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Density of Kinks after a Quench: When Symmetry Breaks, How Big are the Pieces?
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Numerical study of order parameter evolution in the course of symmetry breaking transitions with
Landau-Ginzburg—like dynamics shows that the density of topological defects, kinks which form during
the quench, is proportional to the fourth root of its rate. This is a limited (1D) test of the more general
theory of domain-size evolution in the course of symmetry breaking transformations proposed by one
of us. Using these ideas, it is possible to compute the density of topological defects from the quench
time scale and from the equilibrium scaling of the correlation length and relaxation time near the critical
point. [S0031-9007(97)02876-7]
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The dynamics of symmetry breaking phase transitiongorrelation length,
has been the focus of attention because of its implications £ = &o/lel” 1)
for cosmological scenarios [1-5] and its importance in ’
the context of condensed matter physics [6—11]. The&nd thedynamical relaxation time
likely cosmological setting for this process involves a T = 10/l€|*, 2)

second order phase transformation associated with a_ . i i
nonconserved order parameter Initially, the system is Wil simultaneously diverge afc (see Fig. 1). Abovesy

near equilibrium in the symmetric phase with) = 0.  @nd 7o characterize the low temperatufg = 0,e = 1)

When the effective potential assumes the “sombrero"€@ling length and relaxation time, respectively.
shape, ¢ is forced to make a choice of one of many The healing length and the dynamical relaxation time

possible broken symmetry true vacua. As pointed ouf@ve similar physical significances is the distance over
by Kibble [3], in the cosmological context, the finiteness Which the order parameter returns to its equilibrium value

of the speed of light implies that these choices must
be independent in sufficiently distant regions of space. L L
Therefore, when the homotopy group, characterizing the
relation between the manifold of broken symmetry vacua
and the space in whiclp evolves, is nontrivial, locally
independent choices of the new vacuum will lead to
topologically stable objects such as monopoles, cosmic
strings, or domain walls. The initial density of such
defects is of great interest and cannot be deduced fromthe |
scenario sketched above, except for a much too generous | . |
lower limit which follows from the light-cone causality * | |
alone [12]. 4k T i
As suggested in [1], it is also possible to study “cos- L I 1
mological” mechanisms of defect formation in condensed | | 1
matter. In this context, the estimate of defect density - 1
based on speed of light arguments is considerably less 2} —
useful than in cosmological situations. Thus, along with - 1
the proposal for condensed matter tests of defect forma- 1
tion in cosmological scenarios, a theory aimed at com- 1 1
puting the defect density was developed [1,11]. The key 0 ———{z———{ 65—
idea is to realize that the order parameter can become cor-
related only through its dynamics. Furthermore, in theFIG. 1. Characteristic equilibrium correlation (or healing)
vicinity of the critical temperaturdc, order parameters length and a fit tof = &o/|e|” for the system under investiga-
exhibit universal behavior characterized by two simultanefion: The reservoir (noise) temperature here and elsewhere in
. . . ._ _the paper is kept constant at 0.01 [see Eq. (6)]. The best fitting
pusly occurring dlver_gences. That is, when parametnzegj}'ems £ = 138 + 0.06, v = 041 = 0.03 (y2 = 1.2) above
in terms of the relative temperatukee= (Tc — T)/Tc, 7., and & = 1.02 = 0.04, » = 0.48 = 0.02 (y* = 3.7)
both the equilibriumhealing length(also known as the belowT¢, close to the Landau-Ginzburg exponentrof 1/2.
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when perturbed, for instance, by the boundary conditionormation based od. While the quench-generated density
¢ is also the typical scale of the perturbations. That ispf vortex lines is somewhat uncertain, it is, nonetheless,
to the leading order, the correlation functionpdrturba-  in accordance with the theory summed up above but in
tions away from equilibrium,8¢(x,1) = ¢(x,7) — (¢)  conflict with the ideas based on activation and Ginzburg
(where{¢) = 0 aboveT, but in the broken symmetry temperature [12]. However, these experiments were, at
state (p)? = €) behaves agd¢(x,1),8¢(x + A,1)) ~  least so far, unable to vary the quench timg Thus, it
exp(—|Al/€). Below T¢, the spatial order is established was not possible to systematically test the key predictions
on scales much larger thafi however, the scale over of Ref. [1], namely, the power law dependence of the size
which the healing occurs, i.e., from the “wounds” inflicted of the fragments of the broken symmetry vacuum on the
by topological defect, is characterized by Similarly, 7  quench rateé1 given by Eq. (4), and the complementary
characterizes the time required for the order parameter tdependence of the initial number of defects.
relax to its equilibrium value. During the phase transi- To investigate this issue, we considered the numerical
tion, in the immediate vicinity of the critical temperature, evolution of a 1D system for a real field according to
the motion will often be overdamped (that is, dominatedthe equation of motion derived from the Landau-Ginzburg
by the first time derivative of the order parameter) andpotential V(¢) = (¢* — 2e90? + 1)/8. The system is
T = 70/l€l. in contact with a thermal reservoir. Thus, it obeys the
The estimate of the density of defects put forward inLangevin equation,

Ref. [1] is based on a linear quench, )
$+me = due + 9,V(p) = . (5)

e =1/19, 3)
which is expected to be a suitable approximation in theThe noise termj has correlation properties

neighborhpod offc. In (3), 7o is thequench time scqle (S, 1), ', 1)) = 2m08(x' — x)8(' — 1).  (B)
andt the time beforgr < 0) and after(r > 0) the transi-
tion (e = 0). When the critical temperature is crossed atin Eq. (6), n is the overall damping constant which also
the fixed rate given by Eq. (3), there will come a momenthelps characterize the amplitude of the noise through
when the order parameter—because of the critical slowingq. (5). The parametee measures the distance from
down implied by Eq. (2)—will simply be unable to adjust the phase transition and varies according to Eq. (3), that
its actual correlation length to the equilibriugngiven by  is, e = min(1,7/79). 6 describes the temperature of
Eq. (1). This will occur when the time remaining until the the reservoir and is set t6.01 throughout this work.
transition equals the relevant dynamical relaxation timeThis separate parametrization efand # was adopted to
that is, when7(?) = 7o/(|7|/79)* = 7. This yields a correspond to the situation in the superfluids (especially
relative temperaturé = 7/7, = (70/79)"/0*#). Atthis 3He, because irfHe the Landau-Ginzburg theory is a
point, the correlation length o will cease to diverge poor approximation). There the symmetry breaking can
in accordance with Eqg. (1), as the phase transition regiobe induced by the change of the pressure and occurs with
is traversed. Instead, will reach a value approximately inconsequential adjustments of the absolute temperature
given by [1,7]. The second order time evolution allows us, in
r aly v/(1+ principle, to make contact with cosmology, but, in the
&=~ &flel” = ?O(TQ/TO) . () regime considered here, the evolution is dominated by the
Regions more distant thaf will be forced to select the dissipative termn¢. Hence, in effect, we are dealing
new vacuum independently. with the time dependent Landau-Ginzburg equation.

The size of independently selected domains of the new We investigate the creation of kinks as a functiorrgf
vacuum will be given, to the leading order, By which by starting at some < 0 suitably above the transition,
will also determine the typical separation of topologicaland then gradually adjusting the potential in accordance
defects and, therefore, the initial defect density For  with Eq. (3). Figure 2 shows a sequence of “snapshots”
instance, for monopoles = 1/( f€)P, with D the space of ¢ obtained in the course of such a quench. When
dimension ang® ~ O(1), a factor presumably somewhat € < 0, ¢ fluctuates around its expectation valye = 0.
larger than unity. f takes into account the possibility that The same situation initially persists for slightly positive
the independent choices of the vacuum may be similae. However, further belowl¢, ¢ settles locally around
anyway, and that the correlations length will slowly grow one of the two alternative$y) = *./e. Moreover, local
following the instant? due to diffusion, etc.; the key choices of one of these two alternatives cannot be easily
prediction of the theory of [1] is, in any case, thealing  undone once a certain symmetry breaking is selected,
as is usually the case in the critical phenomena. unless the kinks are separated by distances no larger than

The aim of the work in this Letter is to test this theory ¢ (see Fig. 2).
with a computer experiment. The immediate motivation To test the predictions of defect density in Ref. [1], we
of our research comes from recent superfluid experimentsote again that, for a sizeablg and sufficiently smalk,
[7,9,10]. These experiments follow the original suggestiorthe damping termn¢ in Eq. (5) is bound to dominate.
in Ref. [1] and appear to support the estimate of defecBuch overdamped evolution will take place whenever
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FIG. 2. Snapshots op during kink formation with a quench FIG. 3. Number of defects as a function of quench time
time scale ofry = 64 and damping parametej = 1. The  scale. The plot is obtained ayr, = 4 (see Fig. 4). The
figures, from top to bottom, correspondrte= —80.0, 7.5, 32.5, straight line is the best fit t = Ny7,“ with a = 0.28 + 0.02
45.0, and333.0, respectively. and Ny = 178 = 14 (x*> = 1.96). This exponent compares
favorably with the theoretical prediction df/4 based on the
theory in Ref. [1].

—

n> > |e| [13]. In our case,;y = 1 and |é] < 1. The

characteristic relaxation time is then given by= n/lel. of zeros quickly evolves towards an “asymptotic” value
Consequentlyu = 1in Eq. (2), and (see Fig. 4). This change of the density of zeros and
t=m1g. (7) its eventual stabilization is associated with the obvious

The corresponding value of the relative temperaturéhange of the character @f and with the appearance
immediately obtaing = 7/7o = «/n/7o. Hence

£ = olro/m)'", ® T T T T T T ]

where we have adopte@d = 1/2 in accordance with

the Landau-Ginzburg theory and in agreement with the
critical exponents inferred from the behavior of the
healing length in Fig. 1. Equations (7) and (8) are 1°°
expected to be applicable as long as the conditdr>
le| holds até, which, in turn, impliesp /7o > 1.

Figure 3 is the principal result of our paper. It il-
lustrates the density of kinks obtained in a sequence of;
quenches withp = 1 for various 7o values. For each |
7o, the phase transition was simulated 15 times, starting®
ate = —1 (except for the shortest and longegt, which
were initiated a& = —10/,/7p). Our computational do-
main had periodic boundary conditions. Production runs
were carried out with the resolution of 16 384 gridpoints.
Convergence was checked by comparing results at differ-
ent resolutions. The “physical” size of the computational
ring in the production runs was 2048 units. At this scale, 1ob———— : L — —
the ring is large enough, so boundary effects are avoided. t/7q

The number of kinks produced by the quench was ) o
obtained by counting the number of zeros¢f Above FIG. 4. Average number of zeros as a function of time in

. . : N units of 7¢; from top to bottomry, = 4,8, ...,2048,4096. The
and immediately below'c, there is a significant number [ \ver of kinks used in Fig. 3 were obtained rdty ~ 4,

of zeros which have little to do with the kinks (see except in the large, computationally expensivg,cases where
Fig. 2). However, as the quench proceeds, the numbemn extrapolated value was used.
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of the clearly defined kinks. By then, the number of [1] W.H. Zurek, Nature (London)317, 505 (1985); Acta
kinks is nearly constant in the runs with long, and, Phys. Pol. B24, 1301 (1993); see also, Los Alamos Report
correspondingly, their kink density is low. Even in the No. LAUR 84-3818, 1984 (unpublished).

runs with the smallesty, there is still a clear break [2] Ya.B. Zeldovich, |.Yu. Kobzarev, and L.B. Okun, Zh.
between the postquench rates of the disappearance of EKSP. Teor. Fiz.67, 3 (1974) [Sov. Phys. JETRO, 1

1 ; - (1975)].
iﬁ:ﬁ:::ﬂgﬁ:téong time, relatively small rate at which the . Ty "8" ihie 3 phys. %0, 1387 (1976): Phys. Rep?,

e . . . 183 (1980).

In the regime investigated here, the theoretical scallng[4] A. Vilenkin and E.P.S. ShellardCosmic Strings and
relation for the number densny Qf kml@,z (77/7'Q)1/4_z Other Topological Defect§Cambridge University Press,
1/f &, appears to be well satisfied, with~ 8. We find Cambridge, England, 1994).

a kink densityn = (0.087 = 0.007) 7_50.28t0.02, when the [5] Formation and Interactions of Topological Defectslited
kinks are counted at approximately the saryie, value. by A.C. Davis and R.N. Brandenberger (Plenum, New
A similar scaling is also obtained for kinks counted atequal ~ York, 1995).

¢ times after the quench. [6] I. Chuang, R. Dirrer, N. Turok, and B. Yurke, Science

251, 1336 (1991); M. J. Bowick, L. Chandar, E. A. Schiff,

We note that there are of course no “true” phase ; ,
and A. M. Srivastava, Scien@63 943 (1994).

transitions in 1D [14] and that instead of vortices we are
counting kinks. These and the other differences betweenm E/l'fdin?oi?(drgh d'\(l:?_' DLaQ'VVﬁlci) Qr}]sRNQiné (tgﬁﬁ ogfli\él E.
our simulations and 3D superfluid experiments imply that ~ 31¢ (1994)f T '

their direct comparison would be dangerous. On the otherig] a_ . Bray, Adv. Phys43, 357 (1994).

hand, our 1D system exhibits some of the salient symptomgg] v. M. H. Ruutu, V.B. Eltsov, A.J. Gill, T.W.B. Kibble,
of an almost well-defined phase transition, such as scaling M. Krusius, Y. G. Makhlin, B. Placais, G. E. Volovik, and
(Fig. 1), formation of large domains with broken symmetry Wen Xu, Nature (London382 334 (1996).

(Fig. 2), asymptotic number of zeros and an abrupt changg0] C. Bauerle, Yu. M. Bunkov, S. N. Fischer, H. Godfrin, and
between the two regimes (Fig. 4). This is a consequence G.R. Pickett, Nature (Londor§82 332 (1996).

of the smallness of our thermal reservoir's temperaturell1l W.H. Zurek, Phys. Ref276, 177 (1996). .
which, in turn, implies that the fluctuation regidf < 12] Kibble has also suggested [3] that thermal activation

€< ex ~ (0/50)2/3] is narrow—Ginzburg tempera- in the correlation-sized volumes, which is thought to

ture eq = 1/20. Scaling in Fig. 1 suggests in fact an occur below 7. but above the Ginzburg temperature

f . . | imulati h T, will play a crucial role in determining the density
even narrower fluctuation region. In our simulations the of the defects. This would lead to the separation of

estimates of obtained from Eq. (8) fall within (or, in any defects of the order of the correlation length Bf.
case, C|QS€‘) to the scallng range shown in Fig. 1, where  Much of the past cosmological literature was based on
the scaling arguments relied upon are valid. Hence, our  this assumption, which differs from the nonequilibrium

reliance on scaling is both justified priori and seems paradigm of Ref. [1]. It now appears that, at least in the
to be borne out by the resulting scaling of the density of  cases investigated to date, the association betweefisthe
kinks with the quench rate, Fig. 3. and the density of defects has not only been ruled out

In summary, our numerical experiment appears to pro- Py superfluid experiments [7,9,10] but also—as we show
vide a strong confirmation of the theoretical predictions Il? tgfmzigg[_simﬁla?iléi?a;xg ict)fiSRi];rEii]StleSntSL\J/?i?ﬁs:ﬁg
given by one Of us [1]. As expected, the c_lensnonf topo- eiperimental data. See also A.J. Gilland T.W. B. Kibble
logical defects is somewhat less than the inversg bt J. Phys. A29 4289 (1996) for related discussion. '
of the right order of magnitude. Most importantly, the [13] | e |

) ) . X N. Antunes and L. Bettencourt, Report No. hep-
scaling of the kink density witlr, follows closely theo- ph/9605277 (to be published).

retical expectations. These results are also supported hpys] see, e.g., N. Goldenfeld,ectures on Phase Transitions
the dependence of the number of kinks on the damping  and the Renormalization Grou@Addison Wesley, Read-

parametem, as well as by the preliminary results of the ing, Massachusetts, 1992). In 1D, symmetry breaking can
computer experiments involving complex order parameter ~ occur in large domains which suffices for our purposes.
and/or more than 1D space [15]. See also chapter 7 of M. Tinkharmtroduction to Super-
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