00 1
1
2

ff3 2 est, xdfg ­ q st, xd ,

est, xd ­

8<:
2e0, e0ytQ # x 2 yt ,
yt2x
ytQ

, 2e0ytQ # x 2 yt # e0ytQ ,
e0, x 2 yt # 2e0ytQ .

(9)
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FIG. 1. Density of kinksn as a function of velocityy for
the shock wave (5) withh ­ e0 ­ 1 (overdamped system).
In this overdamped regime, the predicted threshold veloc
is ys

t ­ 0.83. The plots from top to bottom correspond to
u ­ 1021, 1022, 1024, 1026, 1028, and10210. At low u, we
get a clear cutoff velocity aty ø 0.8, which is consistent with
the prediction.

We assume that the linear part ofest, xd, namely, the
interval 2e0ytQ # x 2 yt # e0ytQ , is much wider
than the healing length to the left of the front,2e0ytQ ¿
1y

p
e0. If not then the shock limit (5) applies.

In the absence of noise, the propagating linear front
followed by a stationary half-kinkfst, xd ­ hysx 2 ytd.
This half-kink lags a distancedx behind the front. dx
can be estimated by similar arguments as those wh
led to Eq. (3). Atdx behind the frontx ­ yt the mass
parameter isedx ­ dxyytQ. The replacemente0 ! edx

in Eq. (3) gives a velocityytsdxd the half-kink would
propagate with if it were atdx. The velocity increases
with dx. The half-kink gets stuck at such adx that this
velocity is equal to the actual front velocityy, ytsdxd ­ y.
This takes place atdx ­ 16h4y5tQy81s1 2 y2d2, which
grows quickly withy.

Wheny is greater thanys
t in Eq. (3),dx . e0ytQ and

the half-kink does not stay in the linear regime. It ente
the e ­ e0 area where it moves forward with velocity
ys

t , y. Like in the shock limit the supercooled phas
grows at a constant rate and decays giving rise to kinks

When y , ys
t , the half-kink remains confined in the

linear regime. Even in this case, fory greater than certain
thresholdyt , the widthdx of the supercooled phase ma
be large enough for this phase to be unstable. A half-ki
hysx 2 ytd confined to the linear regime satisfies

s1 2 y2dh00
ysxd 1 hyh0

ysxd 2

x
2ytQ

hysxd 2
1
2

h3
ysxd ­ 0 . (10)
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We rescalex ­ c1x̃ and hy ­ c2h̃ in Eq. (10), then set
c1 ­ f2ytQs1 2 y2dg1y3 and c2 ­

p
c1yytQ to obtain

the rescaled equation

L1fh̃g sx̃d ; h̃00 1 ph̃0 2 x̃h̃ 2 h̃3 ­ 0 , (11)

with primes now denoting derivatives with respect tox̃.
Equation (11) has a single parameter

p ­
21y3hy4y3t

1y3
Q

s1 2 y2d2y3 . (12)

The half-kinkh becomes unstable at a thresholdp ­ pt .
At this critical pt, h̃ has a zero modẽdh, which satisfies

L2fd̃hg sx̃d ; d̃h
00

1 ptd̃h
0

2 x̃d̃h 2 3h̃2d̃h ­ 0 .
(13)

The value ofpt was found in two steps. First, we found
solutions to Eq. (11) for a range ofp with the relaxation

scheme Ù̃h ­ L1fh̃g. We applied then the relaxation

scheme Ù̃
dh ­ L2fd̃hg to the linear Eq. (13) with the

initial condition d̃hst ­ 0, xd ­ 1. The field relaxed to
d̃hst ! `, xd ­ 0 for p , pt , and it blew up without
limit for p . pt . For p ø pt, we observed a long lived
localized zero mode structure. The threshold estimated
this way ispt ­ 6.5 6.6.

Defects can be produced fory . yt, where

yt ­

√
1 1

21y2h3y2t
1y2
Q

p
3y2
t

!21y2
h!`
ø

p
3y4
t

h

√
h

tQ

!1y4

.

(14)

The instability appears because the eigenvalue of
lowest mode of a linearized fluctuation operator aroundhy

passes through zero wheny ­ yt . The passage is smooth
so we do not expect any discontinuity in the density
defects as a function ofy. For the same reason, we expec
the threshold atyt to be gradually softened with increasing
noise temperatureu. For y ¿ yt, the inhomogeneity of
the quench is irrelevant, and the density of defects can
estimated by scaling argument [2,3] as for a homogeneo
quench with a time scaletQ.

This analysis is confirmed by the numerical study o
linear quenches shown in Fig. 2. For the lowest tempe
tures, there are no kinks formed below the threshold, whi
for our h ­ 1 is yt ø 0.77. However, as temperature in-
creases fromu ­ 10210 to u ­ 0.1, kinks begin to appear
at velocities as low as,0.42. This decrease of the thresh
old for kink formation is now more gradual than for the
shock wave case of Fig. 1.

Concluding remarks.—We found that for both the
shock and the linear inhomogeneous quench, the den
of defects is drastically suppressed for quench velocit
lower than the characteristic velocityyt , ŷ. This pre-
diction was verified by numerical simulations for kinks in
one dimension. The theory can be generalized to high
dimensions and to complex order parameter in a straig
forward manner.
4751



VOLUME 82, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 14 JUNE 1999

ld
he

nd
ds
to
e

tual
to
e
ken
r-
of
n

lk
ity
e
to

y
he

.
rt

-

-

a

ous
ra-
FIG. 2. Density of kinksn as a function of velocityy for the
linear inhomogeneous quench (9) withtQ ­ 64 and h ­ 1.
The predicted threshold isyt ­ 0.77. This cutoff is achieved
for low u. The plots from top to bottom correspond t
u ­ 1021, 1022, 1024, 1026, 1028, and10210.

More quantitative understanding of the dependence
the number of defects on the quench velocity requir
further investigation. The non-Hermitian nature of th
operatorL2f· · ·g in Eq. (13) should be carefully taken into
account.

Our prediction that no defects are produced belo
certain threshold is in contrast with Ref. [7], where som
defects are predicted even at very low velocities (but s
Ref. [10] for a different conclusion). Formation of plana
solitons in 3He-A [11], which takes place at velocities
102 103 times lower than the threshold velocity, seem
to confirm the latter theory. Let us, however, make th
following two remarks.

(1) No uniform temperature gradient was deliberate
applied in this experiment although some nonuniformiti
could result in local temperature gradients. There m
have existed such regions of the sample where the grad
was null or negligible. Solitons could be easily created
these areas. This explanation can be verified in the sa
experimental setup; application of a sufficiently stron
uniform temperature gradient across the sample sho
suppress any soliton formation.

(2) Moreover, in three dimensions, the situation
slightly more complicated. Straightforward generaliz
tion of our analysis would rule out formation of zero
dimensional defects, as well as one and especially t
dimensional defects parallel or askew to the direction of t
quench front. However, such extended string and doma
wall-like structures could still “grow” in the direction per-
pendicular to the front (and parallel to the direction of i
propagation), providing that their seeds exist, say, alo
4752
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the wall where the symmetry is broken first. Strings wou
grow from some seeds and antistrings from the other. T
growth of individual (anti-)strings would not be perfectly
perpendicular to the front; they would be wandering arou
in a chaotic manner. From time to time the growing en
of a string and an antistring would meet and coalesce
form a “jumping rope” with its other ends anchored at th
original seeds. For global strings (like vortices in4He)
the coalescences are accelerated by a long range mu
string-antistring attraction. Such a rope would shrink
the original wall thus disappearing from the bulk. At som
stage all possible coalescences would have already ta
place leaving only a net number of, say, strings, propo
tional to the square root of the number of seeds. Some
these survivors would be forced by their mutual repulsio
to terminate on the side walls. Only a fraction of them
would reach the opposite wall spanning through the bu
where they can be unambiguously detected. Their dens
is likely to be, in any case, orders of magnitude below th
estimates based on [2,3]. A similar argument applies
membranelike solitons in [11].

We think that inhomogeneity is a factor which ma
also need to be taken into account in interpretation of t
recent negative4He experiment [6].
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