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Density of Kinks after a Quench: When Symmetry Breaks, How Big are the Pieces?
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Numerical study of order parameter evolution in the course of symmetry breaking transitions with
Landau-Ginzburg–like dynamics shows that the density of topological defects, kinks which form during
the quench, is proportional to the fourth root of its rate. This is a limited (1D) test of the more general
theory of domain-size evolution in the course of symmetry breaking transformations proposed by one
of us. Using these ideas, it is possible to compute the density of topological defects from the quench
time scale and from the equilibrium scaling of the correlation length and relaxation time near the critical
point. [S0031-9007(97)02876-7]
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The dynamics of symmetry breaking phase transitio
has been the focus of attention because of its implicatio
for cosmological scenarios [1–5] and its importance
the context of condensed matter physics [6–11]. T
likely cosmological setting for this process involves
second order phase transformation associated with
nonconserved order parameterw. Initially, the system is
near equilibrium in the symmetric phase withkwl ­ 0.
When the effective potential assumes the “sombrer
shape,w is forced to make a choice of one of man
possible broken symmetry true vacua. As pointed o
by Kibble [3], in the cosmological context, the finitenes
of the speed of light implies that these choices mu
be independent in sufficiently distant regions of spac
Therefore, when the homotopy group, characterizing t
relation between the manifold of broken symmetry vac
and the space in whichw evolves, is nontrivial, locally
independent choices of the new vacuum will lead
topologically stable objects such as monopoles, cosm
strings, or domain walls. The initial density of suc
defects is of great interest and cannot be deduced from
scenario sketched above, except for a much too gener
lower limit which follows from the light-cone causality
alone [12].

As suggested in [1], it is also possible to study “co
mological” mechanisms of defect formation in condens
matter. In this context, the estimate of defect dens
based on speed of light arguments is considerably l
useful than in cosmological situations. Thus, along wi
the proposal for condensed matter tests of defect form
tion in cosmological scenarios, a theory aimed at co
puting the defect density was developed [1,11]. The k
idea is to realize that the order parameter can become
related only through its dynamics. Furthermore, in th
vicinity of the critical temperatureTC, order parameters
exhibit universal behavior characterized by two simultan
ously occurring divergences. That is, when parametriz
in terms of the relative temperaturee ­ sTC 2 TdyTC ,
both the equilibriumhealing length(also known as the
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correlation length),

j ­ j0yjejn , (1)

and thedynamical relaxation time,

t ­ t0yjejm, (2)

will simultaneously diverge atTC (see Fig. 1). Above,j0

and t0 characterize the low temperaturesT ­ 0, e ­ 1d
healing length and relaxation time, respectively.

The healing length and the dynamical relaxation tim
have similar physical significance.j is the distance over
which the order parameter returns to its equilibrium valu

FIG. 1. Characteristic equilibrium correlation (or healing
length and a fit toj ­ j0yjejn for the system under investiga-
tion. The reservoir (noise) temperature here and elsewhere
the paper is kept constant at 0.01 [see Eq. (6)]. The best fitti
yields j0 ­ 1.38 6 0.06, n ­ 0.41 6 0.03 sx2 ­ 1.2d above
TC , and j0 ­ 1.02 6 0.04, n ­ 0.48 6 0.02 sx2 ­ 3.7d
below TC , close to the Landau-Ginzburg exponent ofn ­ 1y2.
© 1997 The American Physical Society 2519
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when perturbed, for instance, by the boundary conditio
j is also the typical scale of the perturbations. That
to the leading order, the correlation function ofperturba-
tions away from equilibrium,dwsx, td ­ wsx, td 2 kwl
(where kwl ­ 0 aboveTC , but in the broken symmetry
state kwl2 . e) behaves askdwsx, td, dwsx 1 D, tdl ,
exps2jDjyjd. Below TC, the spatial order is establishe
on scales much larger thanj; however, the scale over
which the healing occurs, i.e., from the “wounds” inflicte
by topological defect, is characterized byj. Similarly, t

characterizes the time required for the order paramete
relax to its equilibrium value. During the phase trans
tion, in the immediate vicinity of the critical temperature
the motion will often be overdamped (that is, dominate
by the first time derivative of the order parameter) an
t ­ t0yjej.

The estimate of the density of defects put forward
Ref. [1] is based on a linear quench,

e ­ tytQ , (3)

which is expected to be a suitable approximation in t
neighborhood ofTC. In (3), tQ is thequench time scale
andt the time beforest , 0d and afterst . 0d the transi-
tion se ­ 0d. When the critical temperature is crossed
the fixed rate given by Eq. (3), there will come a mome
when the order parameter—because of the critical slow
down implied by Eq. (2)—will simply be unable to adjus
its actual correlation length to the equilibriumj given by
Eq. (1). This will occur when the time remaining until th
transition equals the relevant dynamical relaxation tim
that is, whentst̂d ­ t0ysjt̂jytQdm ­ t̂. This yields a
relative temperaturêe ­ t̂ytQ ­ st0ytQd1ys11md. At this
point, the correlation length ofw will cease to diverge
in accordance with Eq. (1), as the phase transition reg
is traversed. Instead,j will reach a value approximately
given by

ĵ ø j0yjêjn ­ j0stQyt0dnys11md. (4)

Regions more distant than̂j will be forced to select the
new vacuum independently.

The size of independently selected domains of the n
vacuum will be given, to the leading order, byĵ, which
will also determine the typical separation of topologic
defects and, therefore, the initial defect densityn. For
instance, for monopolesn ø 1ys fĵdD, with D the space
dimension andf , O s1d, a factor presumably somewha
larger than unity.f takes into account the possibility tha
the independent choices of the vacuum may be sim
anyway, and that the correlations length will slowly gro
following the instant t̂ due to diffusion, etc.; the key
prediction of the theory of [1] is, in any case, thescaling,
as is usually the case in the critical phenomena.

The aim of the work in this Letter is to test this theor
with a computer experiment. The immediate motivatio
of our research comes from recent superfluid experime
[7,9,10]. These experiments follow the original suggesti
in Ref. [1] and appear to support the estimate of defe
2520
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formation based on̂j. While the quench-generated densi
of vortex lines is somewhat uncertain, it is, nonethele
in accordance with the theory summed up above but
conflict with the ideas based on activation and Ginzbu
temperature [12]. However, these experiments were
least so far, unable to vary the quench timetQ . Thus, it
was not possible to systematically test the key predictio
of Ref. [1], namely, the power law dependence of the s
of the fragments of the broken symmetry vacuum on t
quench ratet21

Q given by Eq. (4), and the complementar
dependence of the initial number of defects.

To investigate this issue, we considered the numeri
evolution of a 1D system for a real fieldw according to
the equation of motion derived from the Landau-Ginzbu
potential V swd ­ sw4 2 2ew2 1 1dy8. The system is
in contact with a thermal reservoir. Thus, it obeys t
Langevin equation,

ẅ 1 h Ùw 2 ≠xxw 1 ≠wV swd ­ q . (5)

The noise termq has correlation properties

kq sx, td, q sx0, t0dl ­ 2hudsx0 2 xddst0 2 td . (6)

In Eq. (6), h is the overall damping constant which als
helps characterize the amplitude of the noise throu
Eq. (5). The parametere measures the distance from
the phase transition and varies according to Eq. (3), t
is, e ­ mins1, tytQd. u describes the temperature o
the reservoir and is set to0.01 throughout this work.
This separate parametrization ofe andu was adopted to
correspond to the situation in the superfluids (especia
3He, because in4He the Landau-Ginzburg theory is
poor approximation). There the symmetry breaking c
be induced by the change of the pressure and occurs
inconsequential adjustments of the absolute tempera
[1,7]. The second order time evolution allows us,
principle, to make contact with cosmology, but, in th
regime considered here, the evolution is dominated by
dissipative termh Ùw. Hence, in effect, we are dealing
with the time dependent Landau-Ginzburg equation.

We investigate the creation of kinks as a function oftQ

by starting at somee , 0 suitably above the transition
and then gradually adjusting the potential in accordan
with Eq. (3). Figure 2 shows a sequence of “snapsho
of w obtained in the course of such a quench. Wh
e , 0, w fluctuates around its expectation valuekwl ­ 0.
The same situation initially persists for slightly positiv
e. However, further belowTC, w settles locally around
one of the two alternatives:kwl ­ 6

p
e. Moreover, local

choices of one of these two alternatives cannot be ea
undone once a certain symmetry breaking is select
unless the kinks are separated by distances no larger
j (see Fig. 2).

To test the predictions of defect density in Ref. [1], w
note again that, for a sizeableh and sufficiently smalle,
the damping termh Ùw in Eq. (5) is bound to dominate
Such overdamped evolution will take place whenev
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FIG. 2. Snapshots ofw during kink formation with a quench
time scale oftQ ­ 64 and damping parameterh ­ 1. The
figures, from top to bottom, correspond tot ­ 280.0, 7.5, 32.5,
45.0, and333.0, respectively.

h2 . jej [13]. In our case,h ­ 1 and jêj ø 1. The
characteristic relaxation time is then given byt ­ hyjej.
Consequently,m ­ 1 in Eq. (2), and

t̂ ­
p

h tQ . (7)

The corresponding value of the relative temperatu
immediately obtainŝe ­ t̂ytQ ­

p
hytQ . Hence

ĵ ­ j0stQyhd1y4, (8)

where we have adoptedn ­ 1y2 in accordance with
the Landau-Ginzburg theory and in agreement with t
critical exponents inferred from the behavior of th
healing length in Fig. 1. Equations (7) and (8) ar
expected to be applicable as long as the conditionh2 .

jej holds atê, which, in turn, implieshytQ . 1.
Figure 3 is the principal result of our paper. It il-

lustrates the density of kinks obtained in a sequence
quenches withh ­ 1 for various tQ values. For each
tQ , the phase transition was simulated 15 times, starti
at e ­ 21 (except for the shortest and longesttQ , which
were initiated ate ­ 210yp

tQ). Our computational do-
main had periodic boundary conditions. Production ru
were carried out with the resolution of 16 384 gridpoint
Convergence was checked by comparing results at diff
ent resolutions. The “physical” size of the computation
ring in the production runs was 2048 units. At this scal
the ring is large enough, so boundary effects are avoide

The number of kinks produced by the quench wa
obtained by counting the number of zeros ofw. Above
and immediately belowTC, there is a significant number
of zeros which have little to do with the kinks (se
Fig. 2). However, as the quench proceeds, the num
re
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FIG. 3. Number of defects as a function of quench time
scale. The plot is obtained attytQ ­ 4 (see Fig. 4). The
straight line is the best fit toN ­ N0t

2a
Q with a ­ 0.28 6 0.02

and N0 ­ 178 6 14 sx2 ­ 1.96d. This exponent compares
favorably with the theoretical prediction of1y4 based on the
theory in Ref. [1].

of zeros quickly evolves towards an “asymptotic” value
(see Fig. 4). This change of the density of zeros and
its eventual stabilization is associated with the obvious
change of the character ofw and with the appearance

FIG. 4. Average number of zeros as a function of time in
units oftQ; from top to bottomtQ ­ 4, 8, . . . , 2048, 4096. The
number of kinks used in Fig. 3 were obtained attytQ , 4,
except in the large, computationally expensive,tQ cases where
an extrapolated value was used.
2521
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of the clearly defined kinks. By then, the number o
kinks is nearly constant in the runs with longtQ, and,
correspondingly, their kink density is low. Even in th
runs with the smallesttQ, there is still a clear break
between the postquench rates of the disappearance
zeros and the long-time, relatively small rate at which th
kinks annihilate.

In the regime investigated here, the theoretical scali
relation for the number density of kinks,n ø shytQd1y4 ø
1yfĵ, appears to be well satisfied, withf , 8. We find
a kink densityn ­ s0.087 6 0.007d t

20.2860.02
Q , when the

kinks are counted at approximately the sametytQ value.
A similar scaling is also obtained for kinks counted at equ
t times after the quench.

We note that there are of course no “true” phas
transitions in 1D [14] and that instead of vortices we a
counting kinks. These and the other differences betwe
our simulations and 3D superfluid experiments imply th
their direct comparison would be dangerous. On the oth
hand, our 1D system exhibits some of the salient sympto
of an almost well-defined phase transition, such as scal
(Fig. 1), formation of large domains with broken symmetr
(Fig. 2), asymptotic number of zeros and an abrupt chan
between the two regimes (Fig. 4). This is a consequen
of the smallness of our thermal reservoir’s temperatu
which, in turn, implies that the fluctuation regionf0 ,

e , eG , suyj0d2y3g is narrow—Ginzburg tempera-
ture eG # 1y20. Scaling in Fig. 1 suggests in fact an
even narrower fluctuation region. In our simulations th
estimates of̂j obtained from Eq. (8) fall within (or, in any
case, close) to the scaling range shown in Fig. 1, whe
the scaling arguments relied upon are valid. Hence, o
reliance on scaling is both justifieda priori and seems
to be borne out by the resulting scaling of the density
kinks with the quench rate, Fig. 3.

In summary, our numerical experiment appears to pr
vide a strong confirmation of the theoretical prediction
given by one of us [1]. As expected, the density of top
logical defects is somewhat less than the inverse ofĵ but
of the right order of magnitude. Most importantly, th
scaling of the kink density withtQ follows closely theo-
retical expectations. These results are also supported
the dependence of the number of kinks on the dampi
parameterh, as well as by the preliminary results of the
computer experiments involving complex order parame
and/or more than 1D space [15].

We thank S. Habib for helpful discussions. This wor
was supported in part by NSF PHY 93-09834, 93-572
to P. L., and NASA HPCC to W. H. Z.
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