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I show how probabilities arise in quantum physics by exploring the implications ofenvironment-assisted
invarianceor envariance, a recently discovered symmetry exhibited by entangled quantum systems. Envari-
ance of perfectly entangled “Bell-like” states can be used to rigorously justify complete ignorance of the
observer about the outcome of any measurement on either of the members of the entangled pair. For more
general states, envariance leads to Born’s rulepk~ ucku2 for the outcomes associated with Schmidt states. The
probabilities derived in this manner are an objective reflection of the underlying state of the system—they
represent experimentally verifiable symmetries, and not just a subjective “state of knowledge” of the observer.
This envariance-based approach is compared with and found to be superior to prequantum definitions of
probability including thestandard definitionbased on the “principle of indifference” due to Laplace and the
relative frequency approachadvocated by von Mises. Implications of envariance for the interpretation of
quantum theory go beyond the derivation of Born’s rule: Envariance is enough to establish the dynamical
independence of preferred branches of the evolving state vector of the composite system and, thus, to arrive at
the environment-induced superselection (einselection) of pointer states, which was usually derived by an
appeal to decoherence. The envariant origin of Born’s rule for probabilities sheds light on the relation between
ignorancesand, hence, informationd and the nature of quantum states.
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I. INTRODUCTION

The aim of this paper is to derive Born’s rulef1g and to
identify and analyze the origins of probability and random-
ness in physics. The key idea we shall employ is
environment-assisted invariancesor envarianced f2–4g, a re-
cently discovered quantum symmetry of entangled systems.
Envariance allows one to use puritysperfect knowledged of a
joint state of an entangled pair to characterize unknown
states of either of its components and to quantify missing
information about either member of the pair.

The setting of our discussion is essentially the same as in
the study of decoherence and einselectionf3,5–9g. However,
the tools we shall employ differ. Thus, as in decoherence, the
system of interestS is “open” and can be entangled with its
environmentE. We shall, however, refrain from using the
“trace” and “reduced density matrix.” Their physical signifi-
cance is based on Born’s rulef10,11g. Therefore, to avoid
circularity, we shall focus on pure global quantum states
which yield—as a consequence of envariance—mixed states
of their components. Successful derivation of Born’s rule
will in turn justify the usual interpretation of these formal
tools while shedding light on the foundations of quantum
theory and its relation to information.

The nature of “missing information” and the origin of
probabilities in quantum physics are two related themes,
closely tied to its interpretation. We will be therefore forced
to examine, in light of envariance, the structure of the whole
interpretational edifice. These fragments which depend on
decoherence and einselection will have to be rebuilt without
the standard tools such as trace and reduced density matrices.
Once Born’s rule is “off limits,” the problem becomes not
just to derive probabilities and, thus, to crown the already
largely finished structure withpk= ucku2 as a final touch.
Rather, the task is to deconstruct the interpretational edifice

standing on an incomplete, shaky foundation, and to rebuild
it using these elements of the old plan that are still viable, but
on a new, solid, and deep foundation and, to a large extent,
from new, more basic building blocks. We start in the next
section with the proof that leads from envariance to Born’s
rule. This will provide an overview of key ideas and their
implications.

The original presentations of envariancef2–4g as well as
most of this paper assume that quantum theory is universally
valid. They rely only on unitary quantum evolutions and thus
can be sas is decoherenced conveniently explored in the
relative-state frameworkf12g salthough their results are in-
dependent of interpretationd. One may equally well—as was
emphasized by Barnumf13g—analyze envariance in a
“Copenhagen setting” that includes the collapse postulate.
Section II bypasses the discussion of quantum measurements
and is in that sense the most explicitly interpretation-neutral
study of the consequences of envariance.

The goal of this paper is to understand the nature of prob-
abilities and to derive Born’s rule in bare quantum theory.
Thus, only unitary evolutions are allowed. The effective col-
lapsesusually modeled with the help decoherence, which is
in effect off limits hered is all one can hope for. The ground
for the solution of the problem of the emergence of prob-
abilities in this setting is explored and prepared in Sec. III.
We start by comparing the envariant definition of probability
with the approaches used in classical physics and go on to
examine quantum measurements. “Symptoms of the classi-
cal” ssuch as the preferred basisd that are taken for granted in
justifying the need for probabilities and are usually derived
with the help of the trace operation and reduced density ma-
trices are pointed out. As these tools depend on Born’s rule,
their physical implications such as decoherence and einselec-
tion have to be reexamined and often rederived if we are to
avoid circularity, and we set the stage for this in Sec. III.
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Preferred pointer states are such a necessary precondition
for the emergence of the classical. Pointer states define what
information is missing—what are the potential measurement
outcomes, providing a “menu” of the alternative future
events the observer may be ignorant of. Hence, they are in-
dispensable in defining probabilities. Pointer states are re-
covered in Sec. IV without decoherence—without relying on
tools that implicitly invoke Born’s rule: We show how
environment-induced superselection can be understood
through direct appeal to the nature of the quantum correla-
tions and, in particular, to envariance. This pivotal result—in
a sense “einselection without decoherence”—allows us to
avoid any circularity in the discussion. It is based on an
analysis of correlations between the system and apparatus
pointer sor the memory of the observerd in the presence of
the environment. It allows one to define future events—
“buds” of the dynamically independent branches that can be
assigned probabilities.

Section V discusses probabilities from the “personal point
of view” of an observer described by quantum theory. Prob-
abilities arise when the outcome of a measurement that is
about to be performed cannot be predicted with certainty
from the available data, even though the observer knows all
that can be known—the initial pure state of the system.

The relative frequencies of outcomes are considered in the
light of envariance in Sec. VI, shedding light on the connec-
tion between envariance and the statistical implications of
quantum states.

In the course of the analysis we shall discover that none
of the standard classical approaches to probability apply di-
rectly in quantum theory. In a sense, the common statement
of the goal—“recovering classical probabilities in the quan-
tum setting”—may have been the key obstacle in making
progress because it was not ambitious enough. To be sure, it
was understood long ago that none of the traditional ap-
proaches to the definition of probability in the classical world
were all that convincing: They were either too subjective
srelying on the analysis of the observer’s “state of mind,” his
lack of knowledge about the actual stated or too artificial
srequiring infinite ensemblesd.

Complementarity of quantum theory provides the “miss-
ing ingredient” that allows us to define probabilities using
objective propertiesof entangled quantum states: The ob-
server can know completely a global pure state of a compos-
ite system. That global state will have objective symmetries:
They can be experimentally verified and confirmed using
transformations and measurements that yield outcomes with
certaintysand, hence, that do not involve Born’s ruled. These
objective properties of the global state imply—as we shall
see—probabilities for the states of local subsystems. Perfect
information about the whole can be thus used to demonstrate
and quantify ignorance about a part. Circularity of classical
approaches which assume ignorance—e.g., “equal
likelihood”—to establish ignorance and to define probabili-
ties is avoided: Probabilities enter as an objective property of
a state. They reflect perfect knowledgesrather than igno-
ranced of the observer. These and other interpretational issues
are discussed in Sec. VII.

This paper can be read either in the order of presentation
or “like an onion,” starting from the outer layerssSecs. II and
VII, followed by Secs. III and IV, etc.d.

II. PROBABILITIES FROM ENVARIANCE

To derive Born’s rule we recognize that;
sod the Universe consists of systems;
sid a completely knownspured state of systemS can be

represented by a normalized vector in its Hilbert spaceHS;
sii d a composite pure state of several systems is a vector

in the tensor product of the constituent Hilbert spaces;
siii d states evolve in accordance with the Schrödinger

equationi"uċl=Hucl whereH is Hermitian.
In other words, we start with the usual assumptions of the

“no-collapse” part of quantum mechanics. We have listed
them here in a somewhat more “fine-grained” manner than it
is often seen—e.g., in Ref.f3g.

A. Environment-assisted invariance

Envariance is a symmetry of composite quantum states:
When a stateucSEl of a pair of systemsS,E can be trans-
formed byUS=uS ^ 1E acting solely onS,

USucSEl = suS ^ 1EducSEl = uhSEl, s1ad

but the effect ofUS can be undone by acting solely onE with
an appropriately chosenUE=1S ^ uE:

UEuhSEl = s1S ^ uEduhSEl = ucSEl; s1bd

then, ucSEl is called envariant underUS.
In contrast to the usual symmetriesswhich describe situ-

ations when the action of some transformation has no effect
on some objectd envariance is anassisted symmetry:The
global state is transformed byUS, but can be restored by
acting onE, some other subsystem of the Universe, physi-
cally distinctse.g., spatially separatedd from S. We shall call
the part of the global state that can be acted upon to affect
such a restoration of the preexisting global statethe environ-
mentE. Hence, theenvironment-assisted invarianceor, for
brevity, envariance. We shall soon see that there may be
more than one such subsystem. In that case we shall useE to
designate their union. Moreover, on occasion we shall con-
sider manipulating or measuringE. So the oft-repeatedsand
largely unjustified; see Refs.f3,4,8,14,15gd phrase “inacces-
sible environment” should not be taken for granted here.

Envariance of pure states is a purely quantum symmetry:
The classical state of a composite system is given by the
Cartesiansrather than tensord product of its constituents. So
to completely know the state of a composite classical system
one must know the state of each of its parts. It follows that
when one part of a classical composite system is affected by
the analogue ofUS, the “damage” cannot be undone—the
state of the whole cannot be restored—by acting on some
other part of the whole. Hence, pure classical states are never
envariant.

Another way of stating this conclusion is to note that
states of classical objects are “absolute,” while in quantum
theory there are situations—entanglement—in which states
are relative. That is, in classical physics one would need to
“adjust” the remainder of the Universe to exhibit envariance,
while in quantum physics it suffices to act on systems
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entangled with the system of interest. For instance, in a hy-
pothetical classical universe containing two and only two
objects, a boost applied to either object could be countered
by simultaneously applying the same boost to the other: The
only motion in such a two-object universe is relative. There-
fore, simultaneous boosts would make the new state of that
hypothetical universe indistingushable fromsand, hence,
identical tod the initial preboost state. This will not work in
our Universe, as the center of mass of the two boosted ob-
jects will be now moving with respect to the rest of its matter
content.sThat is, unless we make the second object the rest
of our Universe: this thought experiment brings to mind the
famous “Newton’s bucket”—i.e., Newton’s suspicion that
the meniscus formed by water rotating in a bucket would
disappear if the rest of the Universe was forced to corotate.d

To give an example of envariance, consider Schmidt de-
composition ofcSE:

ucSEl = o
k=1

N

akusklu«kl. s2d

Above, by definition of Schmidt decomposition,husklj and
hu«klj are orthonormal andak are complex. Any pure bipartite
state can be written this way. A whole class of envariant
transformations can be identified for such pure entangled
quantum states.

Lemma 1. Any unitary transformation with Schmidt
eigenstateshusklj,

uS = o
k=1

N

expsifkdusklksku, s3ad

is envariant.
Proof. Indeed, any unitary with Schmidt eigenstates can

be undone by a “countertransformation.”

uE = o
k=1

N

exps− ifk + 2plkdu«klk«ku, s3bd

wherelk are arbitrary integers. Q.E.D.
Remark. The environment used to undouS need not be

uniquely defined: For example,uS acting on a GHZ-like
state,

ucSEE8l = o
k=1

N

akusklu«klu«k8l, s4ad

can be envariantly undone by acting either onE or on E8 or
by acting on both parts of the joint environment.

It is perhaps useful to point out that one can usecSEE8 to
obtain reduced density matrix

rSE = o
k

uaku2usklksku ^ u«klk«ku. s4bd

This means that even when the correlated state ofS andE is
mixed and of this form, one can in principle imagine that
there is an underlying pure state. States of the above form
can arise in measurements or as a consequence of decoher-
ence. The discussion of envariance can be thus rephrased in
terms of pure states in all cases of interest. The assumption

of a suitable pure global state entails no loss of generality.
At first sight, envariance may not seem to be all that sig-

nificant, since it is possible to show that it can affect only
phases.

Lemma 2. All envariant unitary transformations have
eigenstates that coincide with the Schmidt expansion of
ucSEl—i.e., have the form of Eq.s3ad.

Proof is by contradiction. Suppose there is an envariant
unitary ũS that cannot be made codiagonal with the Schmidt
basis ofcSE, Eq. s2d. It will then inevitably transform the
Schmidt states ofS:

ũS ^ 1EucSEl = o
k=1

N

aksũSuskldu«kl = o
k=1

N

akus̃klu«kl = uh̃SEl.

If ũS is envariant, there must beũE such that

1E ^ ũEuh̃SEl = o
k=1

N

akusklu«kl = ucSEl.

But unitary transformations acting exclusively onHE cannot
change states inHS. So the new set of Schmidt statesus̃kl of
h̃SE cannot be undones“rotated back”d to uskl by any ũE. It
follows that—when Schmidt states are uniquely defined—
there can be no envariant unitary transformation that acts on
the environment and restores the global state tocSE after
Schmidt states ofS were altered byũS. Q.E.D.

Corollary. Properties of global states are envariant iff they
are a function of the phases of the Schmidt coefficients.

Phases are often regarded as inaccessible and are even
sometimes dismissed as unimportantstextbooks tend to
speak of a “ray” in Hilbert space, thus defining a state
modulo its phased. Indeed, Schmidt expansion is occasion-
ally defined by absorbing phases in the states which means
that all the nonzero coefficients end up real and positivesand
hence all the phases are taken to be zerod. This is a danger-
ous oversimplification. Phases matter—the reader can verify
that it is impossible to write all of the Bell states when all the
relative phases are set to zero. Indeed, the aim of the rest of
this paper is, in a sense, to carefully justify when and for
what purpose phases can be disregarded and to understand
nature of the ignorance about the local state of the system as
a consequence of the global nature of these phases.

B. State of a subsystem of a quantum system

Independence of the state of the systemS from phases of
the Schmidt coefficients will be our first important conclu-
sion based on envariance. To establish it we list below three
facts—additional assumptions that may be regarded as obvi-
ous. We state them here explicitly to clarify and extend the
meaning of terms “ssubdsystem” and “state” we have already
used in axiomssod–siii d.

Fact 1. Unitary transformations must act on the system to
alter its state.sThat is, when the evolution operator does not
operate on the Hilbert spaceHS of the system; i.e., when it
has a form¯^ 1S ^¯ the state ofS remains the same.d

Fact 2. The state of the systemS is all that is neededsand
all that is availabled to predict measurement outcomes, in-
cluding their probabilities.
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Fact 3. The state of a larger composite system that in-
cludesS as a subsystem is all that is neededsand all that is
availabled to determine the state of the systemS.

We have already implicitly appealed to fact 1 earlier—
e.g., in the proof of lemma 2. Note that the abovefactsare
interpretation-neutral and that statesse.g., “the state ofS ” d
they refer to need not be pure.

With the help of the facts can now establish the following.
Theorem 1. For an entangled global state of the system

and the environment all measurable properties of
S—including probabilities of various outcomes—cannot de-
pend on the phases of Schmidt coefficients: The state ofS
has to be completely determined by the set of pairs
huaku , usklj.

Proof. Envariant transformationuS could affect the state
of S. However, by definition of envariance the effect ofuS
can be undone by a countertransformation of the form1S
^ uE which—by fact 1—cannot alter the state ofS. As SE is
returned to the initial state, it follows from fact 3 that the
state ofS must have been also restored. Butsby fact 1d it
could not have been effected by the countertransformation.
So it must have been left unchanged by the envariantuS in
the first place. It followssfrom the above and fact 2d that
measurable properties ofS are unaffected by envariant trans-
formations. But by lemmas 1 and 2, envariant transforma-
tions can alter phases and only phases of Schmidt coeffi-
cients. Therefore, any measurable property ofS implied by
its state must indeed be completely determined by the set of
pairs huaku , usklj. Q.E.D.

Remark. The information content of the listhuaku , usklj that
describes the state ofS is the same as the information con-
tent of the reduced density matrix. We do not know yet,
however, what are the probabilities of various outcome states
uskl.

Thus, envariance of Schmidt phases proves that only ab-
solute values of Schmidt coefficients can influence measure-
ment outcomes. Yet the dismissive attitude towards phases
we have reported above is incorrect. This is best illustrated in
an example: Changing phases between the Hadamard states,

u ± l = sus1l ± us2ld/Î2,

can change the state of the system fromus1l to us2l. More
generally,

Lemma 3. Iff the Schmidt decomposition of Eq.s2d has
coefficients that have the same absolute value—that is, the
state iseven,

uc̄SEl ~ o
k=1

N

eifkusklu«kl, s5d

it is also envariant under aswap:

uSs1
 2d = eif12us1lks2u + H.c. s6ad

Proof. By lemma 1, the swap is envariant—it can be gen-
erated byuS diagonal in the Hadamard basis of the two states
swhich is also Schmidt when their coefficients differ only by
a phased. Swaps can be seen to be envariant also more

directly: Whena1= uaueif1, a2= uaueif2, every swap can be un-
done by the correspondingcounterswap:

uEs1
 2d = e−isf12+f1−f2+2pl12du«1lk«2u + H.c. s6bd

This proves envariance of swaps for equal values of the co-
efficients of the swapped states. Converse follows from lem-
mas 1 and 2: Envariant transformations can affect only
phasesof Schmidt coefficients, so the global state cannot be
restored after the swap when theirabsolute valuesdiffer.
Q.E.D.

Remark. When SE is in an even stateuc̄SEl swhich is
therefore envariant under swapsd exchangeus1l
 us2l does
not affect the state ofS—its consequences cannot be de-
tected by any measurement ofS alone.

Lemma 3 we have just established is the cornerstone of
our approach. We now know that when the global state ofSE
is evensi.e., with equal absolute values of its Schmidt coef-
ficientsd, then a swapswhich predictably takesknown uskl
into uslld does not alter the state ofS at all.

The envariantly swappable state of the system defines per-
fect ignorance. We emphasize the direction of this implica-
tion: The state ofS is provably completely unknownnot
because of the subjective ignorance of the oberver. Rather, it
is unknown as a consequence of complementarity: the state
of SE is after all perfectly known. Moreover, it can be ob-
jectively known to many observers. All of them will agree
that their perfect global knowledge implies complete local
ignorance. Therefore,probabilities are objective properties
of this state.

Symmetries of the state ofSE imply ignorance of the
observer about the outcomes of his future measurements on
S. This emergence of objective probabilities is purely quan-
tum. Objective probabilities are incompatible with classical
setting swhere there is an unknown but definite preexisting
stated. In the quantum setting, the objective nature of prob-
abilities arises as a consequence of the entanglement—e.g.,
with the environment.

C. Born’s rule from envariance

So far, we have avoided referring to probabilities. Apart
from brief mention in fact 2 and immediately above we have
not discussed how they relate to quantum measurements.
This will have to wait until we consider quantum measure-
ments, records, and observers from an envariant point of
view. But it turns out that one can derive the rule connecting
probabilities with entangled-state vectors such asucSEl of
Eq. s2d from relatively modest assumptions about their prop-
erties. The next key step in this direction is the following.

Theorem 2. The probabilities of Schmidt states ofS that
appear inucSEl with coefficients that have same absolute
value are equal.

There are several inequivalent ways to establish theorem
2. Indeed, the reader may feel that it was already established:
The remark that followed lemma 3 plus a rudimentary sym-
metry argument suffices to do just that. However, for com-
pleteness, we now spell out some of these arguments in more
detail. Both Barnumf13g and Schlosshauer and Finef16g
have discussed some of the related issues. Reporting some of
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their conclusionssand anticipating some of oursd it appears
that envariance plus a variety of small subsets of natural
assumptions suffice to arrive at the thesis of theorem 2.

1. Envariance under complete swaps

We start with the first version of the proof.
sad When operations that swap any two orthonormal

states leave the state ofS unchanged, the probabilities of the
outcomes associated with these states are equal.

Proof (a) is immediate. When the entangled state ofSE
has equal values of the Schmidt coefficients—e.g.,uc̄SEl
~ok=1

N eifkusklu«kl—the local state ofS will be indeed unaf-
fected by the swapssby theorem 1 and lemma 3 aboved.
Consequently, with assumptionsad, the thesis of theorem 2
follows. Q.E.D.

The above argument is close in the spirit to Laplace’s
“principle of indifference” f17g. We prove that swapping
possible outcome states—shuffling cards—“makes no differ-
ence.” However, in contrast to Laplacewe show “objective
indifference” of the physical state of the system in question
rather than the observer’s subjective indifference based on
his state of knowledge.

Note that in the absence of entanglementsand, hence,
envarianced a swap generally changes the underlying state of
the system also when the coefficients of states corresponding
to various potential outcomes have the same absolute values.
For example, the pure statesual~ u1l+ u2l− u3l+ u4l and ubl
~ u1l+ u3l− u2l+ u4l are orthogonal even though they have the
same absolute values of coefficients and differ only by a
swap. Thus, without entanglement with the environmentsi.e.,
in the absence of lemmas 1 and 2 and, hence, without theo-
rem 1, which allows one to ignore phases of Schmidt coef-
ficientsd assumptionsad would be tantamount to the assertion
that phases of the coefficients are unimportant in specifying
the state. For isolated systems this is obviously wrong, in
blatant conflict with the quantum principle of superposition.

In the absence of envariance the key to our argument—the
assertion that thestateof S is left unchanged by a swap—is
simply wrong. This is easily seen by considering the en-
semble of identical pure statesssuch asuald. Through mea-
surements, an observer can find out the state of systems in
that ensemblese.g.,ual or ubld. By contrast, if this ensemble
becomes first entangled with the environment in such a way
that u1l¯u4l are Schmidt states, an observer with access toS
only would conclude that the state of the system is a perfect
mixture and would not be able to tell if the predecoherence
state wasual or ubl.

2. Envariance under partial swaps and dynamics

The second strategy we shall use to prove theorem 2 relies
on a somewhat different “dynamical” definition of indiffer-
ence. We note that when we have some information about the
state, we should be able to “detect motion”spossibly using
an ensemble of such statesd—to observe changes caused by
the dynamical evolution. This intuition is captured by the
following assumption.

sbd When the state ofS is left unchanged by all conceiv-

able unitary transformations acting on a subspaceH̃S of HS,

then the probabilities of all outcomes of any exhaustive mea-
surement corresponding to any orthocomplete basis that

spans that subspace ofH̃S are the same.
To proceed we first establish that when complete swaps,

Eq. s6ad, between a subset of states of some orthonormal

basis that spansH̃S leave the state ofS unchanged, then so
do partial swapson the same subspace.

Lemma 4. Partial swapsdefined by pairwise exchange of
any two orthonormal basis setshusklj andhus̃llj that spaneven

subspaceH̄S of HS which admits full swaps, Eq.s6ad, are
also envariant.

Proof. A partial swap can be expressed as a unitary:

ũSshs̃kj
 hskjd = o
usklPH̄S

us̃klksku. s6cd

This is the obvious generalization of the simple swap of Eq.
s6ad. Partial swapũSshs̃kj
 hskjd can be undone by the cor-
respondingpartial counterswapof the Schmidt partners of
the swapped pairs of states. It follows from lemma 3 that

c̄SE—a state envariant under complete swaps—must have a
form

uc̄SEl ~ o
k=1

K

eifkusklu«kl,

whereK=DimsH̄Sd. The basishus̃llj spans the same subspace

H̄S. Therefore,

uc̄SEl ~ o
l=1

K

us̃llSo
k=1

K

eifkks̃lusklu«klD = o
l=1

K

us̃llu«̃ll.

Given thathu«klj are Schmidt states, it is straightforward to
verify that hu«̃llj are orthonormal, and, therefore, the expan-
sion on the right-hand side above is also a Schmidt decom-
position. Consequently,

ũEsh«̃kj
 h«kjd = o
«kPH̄E

u«̃klk«ku, s6dd

the desired partial counterswap exists. This establishes en-
variance under partial swaps. Q.E.D.

Corollary. When complete swaps are envariant in the sub-

spaceH̄SPHS, so are all the unitary transformations onH̄S.
Indeed, the set of all partial swaps is the same as the set of all

unitary transformations on the subspaceH̄S.
We can now give the second proof of theorem 2:
Proof (b): Equality of probabilities under envariant swaps

follows immediately from the above corollary and assump-
tion sbd. Q.E.D.

Using lemma 4 and its corollary, we can identify math-
ematical objects that represent even states inHS: Only a

uniform distribution of pure states overH̄S is invariant under
all unitaries. The alternative representation, which is more
familiar, is thesreducedd density matrix. It has to be propor-
tional to the identity operator,
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rS ~ 1S,

to be invariant under all unitaries.
So envariance and the no-collapse axiomssod–siii d, plus

the threefacts, imply that our abstract stateswhose role is
defined by fact 2d leads to a distribution uniform in the Haar
measure, or equivalently, to the reduced density matrix~1S
within H̄S. Note that these conclusions follow from lemma 4,
which does not employ assumptionsbd. The form of the
mathematical object representing an envariantly swappable
state ofS follows directly from the symmteries of the under-
lying entangled composite state ofSE. In particular, we have
in a sense obtained the reduced density matrix in the special
case without the usual argumentsf10,11g—i.e., without rely-
ing on Born’s rule. Moreover, assumptionsbd is needed only
when we want to interpret that reduced density matrix in
terms of probabilities.

Assumptionsbd can also be regarded as a quantum coun-
terpart of Laplace’sprinciple of indifferencef17g. Now there
are, however, even more obvious differences between the
quantum situation and shuffling cards than those we have
already mentioned in the discussion of proofsad. A classical
deck cannot be shuffled into a superposition of the original
cards. This can obviously happen to a “quantum deck:” In
quantum physics we can consider arbitrary unitary transfor-
mationssand not just discrete swapsd. This consequence of
the nature of quantum evolutions can be traced all the way to
the principle of superpositionsand, hence, to phasesd.

The other distinction between the quantum and classical
principles of indifference we have already noted is even
more striking: In classical physics it was the “state of knowl-
edge” of the observer—his description of the system—that
may sor may notd have been altered by the evolution—the
underlying physical state wasalwaysaffected when shuffling
sevolutiond were nontrivial. In quantum theory there is no
distinction between the epistemic “state-of-knowledge” role
of the state and its objectives“ontic” d role. In this sense
quantum states are “epiontic”f3g.

Probabilities are, in any case, anobjective reflection of
symmetries of such states: They follow from the quantum
complementarity between global and local observables. They
can be defined and quantified using envariance, an experi-
mentally verifiable property of entangled quantum states.

3. Equal probabilities from perfectSE correlations

Both of the proofs above start with the assumption that
under certain conditions probabilities of a subset of states of
the system are equal, and then establish the thesis by show-
ing that this assumption is implied by envariance under
swaps—both are in that sense Laplacian. The third proof also
starts with an assumption of an equality of probabilities, but
now we consider the relation between the probabilities of the
Schmidt states ofS andE. This approachsBarnumf13g; see
also discussion in Ref.f16gd recognizes that pairs of Schmidt
statessusklu«kl in Eq. s2d are perfectly correlated, which im-
plies that they have the same probabilities. Thus, one can
prove the equality of probabilities of envariantly swappable
Schmidt states directly from envariance by relying on perfect
correlations between Schmidt states ofS andE.

To demonstrate this equality we consider a subspace of
HS spanned by Schmidt statesuskl and usll, so that the cor-
responding fragment ofcSE is given by

ucSEl = ¯ + akusklu«kl + alusllu«ll + ¯ .

We assume that the following.
scd In the Schmidt decomposition partners are perfectly

correlated: i.e., detection ofuskl implies that a subsequent
measurement of a Schmidt observable (i.e., an observable
with Schmidt eigenstates) onE will certainly obtainu«kl (this
“partner state” will be recorded with certainty—e.g., with
probability 1).

Proof (c). From assumptionscd we immediately have that

pSssksldd = pEs«ksldd.

Consider now a swapsk
sl. It leads fromcSE, Eq. s2d, to

uhS̃El = ¯ + akusllu«kl + alusklu«ll + ¯ .

Now, using againscd we get

pS̃ssksldd = pEs«lskdd = pSsslskdd.

In effect, this establishes the “pedantic assumption” off2,3g
using envariance and perfect correlation assumptionscd:
Probabilities get exchanged when the states are swapped. So
we could go back to the proof of Ref.f2g with a somewhat
different motivation. But we can also continue and consider a
counterswap inE that yields

uqS̃Ẽl = ¯ + akusllu«ll + alusklu«kl + ¯ .

We now consider the case whenuaku= ualu=a. Counterswap
restores such an even state:

uq̄S̃Ẽl = ¯ + ausllu«ll + ausklu«kl + ¯ = uc̄SEl.

By facts 2 and 3 the overall state as well as the state ofS
must have been restored to the original. ThereforepS̃sslskdd
=pSsslskdd. Together withpS̃sslskdd=pSssksldd established before
this yields

pSsslskdd = pSssksldd,

when the relevant Schmidt coefficients have equal absolute
values. Q.E.D.

We have now established in three different ways that in an
entangled state in which all of the coefficients have the same
absolute value so that every stateuskl can be envariantly

swapped with every other stateusll, uc̄SEl~ok=1
N eifkusklu«kl,

all the possible orthonormal outcome states have the same
probability. Let us also assume that states that do not appear
in the above superpositionsi.e., appear with Schmidt coeffi-
cient zerod have zero probability.sWe shall give a motivation
for this rather natural assumption later in the paper.d Given
the customary normalization of probabilities we get for even
s“Bell-like” d states the following.

Corollary. For states with equal absolute values of
Schmidt coefficients,

pk = psskd = 1/N ∀ k. s7ad
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Moreover, the probability of any subset ofn mutually
exclusive events is additive. Hence

pk1∨k2∨¯∨kn
= pssk1

∨ sk2
∨ ¯ ∨ skn

d = n/N. s7bd

Above, we have assumed that orthogonal states correspond
to mutually exclusive events. We shall give a motivation also
for this svery naturald assumption of the additivity of prob-
abilities further in the discussion of quantum measurements
in Sec. Vsthus going beyond the starting point of, e.g., Glea-
son f30gd. Here we only note that while the additivity of
probabilities looks innocent, in the quantum caseswhere the
principle of superposition entitles one to add complex ampli-
tudesd it should not be taken for granted. In the end, we shall
conclude that additivity of probabilities is tied to envariance,
which makes phasessand, hence, quantum superposition
principled irrelevant for Schmidt states of the subsystems of
the entangled whole.

We also note that the probability entered our discussion in
a manner that bypasses circularity: We have simply identified
certainty with the probability of 1fsee, e.g., assumptionscd
aboveg. This provides us with the normalization, while the
symmetries revealed by envariance determine probabilities
in the case when there is no certainty.

D. Born’s rule: The case of unequal coefficients

To complete the derivation of Born’s rule consider the
case when the absolute values of the coefficientsak in the
Schmidt decomposition are proportional toÎmk, wheremk
are natural numbers:

ucSEl ~ o
k=1

N

Îmke
ifkusklu«kl. s8ad

We now introduce acounterweight-counterC. It can be
thought of either as a subsystem extracted from the environ-
mentE or as an ancilla that becomes correlated withE so that
the combined state is

ucSECl ~ o
k=1

N

Îmke
ifkusklu«kluCkl, s8bd

wherehuCklj are orthonormal. Moreover, we assume thatuCkl
are associated with subspaces ofHC of sufficient dimension-
ality so that the “fine-graining” represented by

uCkl = o
jk=mk−1+1

mk

ucjk
l/Îmk s9ad

is possible. Above,mk=mk−1+mk, andm0=0.
We also utilize aC-SHIFT, a C-NOT-like gatef3g that cor-

relates states ofE with the fine-grained states ofC:

ucjk
lu«kl → ucjk

luejk
l, s9bd

whereuejk
l are orthonormal states ofE that correlate with the

individual states of the counterC se.g., causing decoherenced.
We have now arrived at the state vector that represents a
perfectly entangledsequal coefficient or “even”d state of the
composite system consisting ofSC andE:

uCSECl ~ o
jk=1

M

eif jkusks jkd,cjk
luejk

l. s8cd

Above, M =ok=1
N mk=mN and k=ks jd is the obvious “stair-

case” function; i.e., whenmk−1, j ømk, thenks jd=k.
The stateCSEC is envariant under swaps of joint Schmidt

statesusks jkd ,cjk
l of SC. Hence, by Eq.s7ad,

pjk
; pscjk

d ; psusks jkd,cjk
ld = 1/M .

Moreover, Eq.s7bd implies that if we were to enquire about
the probability of the state ofS alone, the answer must be
given by

pk ; o
jk=mk−1+1

mk

psusks jkd,cjk
ld = mk/M = uaku2. s10d

This is Born’s rule. The extension to the case whereuaku2 are
incommensurate is straightforward by continuity as rational
numbers are dense among reals.

III. ENVARIANCE, IGNORANCE, AND CHANCE

We have now presented a fairly complete discussion of
envariance, and we have derived Born’s rule. The aim of the
rest of this paper is to consider some of the other implica-
tions of envariance for our quantum Universe. This section
serves the role of the intermission after the first act of a play.
The basic plot is already in place. We can now take a few
moments to speculate on how it will develop. In particular,
we shall compare the definition of probabilities based on
envariance with the prequantum discussions of this concept.
We shall also set the stage for an investigation of the impli-
cations of envariance for the interpretation of quantum
theory. This includessbut is not limited tod the issue of the
“decoherence-free” derivation of the preferred pointer basis.

A. Envariance and the “principle of indifference”

The idea that invariance under swaps implies ignorance
and hence probabilities is old and goes back at least to
Laplacef17g. We illustrate it in Fig. 1sad. The appeal to in-
variance under swaps leads to a definition that is known as
“standard”sor, sometimes, “classical”—the adjective we re-
serve in this paper for its other obvious meaningd. In classi-
cal physics the standard definition has to be applied with
apologies, as it refers to observers’subjective lack of knowl-
edgeabout the system, rather than to the objective properties
of the state of the systemper se. That the observersplayerd
does not care aboutsis indifferent tod swapping of the cards
in a shuffled deck is the consequence of the fact that he does
not know their “face values.” It is a subjective reason—not
reflected in the objective symmetries of the actual state of the
deck fsee Fig. 1sbdg. To recognize this, it is said that certain
possible states are, in his subjective judgment, “equally
likely.”

As always in physics, subjectivity is a source of trouble.
In the case of the above principle of indifference this trouble
is exacerbated by the fact that the objective classical state
se.g., of the deck of cardsd is well defined and does not
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respect “symmetries of the state of mind” of the observer.
Subjectivity was the principal reason this “standard defi-

nition of probabilities” has fallen out of favor and was
largely replaced by the “relative frequency approach”
f18–20g. We shall not discuss it in detail as yet, but we
remind the reader that in this approach the probability of a
certain event—i.e., a certain outcome—is given by its rela-
tive frequency in aninfinite ensemble.

There are problems with this strategy as well. My discom-
fort with relative frequencies stems from the fact that infinite
ensembles generally do not exist and, hence, have to be
imagined—i.e., must besubjectivelyextrapolated fromfinite
sets of data. So subjectivity cannot be convincingly exor-
cised in this manner.

I bring up relative frequencies here only to note that the
strategy of using swaps to define equiprobable events would

FIG. 1. Envariance is related to the “principle of indifference”sor the “principle of equal likelihood”d used by Laplacef17g to define
subjective probabilities. However, envariance—a purely quantum symmetry—leads toobjective probabilities based on an invariance of the
underlying physical state of the system. The principle of indifference is illustrated insad. An observersor a card playerd who knows that one
of the two cards is a spade but does not see their faces and does not care—is indifferent—when cards get swappedseven when a spade is
needed to wind. When the probability of a favorable outcome is the same before and after the swap, then the two possible events—drawing
a spade or not drawing a spade—appear equally likelys“'” d. This leads tosubjectiveprobabilities given the ratio of the number of favorable
outcomes to the total;p;= 1

2. Laplace’s definition is based on the observer’s ignorance and not on the actual physical state. It is often
regarded as the sole justification of the Bayesian approach. It is controversial because of its subjective nature. In particular, it does not reflect
the actual “physical” state of the system: As seen insbd, states before and after the swap are not equivalent, “Þ.” scd shows how quantum
theory leads to probabilities based on the physical state when the system of interestS is entangled with “the environment”E. Such
entanglement can occur as a result of decoherence. WhenS andE are maximally entangled, the swap onS has no effect on its state. This
is clear, since its effect can be undone without acting onS—by a “counterswap” that involves onlyE. The final states are simply the same,
so the probability of the swapped states ofS must also be the same. Envariance can be used to provessee theorem 2d that for such “even”
entangled states that have the same absolute values of the coefficientsswhich makes them envariantly swappabled, the probabilities of
mutually exclusive alternativessorthonormal Schmidt statesd are equal. Generalization to the case of unequal coefficients is straightforward
and establishes Born’s rulepk= ucku2.
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work also in this setting. When a swapsi.e., relabeling allsk
as sl—e.g., renaming “heads” as “tails” andvice versad
applied to an ensemble leaves all the relative frequencies of
the swapped states unchanged, their probabilities must have
been equal. In a sense, this observation may be regarded
as an independent motivation of the assumptionsad of
Section II.

In quantum physics, the exact symmetry of a composite
state—envariance—can be used to demonstrate that the ob-
server need not care about swapping, as envariant swapping
provably cannot alter anything in his part of the bipartite
system whencSE is “even”—that is, of the form given by Eq.
s5d. We illustrate it in Fig. 1scd. As we have already seen,
envariance makes ignorance and probabilities easier to de-
fine. The circularity of the “standard definition” is easier to
circumvent in the quantum setting. It is, however, important
to understand what fixes this “menu of options” and to find
out when they can be regarded as effectively classical.

B. Quantum and classical ignorance

Motivating the need for probabilities using ignorance
about a preexisting state is often regarded as synonymous
with the ignorance interpretation. We have relied on a simi-
lar approach. However, for our purpose a narrowly classical
definition of ignorance through an appeal to definite classical
possibilities, one of which actually exists independently of
observer and can be discovered by his measurements without
being perturbed, is simply too restrictive: An observer can be
ignorant of the outcome of his future measurement also when
the system in question is quantum and when there are no
fixed preexisting alternatives. He can then choose between
various noncommuting observables and the correspsonding
sets of alternative “events” defined by their complementary
eigenstates. That choice of what to measure determines what
is it the observer is ignorant about—what sort of information
his about-to-be-performed measurement will reveal.

The quantum definition of probabilities based on envari-
ance is superior to the above-mentioned classical approaches
because it justifies ignorance objectively, without appealing
to observers’ subjective “lack of knowledge.” The entangled
quantum state ofSE sor any pair of entangled systemsd can
be perfectly known to the observer beforehand. There can be
multiple records of that state spread throughout the environ-
ment, making it “operationally objective”—simultaneously
accessible to many observers. They can use its objective glo-
bal properties to demonstrate—employing real swaps one
can carry out in the laboratory—that the outcomes of some
of the measurements one can perform are provably swap-
pable and, hence, equiprobable. In this sense, observers can
directly measureprobabilities of various outcomes without
having to find out first what the outcome is.

Note that this can be accomplished without an appeal to
an “ensemble,” “likelihood,” or any other surrogate for prob-
ability: All that is needed is a single systemS, as well as
appropriateE andC. The entangled states we have studied in
the preceding section can be then created, and their symme-
tries can be verified through manipulations and measure-
ments. Moreover, the measurements involved have outcomes

that can be predicted with certainty. This is how the concept
of probability enters our discussion. The observer is certain
of the global state andsusing envarianced can count the num-
ber of envariantly swappablesand, hence, equiprobabled out-
comes.

The aim of the observer is to use records of the outcomes
of past measurementsshis datad that in effect define the glo-
bal state to predict future events—his future record of the
measurement of the local system. Tools that can be legally
employed in this task include observers’ knowledge of the
“no-collapse” quantum physics, encapsulated in the opening
paragraph of Sec. II, as well as thefacts 1–3of the preceding
section. They do not include Born’s rule: Hence the trace
operation, reduced density matrices, etc., are off limits in our
derivationssalthough once we succeed, the embargo on their
use will be liftedd.

In the no-collapse settings, the effective classicality of the
memory can be justified through appeal to decoherence
f3–8,15g. But here we cannot appeal to full-fledged decoher-
ence, cannot rely on trace, etc. Is there still a way to recover
enough of the “effectively classical” to justify the existence
of classical records we took for granted in the preceding
section?

C. Problems of no-collapse approaches

There were several attempts to make sense of probabili-
ties in the no-collapse settingf21–25g. They have relied al-
most exclusively on relative frequenciesscounting probabili-
tiesd f21–23g. The aim was to show that, in the limit of
infinitely many measurements, only branches in which the
relative frequency definition would have given an answer for
probabilities consistent with Born’s rule have a nonvanishing
measure. However, that meant dismissing infinitely many
s“maverick”d branches where this isnot the case, because
their amplitude becomes negligible in the same infinite limit.
All of these attempts have been shown to use circular argu-
mentsf25–29g: In effect, they were all forced to assume that
the relative weights of the branches are based on their am-
plitudes. That meant that another measure was introduced,
without physical justification, in order to legitimize the use
of a relative frequency measure based on counting.

By contrast, derivations of Born’s rule that assume “col-
lapse” either explicitlyf30,32g or implicitly f31g—that is, by
consideringab initio infinite ensembles of identical systems
so that “branches” with “wrong” relative frequency of counts
simply disappear as their amplitudes vanish in the infinite
ensemble limit—have been regarded as successfulsalthough
seef33g for a more critical assessment of Refs.f31,32gd.

Indeed, Gleason’s theoremf30g is now an accepted and
rightly famous part of quantum foundations. It is
rigorous—it is after all a theorem about measures on Hilbert
spaces. However, regarded as a result in physics it is deeply
unsatisfying: it provides no insight into the physical signifi-
cance of quantum probabilities—it is not clear why the ob-
server should assign probabilities in accordance with the
measure indicated by Gleason’s approachf22–29,31–34g.
This has motivated various primarily frequentist approaches
f22–29,31,32,34g. However, as was already noted in the dis-
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cussion of the relative frequency approach, an appeal to in-
finite ensembles is highly suspectf27–29,33g, especially
when—as is the case here—the desired effect is achieved
only when the size of ensembleN=`.

In view of these difficulties, some have even expressed
doubts as to whether there is any room for the concept of
probability in the no-collapse settingf26–29g. This concern
is on occasion traced all the way to theidentity of the ob-
server who could define and make use of probabilities in a
many worlds universe. Such criticism was often amplified by
pointing out that, in the predecoherence versions of
Everett—inspired interpretations—decomposition of the uni-
versal state vector is not uniquessee, e.g., comments in Ref.
f27gd, so it is not even clear what “events” should such prob-
abilities refer to. This difficulty was regarded by some as so
severe that even staunch supporters of Everett considered
adding anad hoc rule to quantum theory to specify a pre-
ferred basisssee, e.g., Ref.f35gd in clear violation of the
spirit of the original relative-state proposalf12g.

Basis ambiguity was settled by einselectionf3–9,14,15g.
But standard tools of decoherence are off limits here. And
even if we were to accept decoherence-based resolution of
basis ambiguity and used einselected pointer states to define
branches, we would be still faced with at least one remaining
aspect of the “identity crisis:” In the course of a measure-
ment the memory of the observer “branches out” so that it
appears to recordsand, hence, critics conclude, the observer
should presumably perceived all of the outcomes. If that
were so, then there would be no room for distinct outcomes
and choice and, hence, no need for probabilities.

The existential interpretationis based on einselection
f3,8,15g and can settle also this aspect of the identity crisis. It
follows the physical state of the observer by tracking its evo-
lution, also in the course of measurements. A complete de-
scription of observers’ state includes the physical state of his
memory, which is updated as he acquires new records. So
what the observer knows is inseparable from what the ob-
server is. An observer who has acquired new data does not
lose his identity: He simply extends his records—his history.
The identity of the observer as well as his ability to measure
persists as long as such updates do not result in too drastic a
change of that statessee Wallacef36g for a related point of
viewd. For instance, Wigner’s friend would be able to con-
tinue to act as an observer with reliable memory in each
“outcome branch,” but the same cannot be said about
Schrödinger’s cat.

But the existential interpretation depends on decoherence.
Therefore, we have to either disown it altogether while em-
barking on derivation of Born’s rule or reestablish its foun-
dations without relying on trace and reduced density matri-
ces to derive Born’s rule. Once we are successful, we can
then proceed to reconstruct all of the “standard lore” of de-
coherence, including all of its interpretational implications,
on a firm and deep foundation—quantum symmetry of en-
tangled states.

We note that whensat the risk of circularity we have
detailed aboved decoherence is assumed, Born’s rule can be
readily derived using a variety of approachesf8,24g includ-
ing versions of both standard and frequentist points of view
f8g as well as approaches based on decision theoryf24,36g

suggested by Deutsch and Wallace. I shall comment on these
in Sec. VII.

IV. POINTER STATES, RECORDS, AND “EVENTS”

Probability is a tool observers employ in the absence of
certainty to predict their futuresincluding in particular the
future state of their own memoryd using already available
data—present state of their memory. Sometimes these data
can determine future events uniquely. However, often predic-
tions will be probabilistic—the observer may count on one of
the potential outcomes, but will not know which one. Our
task is to replace questions of uncertain outcomes of future
measurements on the system with situations that allow for a
certainty of prediction about the effect of some actions
sswapsd on an enlarged system. In that sense we are reducing
questions about probabilities in general to the straightfor-
ward case—to the questions that yield answers with certainty
si.e., with probability of 1d. This special case makes the con-
nection with probability in a situation when the probability is
known. It provides us with the overall normalization. Using
this connection, we then infer the probabilities of possible
outcomes of measurements onS from the analog of the La-
placian “ratio of favorable events to the total number of equi-
probable events,” which we shall see in Sec. V is a good
definition of quantum probabilities for events associated with
effectively classical records kept in pointer states. In quan-
tum physics this ratio can be determined using envariance
and even verified experimentally prior to finding out what
the event is. But we do need events. Hence, we need pointer
states.

In classical physics it can be always assumed that a ran-
dom event was predetermined—i.e., that the to-be-
discovered state existed objectively beforehand and was only
revealed by the measurement. Indeed, such an objective pre-
existence is often regarded as a precondition of the “igno-
rance interpretation” of probabilities. In quantum physics, as
Wheeler put it paraphrasing Bohr, “No phenomenon is a phe-
nomenon until it is a recorded phenomenon”f37g. Objective
existence cannot be attributed to quantum states of isolated,
individual systems. When the system is being monitored by
the environment, one may approximate objective existence
by selectively proliferating quantum informationsthis is the
essence ofquantum Darwinismas we shall discuss in Sec-
tion VII C d. The operational definition of objectivity—one
of the key symptoms of classicality—can be recovered using
this idea, as selective proliferation leads to many copies of
the information about the same “fittest” observable.

Here we deal with individual quantum events—outcomes
of future measurements on individual quantum systems—not
carried out as yet. They need notsand, in general, do notd
preexist even in the sense of quantum Darwinism—selective
proliferation of information has not happened as yet. The
observer will decide what observable he will measuresand,
hence, what information will get proliferated and become
effectively classicald. The menu of events should be deter-
mined by the observable he chooses to measure.

Objective preexistence of events is not neededbeforethe
measurement. On the other hand, as noted above, we need
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some aspects of classicality to represent the memory of the
observerafter the measurement. Objectivity would be best,
but we can settle for less: The key ingredient is the existence
of well-defined “events”—record states that, following mea-
surement, will reliably preserve correlation with the recorded
state of the system in spite of the immersion of the memory
in the environment. Pointer statesf5–9g are called for, but we
are not allowed to use decoherence.

There are at least three reasons why preferred states
swhich are stable in spite of the openness of the systemd are
essential. The original reason for their introductionf5g was to
assure that observers’ memory is effectively classical—
einselection of preferred basis ascertains that his “hardware”
can keep records only in the pointer basis.

It follows that model observers will store and process in-
formation more or less like ussand more or less like a clas-
sical computerd. For instance, the human brain is a massiv-
elly parallel, and as yet far from understood, but nevertheless
classical information processing device. And classical
records cannot existscannot be accessedd in superpositions.

A more pertinent reason to look for preferred states is the
recognition that the information processing hardware of ob-
servers is open—immersed in the environment. Interaction
with E is a fact of life. Unless we find in the memory Hilbert
space “quiet corners” that remain quiet in spite of this open-
ness, reliable memorysand hence reliable information pro-
cessingd will not be possible.

Last but not least, the very idea of measuring makes sense
only when measurement outcomes can be used for predic-
tions. But most of the systems of interest are “open” as well.
Therefore, predictability can be hoped for only in special
cases—for the einselected pointer states of systems that can
remain correlated with the apparatus that has measured them
f5,6,8g.

Decoherence methods used to analyze the consequences
of such immersion in the environment employ reduced den-
sity matrices and tracef3–9,14,15g. They are based on Born’s
rule. Once decoherence is assumed, Born’s rule can be
readily derivedf8g, but this strategy courts circularityf3,38g.
Obviously, if we temporarily renounce decoherencesso that
we can attempt to derivepk= ucku2d, we have to find some
other way to either justify the existence of pointer states and
the einselection-based definition of branches in a
decoherence-independent manner or give up and conclude
that, while Born’s rule is consistent with decoherence, it can-
not be established from more basic principles in a no-
collapse setting. We shall show that, fortunately, preferred
states obtain more or less directly from envariance. That is,
environment-induced superselection and, hence, pointer ba-
sis and branches can be defined by analyzing correlations
between quantum systems, very much in the spirit of the
original “pointer basis” proposalf5g and without the danger
of circularity that may have arisen from reliance on trace and
reduced density matrices.

A. Relative states and definite outcomes:
Modeling the collapse

The essence of the no-collapse approach is itsrelative
statenature—its focus on correlations. Once we identify pos-

sible record states of the memory, the correlation between
them and the states of the relevant fragments of the Universe
is all that matters: An observer will be “aware” of what he
knows, and all he knows is represented by his data. The key
is, however, to identify relativepointer statesthat are suit-
able as memory states.

We start our discussion with a confirmatory premeasure-
ment in which there is no need for the full-fledged “col-
lapse.” The observer is presented with a system in a statew
and told to measure an observable that hasw as one of its
eigenstates. He need not know the outcome beforehand.
Given a set of potential mutually exclusive outcomes
h. . . ,w , . . .j the observer can devise an interaction that will—
with certainty—lead to

uA0l^Nuwl →
h¯w¯j

uA0l^N−1uAwluwl. s11ad

Above, “ready-to-record” memory cells are designated by
uA0l, and the symbol above the arrow representing the mea-
surement indicates that the set of possible outcomes includes
w. This premeasurement can be repeated manysmd times:

s11bd

Each new outcome can be predicted by the observer from the
first record providing that—as we assume here and below—
there is no evolution between measurements and that the
measured observable does not change.

In spite of the concerns we have reported before there is
no threat to the identity of the observer. Moreover, in view of
the recorded evidence, Eq.s11bd, and his ability to predict
future outcomes in this situation, an observer may assert that
the system is in the statew. Indeed, if we did not assume that
our observer is familiar with quantum physics, we could try
and convince him that—in view of the evidence—the system
must have been in the preexisting “objective state”w already
before the first measurement. This happens to be the case in
our example, but the state of a single system is not “objec-
tive” in the same absolute sense one may take for granted in
the classical realm: Obviously, in quantum theory a long se-
quence of records after the measurement is no guarantee of
the “objective preexistence” of the observer-independent
state before the measurement in the same sense as was the
case in the classical realm.

When the observer subsequently decides to measure a dif-
ferent observable with the eigenstateshusklj such that

uwl = o
k=1

N

kskuwluskl, s12d

the overall state viewed “from the outside” will become

uA0l^N−muAwl^muwl →
husklj

uA0l^N−m−1uAwl^mo
k=1

N

kskuwluAkluskl.

s13ad

It is tempting to regard each sequence of records as a
“branch” of the above state vector. It certainly represents a
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possible state of the observer with the data concerning his
“history,” including records of the state of the system. From
his point of view, the observer can therefore describe this
“personal” recorded history as follows: “As long as I was
measuring observables that shared the eigenstatew, the out-
come was certain—it was always the same. After the first
measurement, there was no surprise. In that operational sense
the systemwas in the stateuwl. When I switched to measur-
ing husklj, the outcome becamessayd us17l, and the system
was in that state thereafter.” This conclusion follows from his
records:

s13bd

There will be, of course,N such branches, each of
them labeled by a specific record se.g.,
¯uA16l^ l , uA17l^ l , uA18l^ l

¯d. But especially when records
are well defined and stable, then there is again no threat to
the identity of the observer.sAlso note that in the equation
above we have stopped counting the “still available” empty
memory cells. In a tradition that dates back to Turing we
shall assume, from now on, that an observer has enough
“blank memory” to record whatever needs to be recorded.d

Now come the two key lessons of this section: To “first
approximation,” from the point of view of the evidencesi.e.,
records in observer possessiond, there is no difference be-
tween the “classical collapse” of many future possibilities
into one present actuality he experiences after his first “con-
firmatory” measurement, Eq.s11d, and the “quantum col-
lapse,” Eq.s13d. Before the confirmatory measurement the
observer was told what observable he should measure, and
he found out the statew. A very similar thing happened when
the observer switched to a different observable with eigen-
stateshusklj: After the first measurement with an uncertain
outcome a predictable sequence of confirmations followed.

In the “second approximation,” there is, however, an es-
sential difference: In the case of the classical collapse, Eq.
s11d, the observer hadlessof an idea about what to expect
than in the case of genuine quantum measurement, Eq.s13d.
This is because now—in contrast to the “ersatz collapse” of
Eq. s11d—the observer knows all that can be known about
the system he is measuring. Thus, in the case of Eq.s11d, the
observer did not know what to expect: He had no certifiably
accurate information that would have allowed him to gauge
what will happen. He could have been left completely in the
dark by the preparersin which case he might have been
swayed by the arguments of Laplacef17g and to assign equal
probabilities to all conceivable outcomesd or might have
been persuaded to accept some other Bayesian priors or
could have been even deliberately misled. Thus, in the clas-
sical case of Eq.s11d the observer has no reliable source of
information—no way of knowing what he actually does not
know—and, hence, noa priori way of assigning probabili-
ties. By contrast, in the quantum case of Eq.s13d observer
knows all that can be known. Therefore, he knows as much

as can be known about the system—he is in an excellent
position to deduce the chances of different conceivable out-
comes of the new measurement he is about to perform.

This is the second lesson of our discussion and an impor-
tant conclusion: In quantum physics, ignorance can be quan-
tified more reliably than in the classical realm. Remarkably,
while the criticisms about assigning probabilities “on the ba-
sis of ignorance” have been made before in the classical
context of Eq.s11d, perfect knowledge available in the quan-
tum case was often regarded as an impediment.

B. Environment-induced superselection without decoherence

We shall return to the discussion of probabilities shortly.
However, first we need to deal with the preferred basis prob-
lem pointed out above. The prediction observer is trying to
make—the only prediction he can ultimately hope to
verify—concerns the future state of his memoryA. We need
to identify—without appeals to full-fledged decoherence—
which memory states are suitable for keeping records and,
more generally, which states in the rest of the Universe are
sufficiently stable to be worth recording. The criterion: such
states should be sufficiently well behaved so that the corre-
lation between observers’ records and the measured systems
should have predictive powerf5g. Predictability shall remain
our key concernsas was the case in the studies employing
decoherencef3–9,14,15,39gd although now we shall have to
formulate a somewhat different—“decoherence-free”—
approach.

The issue we obviously need to address is the basis am-
biguity: Why is it more reasonable to consider a certain set
huAklj as memory states rather than some other sethuBklj that
spans the samesmemory cell or apparatus pointerd Hilbert
space? One answer is that the observer presumably tested his
memory before, so that the initial state of his record-bearing
memory cells as well as the interaction Hamiltonian used to
measure—to generate conditional dynamics—has the struc-
ture that implements a “truth table” of the form

uA0luskl → uAkluskl. s14d

But this is not a very convincing or fundamental resolution
of the broader problem of the emergence of the preferred set
of effectively classicalspredictabled states from within the
Hilbert space. Clearly, the state on the RHS of Eq.s13ad is
entangled. So one could consultA in any basishuBllj and
discover some corresponding state ofS:

ur ll = o
k=1

N

kBluAklkskuwluskl. s15d

The question is, why should the observer remember his past,
think of his future, and perceive his present state in terms of
huAklj’s rather thanhuBllj’s? Future measurements of one of
the stateshur llj swhich form in general a nonorthogonal, but
typically complete set within the subspace spanned byhuskljd
could certainly be devised so that the outcome confirms the
initial result. Why then did we write down the chain of Eq.
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s13bd using one specific set of statessand anticipating the
corresponding set of effectively classical correlationsd?

1. Pointer states from envariance: The case of perfect correlation

Basis ambiguity is usually settled by an appeal to deco-
herence. That is, after the premeasurement—after the
memoryA of the apparatus or of the observer becomes en-
tangled with the system—A interacts with the environment
E, so thatE in effect premeasuresA:

uA0luwlu«0l →
huskljSo

k=1

N

kskuwluAklusklDu«0l

→
hu«klj

o
k=1

N

kskuwluAklusklu«kl = uCSAEl. s16d

The observable left unperturbed by the interaction with the
environment should be the “record observable” ofA. Then
the preferred pointer stateshuAklj are einselected.

Note that this very same combined state would have re-
sulted if the environment interacted withS and “measured it”
directly in the basishusklj, before the correlation ofA andS.
Clearly, there is more than one way to “skin a Schrödinger
cat.” This remark is meant to motivate and justify a simpli-
fication of notation later on in the discussion. In reality, it is
likely that bothA and S would have interacted with their
environments and that each might be immersed insone or
mored physically distinctE’s. Recognizing this in notation is
cumbersome and has no bearing on our immediate goal of
showing that einselection of pointer states can be justified
without taking a trace to compute the reduced density matrix.

In the situation when the measured observable is Hermit-
ian sso that its eigenstates are orthogonald and the environ-
ment premeasures the memory in the record states, Eq.s16d
has the most general form possible. It is therefore enough to
focus on a singleE and reserve the right to entangle it some-
times with A and sometimes withS, and sometimes with
both.

Given that the measured observable is Hermitian and rec-
ognizing the nature of the conditional dynamics of theAE
interaction, the resulting density matrix would have the form

rSA = TrEuCSAElkCSAEu = o
k=1

N

ukskuwlu2uAklusklkskukAku.

s17d

Preservation of the perfect correlation betweenS and A in
the preferred set of pointer states ofA is a hallmark of a
successful measurement. Entanglement is eliminated by de-
coherencese.g., discord disappearsf41gd but one-to-one clas-
sical correlation with the einselected states remains. This
singles outhuAklj’s as “buds” of the new branches that can be
predictably extended by subsequent measurements of the
same observable—e.g.,

The trace in Eq.s17d that yields density matrix is, however,
“illegal” in the discussion aimed at derivation of Born’s rule:
Both the physical interpretation of the trace and of the re-
duced density matrix are justified assuming Born’s rule. So
we need to look for a different, more fundamental justifica-
tion of the preferred set of pointer states.

Fortunately, envariance alone hints at the existence of the
preferred states: As theorem 1 demonstrates, phases of
Schmidt coefficients have no relevance for the states of en-
tangled systems. In that sense, superpositions of Schmidt
states for the systemS or for the apparatusA that are en-
tangled with someE do not exist either. Now, this corollary
of theorem 1 comes close to answering the original pointer
basis questionf5g: When measurement happens, into what
basis does the wave packet collapse? Obviously, if we dis-
qualify all superpositions of some preferred set of states,
only these preferred states will remain viable. This is an
envariant version of the account of the negative selection
process, thepredictability sievethat is usually introduced
using full-fledged decoherence. The aim of this section is to
refine this envariant view of the emergence of preferred basis
f2,3g by investigating the stability and predictive utility of
correlations between candidate record states of the apparatus
and the corresponding state of the system.

The ability to infer the state of the system from the state
of the apparatus is now very much dependent on the selec-
tion of the measurement ofA. Thus, thepreferred basis
huAklj yields one-to-one correlations betweenA and S that
do not depend onE:

uAklkAkuuCSAEl ~ uAklusklu«kl. s18ad

Above, we have written out explicitly just the relevant part
of the resulting state—i.e., the part that is selected by the
projection.

By contrast, if we were to rely on any other basis, the
information obtained would have to do not just with the sys-
tem, but with a joint state of the system and the environment.
For instance, measurement in the complementary basis,

uBll = o
k=1

N
ei2pkl/N

ÎN
uAkl,

would result in rather messy entangled state ofS andE:

uBllkBluuCSAEl ~ uBllSo
k=1

N
e−i2pkl/N

ÎN
akusklu«klD . s18bd

This correlation with the entangledSE state obviously pre-
vents one from inferring the state of system of interestS
alone from memory states in the basishuBllj: Bases other
than pointer stateshuAklj do not correlate solely withS, but
with global entangled (or, more generally, mixed but corre-
lated) states ofSE.
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We conclude that the pointer states ofA can be defined in
the “old fashioned way”—as states best at preserving corre-
lation withS, and nothing butS. This perfect correlation will
persist even when the environment is initially in a mixed
state. Our decoherence-free definition of preferred states ap-
peals to the same intuition as the original argument inf5g or
as the predictability sievef15,39,3,8,9g, but does not require
reduced density matrices or other ingredients that rely on
Born’s rule.

2. Pointer states from envariance: Einselection, records,
and dynamics

The example of einselection considered above allowed us
to recover pointer states under very strong assumptions—i.e.,
when husklj, huAklj, and hu«klj are all orthonormal. But such
tripartite Schmidt decompositions are an exceptionf40g. It is
therefore important to investigate whether our conclusions
remain valid when we look at a more realistic case of an
apparatus that first entangles withS through premeasurement
and thereafter continues to interact withE. TheSA interac-
tion may be brief and can be represented by Hamiltonians
that induce conditional dynamics summed up in the truth
table of Eq.s14d. The effect of immersion of the apparatus
pointer or the memory cell in the environment is often mod-
eled by an ongoing interaction generated by the Hamiltonian
with the structure

HAE = o
k,n

gknuAklkAku ^ uenlkenu, s19ad

which leads to a time-dependent state

uCSAEl = o
k

akuskluAklo
n

gne
−igkn tuenl = o

k

akuskluAklu«kstdl.

s19bd

The decoherence factor

zkk8 = k«ku«k8l = o
n

ugnu2eisgk8n−gkndt s19cd

responsible for suppressing off-diagonal terms in the reduced
density matrixrSA is generally nonvanishing although, for
sufficiently large t and large environments, it is typically
vanishingly small. Of course, as yet—i.e., in the absence of
Born’s rule—we have no right to attribute any physical sig-
nificance to its value.

In the above tripartite state onlyhuAklj are by assumption
orthonormal. We need not assert that abouthusklj—the initial
truth table might have been, after all, imperfect, or the mea-
sured observable may not be Hermitian. Still, even in this
case with relaxed assumptions perfect correlation of the
states of the system with a fixed set of records—pointer
stateshuAklj—persists, as the reader can verify by repeating
the calculations of Eq.s18d.

The decomposition of Eq.s19bd is typically not a Schmidt
decomposition when we regardSAE as bipartite, consisting
of SA andE—product statesuAkluskl are orthonormal, but the
scalar products of the associated statesu«kstdl are given by
the decoherence factorzkk8std, which is generally different

from zero. The key conclusion can be now summed up with
the following.

Theorem 3. When the environment-apparatus interaction
has the form of Eq.s19ad, only the pointer observable of
A can maintain perfect correlation with the states of the
measured system independently of the initial state ofE and
time t.

Proof. From Eq.s19bd it is clear that statesuAkl maintain
perfect 1-1 correlation with the statesuskl at all times and for
all initial states ofE—i.e., independently of the coefficients
gk. This establishes thatuAkl are good pointer states.

To complete the proof, we still need to establish the
converse—i.e., that these are theonly such good record
states. To this end, consider another set of candidate memory
states ofA:

uBll = o
k

blkuAkl.

The corresponding conditional state of the rest ofSAE is of
the form

uBllkBluCSAEl ~ uBllo
k

akblkusklu«kstdl. s19dd

It is clearly an entangled state ofSE unless allk,k8 that
appear with nonzero coefficients differ only by a phase. That
condition implies that k«kstd u«k8stdl=expsifkk8d—that is,
uzkk8stdu=1. This would in turn mean that the environment
has not become correlated with the statesuAkl.

In general,uzkk8stdu,1. Thus, states ofSE correlated with
the basisuBll of the apparatus are entangled—records con-
tained in that basis do not reveal information about the sys-
tem alonesas records in the basisuAkl dod, but, rather, about
ill-defined entangled states of the system of interestS and
environmentE swhich is of no interestd. Thus, as stated in the
thesis of this theorem, the only way to assure a 1-1 record-
outcome correlation for allt independently of the initial state
of E is to use pointer statesuAkl. Q.E.D.

Remark. The above argument sheds interesting light on
the nature of the environment-induced loss of information. In
the case of imperfections the state correlated with records
kept in the memory has the form of Eq.s19dd—that is, it can
be apureentangled state ofSE, and not the state ofS alone.
The observer still knows exactly the state, but it is a state of
a wrong system. Instead of the “system on interest”S, it is a
global state of a compositeSE. Consequently,sid even if the
observer knew the initial state ofE, the state of the system of
interestS cannot be deduced. Moreover,sii d typically the
initial state ofE is not known, which makes the state ofS
even more difficult to find out.

We have provided a definition of pointer states by exam-
ining the structure of correlations in the pure states involving
S, A, andE. It is straightforward to extend this argument to
the more typical case whenE is initially in a mixed statesfor
example, by “purifying”E in the usual mannerd. So all of our
discussion can be based on pure states and projections—
preferred pointer states emerge without invoking trace or re-
duced density matrices.

In spite of the more basic approach, our motivation has
remained the same: preservation of the classicalsor at least
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“one way classical”f41gd correlations—i.e., correlations be-
tween the preferred orthonormal set of pointer states of the
apparatus and of thespossibly more generald states of the
system that can be accessedsby measuring pointer observ-
able ofAd without further loss of information. Therefore, it
is perhaps not too surprising that the preferred pointer ob-
servable

L = o
k

lkuAklkAku

commutes with theAE interaction Hamiltonian, Eq.s19ad,
responsible for decoherence:

fL,HAEg = 0. s20d

This simple equation, valid under special circumstances, was
derived in the paper that has introduced the idea of pointer
states in the context of quantum measurementsf5g, starting
from the same condition of the preservation of correlations
we have invoked here.

Pointer states coincide with Schmidt states in the tripartite
SAE when a perfect premeasurement of a Hermitian observ-
able is followed by perfect decoherence—that is, whenzkk8
=0. This case was noted and its more general consequences
were anticipated by brief comments about pointer states
emerging from envariance inf2,3g.

We also note that the recorded states ofS do not need to
be orthonormal for the above argument to go through. We
have relied on the orthogonality of the record stateshuAklj
and invoked some of its consequences without having to
assume idealized perfect measurements of Hermitian observ-
ables. We note that this strategy can be used to attribute
probabilities to nonorthogonalsi.e., overcompleted basis
states ofS, as long as they eventually correlate with ortho-
normal record states.

The ability to recover pointer states without appeal to
trace—and, hence, without an implicit appeal to Born’s
rule—is a pivotal consequence of envariance: We have just
shown that einselection can be deduced and “branches” may
emerge without relying on decoherence. Rather than use
trace and reduced density matrices we have produced a deri-
vation based solely on the ability of an open systemsin our
case memoryAd to maintain correlations with the test sys-
tem S in spite of the interaction with the environmentE.

In hindsight, this ability to find a preferred basis without
reduced density matrices—although unanticipatedf29,38g—
can be readily understood:The emergence of preferred states
swhich in the usual decoherence-based approach habitually
appear on the diagonal of the reduced density matrixd is a
consequence of the disappearance of the off-diagonal terms.
But off-diagonal terms disappear when states of the environ-
ment correlated with them are orthonormal—when the deco-
herence factor defined by the scalar productk«ku«ll disap-
pears ifkÞ l. So as long as we do not use trace to assign
weightssprobabilitiesd to the remainingsdiagonald terms, we
are not invoking Born’s rule. In short, one can find out eigen-
states of the reduced density matrix without enquiring about
its eigenvalues and especially without regarding them as
probabilities.

V. PROBABILITY OF A FUTURE RECORD

To arrive at Born’s rule within the “no-collapse” point of
view we now follow the envariant strategy of Sec. II, but
with one important difference: The probability refers explic-
itly to the possible future state of the observer. This approach
is very much in the spirit of theexistential interpretation
which in turn builds on the ideaswhich was most clearly
stated by Everettf12gd to let quantum formalism dictate its
interpretation.

The existential interpretation is introduced more carefully
and discussed in detail elsewheref15,8,3g. It combines a
relative-state point of view with the recognition of the emer-
gence and role of the preferred pointer states. In essence and
in the context of the present discussion, according to the
existential interpretation an observer will perceive himself
sor, to be more precise, his memoryd in one of the pointer
states and therefore attribute to the rest of the Universe a
state consistent with his records. His memory is immersed in
the environment. His recordssstored in pointer statesd are not
secret. Indeed, because of the persistent monitoring by the
environment, many copies of the information inscribed in his
possession are “in public domain”—in the environmental de-
grees of freedom: Hence, the content of his memory can be
in principle deducedse.g., by many other observers, moni-
toring independent fragments of the environmentd from mea-
surements of the relevant fragments of the environment. Se-
lective proliferation of information about pointer observables
allows records to be in effect “relatively objective”f3,8g.
This operational notion of objectivity is all that is needed for
the “objective classical reality” to emerge. Obviously, an ob-
server will not be able to redefine memory pointer states—
correlations involving their superpositions are useless for the
purpose of prediction.

The existential interpretation is usually justified by an ap-
peal to decoherence, which limits the set of states that can
retain useful correlations to pointer states—states that can
persist and, therefore, exist—to a small subset of all possible
states in the memory Hilbert space. As we have seen in the
preceding section, the case for persistence of the pointer
states can be made by exploiting nature—and, especially,
persistence—of theSA correlations established in the course
of the measurement in spite of the subsequent interaction
with the environment. In short, we can ask about the prob-
ability that the observer will end up in a certain pointer
state—that his memory will contain the corresponding record
and the rest of the Universe will be in a state consistent with
these records—without using trace operation or reduced den-
sity matrices of full-fledged decoherence.

A. Case of equal probabilities

We begin with the case of equal probabilities. That is, we
consider

uwl ~ o
k=1

N

eifkuskl s128d

and note that following premeasurement and as a conse-
quence of the resulting entanglement with the environment
we get
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uC̄SAEl = o
k=1

N

eifkuskluAklu«kl = o
k=1

N

eifkusk,Aksskdlu«kl.

s21d

The notation on the RHS above is introduced temporarily to
emphasize that the essential unpredictability observer is deal-
ing with concerns his future state. As the record statesuAkl
are orthogonal, explicit recognition of this focus of attention
allows one to consider probabilities of more general mea-
surements where the outcome stateshusklj of the system are
not necessarily associated with the orthonormal eigenstates
of Hermitian operators.

The orthogonality of states associated with events is
needed to appeal to envariance—we want events to be “mu-
tually exclusive.” Now it can be provided by the record
states. Both measurements of non-Hermitian observables as
well as “destructive measurements” that do not leave the
system in the eigenstate of the measured observable belong
to this more general category. For instance,

uw̄luA0lu«0l ~ So
k=1

N

eifkusklDuA0lu«0l → us0lo
k

uAksskdlu«kl

s22d

is a possible idealized representation of a “destructive” mea-
surement such as a photodetection that leaves the relevant
mode of the field in the vacuum stateus0l but allows the
detector to record the premeasurement state ofS.

Most of our discussion below will be applicable to such
more generalsand more realisticd measurements. However,
the most convincing “existential” evidence for the “collapse”
of the state of the system is provided by nondemolition mea-
surements. In that case repeating the same measurement will
yield the same outcome:

uC̄SA^ lEl = o
k=1

N

eifkuskluAkl^ lu«kl^ l . s23d

The observer will be led to conclude on the basis of his
recordfe.g.,¯uAwl^muA17l^ l, Eq. s13bdg that a “collapse” of
the state from the superposition of the potential outcomes
fEq. s128dg into a specific actual outcomesus17ld has oc-
curred. From his point of view, this clearly is an unpredict-
able event.

The obvious question—“given records of my previous
measurementsuAwl^m, what are the chances that I, the ob-
server, will end up with a recorduAkl^ l of any specific
uskl?”—can be now addressed. The same question can be of
course posed and answered in the more general case, when
confirmation through the remeasurement of the system is not
possible, although then collapse is not as well documented.
Here we focus on nondemolition measurements of Hermitian
operators to save on notation.

The motivation for consideringuc̄SEl or uC̄SAEl instead of
the pure initial state of the system in the study of probabili-
ties should be by now obvious: We have already noted in the
course of the discussion of pointer states that the anticipated
and inevitable interaction withE will lead from uw̄l to

uC̄SAEl, Eqs.s21d–s23d. As all measurements follow this gen-
eral pattern, we can—without any loss of generality—
anticipate this decoherence-causing entanglement withE and
start the analysis with the appropriate state.

An observer can in principle carry out measurements ofS,
A, or E as well as global measurements ofSAE that will
convince him of his ignorance of the states of individual
subsystems and allow him to assign probabilities to different
potential outcomes. The key measurement in this strategy is
the confirmation that the composite systems of interest are
returned to the initial pure statessay, ucSAl or uCSAEld after
the appropriate swaps and counterswaps are carried out. For
example, a sequence of operations

uA0luc̄SEl →
h¯c̄SE¯j

uAc̄SEluc̄SEl, s24ad

uSsk
 lduc̄SEl = uh̄SEl, s24bd

uA08luh̄SEl →
h¯h̄SE¯j

uAh̄SE
8 luc̄SEl, s24cd

uEsk
 lduh̄SEl = uc̄SEl, s24dd

uA09luc̄SEl →
h¯c̄SE¯j

uA
c̄SE
9 luc̄SEl s24ed

allows the observer to conclude that the even global state

uc̄SEl can be transformed by a swap inS into the stateuh̄SEl,
but that it can be restored touc̄SEl by the appropriate coun-
terswap inE. Observers familiar with quantum theory and
with the basicfacts 1–3concerning the nature of systems
that allowed us to establish theorems 1 and 2 will be also
convinced that the probabilities of the outcomes of the en-
variantly swappable states ofS are equal. Sequences of op-
erations that can be carried out as well as the perfect predict-
ability of the records se.g., ¯uAc̄SEluAh̄SE

8 luA
c̄SE
9 l¯d that

always—that is, with certainty—appear at the end of the ex-
periments will convince the observer that each of the envari-
antly swappable outcomes is equally likely—that each
should be assigned the same probability.

Note that, in principle, the observer could treat one of his
own record cells as an external system. This happens when
the record is made by the memory of the apparatus and the
observer is not yet aware of the outcome. Then this record
cell comes to play a role of the extension of the system; i.e.,
its state can be swapped along with the state ofS it has
recorded. There is little difference between this set of mea-
surements and swaps and the sequence we have just dis-
cussed, Eq.s24d. The sequence involving memory cell states
swhich are certifiably orthogonald would allow one to assign
probabilities to the states ofS that are not orthogonal, as was
noted above.

B. Boolean algebra of records

We now implement the strategy outlined in Sec. II, our
“interpretation-neutral” version of the derivation of Born’s
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rule from envariance,but we shall use records as “events.”
This will allow us to start at a more fundamental level than
in Sec. II. To begin with, we will be able to establish what in
Sec. II was the additivity assumption, Eq.s7bd. We shall then
go on to derive Boolean logicswhich is behind the calculus
of probabilities f20gd and rederive Born’s rule from this
“logical” point of view.

1. Additivity of probabilities from envariance

In the axiomatic formulation of the probability theory due
to Kolmogorovssee, e.g., Ref.f20gd as well as in the proof of
Born’s rule due to Gleasonf30g additivity is anassumption
motivated by the mathematical demand—probability is a
measure. On the other hand, in the standard approach of
Laplacef17g additivity can be established starting from the
definition of probability of a composite event as a ratio of the
number of favorable equiprobable events to the total. The
key ingredient that makes this derivation of additivity pos-
sible is equiprobability: We have independent proof that
there exists a set of elementary events that are swappable
and, hence, have the same probability.

Envariance under swaps is such an independent criterion.
Using it we can establishobjectivelysin contrast to Laplace,
who had to rely on the subjective “state of mind” of the
observerd that certain events are equiprobable. We can then
follow Laplace’s strategy and use equiprobability to prove
additivity. This is important, as additivity of probabilities
should not be automatically and uncritically adopted in the
quantum setting. After all, quantum theory is based on the
principle of superposition—the principle of additivity of
complex amplitudes—which is prima facie incompatible
with additivity of probabilities, as is illustrated by the
double-slit experiment.

Phases between the recordspointerd statessor, more gen-
erally, between any set of Schmidt statesd do not influence
the outcome of any measurement that can be carried out on
the apparatussor memoryd, as theorem 1 and our discussion
in Sec. IV demonstrate. This independence of the local
state from global phases invalidates the principle of
superposition—the systems of interestsor the pointer of the
apparatus or the memory of the observerd are “open”—
entangled with the environment. As a consequence, we can,
in effect, starting from envariance,establishsrather than pos-
tulated the Laplacian formula for the probability of a com-
posite event.

Lemma 5. The probability of a compositescoarse-grainedd
event consisting of a subset

k ; hk1 ∨ k2 ∨ ¯ ∨ knk
j s25d

of nk of the totalN envariantly swappable mutually exclusive
exhaustive fine-grained events associated with records corre-
sponding to pointer states of the global state, Eq.s21d,
uC̄SAEl=ok=1

N eifkuskluAklu«kl=ok=1
N eifkusk,Aksskdlu«kl, is given

by

pskd =
nk

N
. s26d

To prove additivity of probabilities using envariance we
consider the state

uYĀASEl ~ o
k

uĀklo
kPk

uAklusklu«kl, s27d

representing both the fine-graineduAkl and coarse-grained

uĀkl records. We first note that the form ofuYĀASEl justifies
assigning zero probability tousjl’s that do not appear—i.e.,
appear with zero amplitude—in the initial state of the sys-
tem. Quite simply, there is no state of the observer with a
record of such zero-amplitude Schmidt states of the system
in uYĀASEl, Eq. s27d.

To establish lemma 5 we shall further accept basic impli-
cations of envariance: When there are totalN envariantly
swappable outcome states and they exhaust all of the pos-
sible outcomes, each should be assigned probability of 1/N,
in accordance with Eq.s7ad. We also note that when coarse-
grained events are defined as unions of fine-grained events,
Eq. s25d, the conditional probability of the coarse-grained
event is

pskukd = 1, k P k, s28ad

pskukd = 0, k ¹ k. s28bd

To demonstrate lemma 5 we need one more property—the
fact that when a certain eventU fpsUd=1g can be decom-
posed into two mutually exclusive events,U=k∨k', their
probabilities must add to unity:

psUd = psk ∨ k'd = pskd + psk'd = 1. s29d

This assumption introducessin a very limited settingd addi-
tivity. It is equivalent to the statement that “something will
certainly happen.”

Proof of lemma 5 starts with the observation that prob-
ability of any composite eventk of the form of Eq.s25d can
be obtained recursively—by subtracting, one by one, prob-
abilities of all the fine-grained events that belong tok' and
exploiting the consequences of the implication, Eq.s28d,
along with Eq.s29d. Thus, as a first step, we have

pshk1 ∨ k2 ∨ ¯ ∨ knk
∨ ¯ ∨ kN−1j + pskNd = 1.

Moreover, for all fine-grained eventspskd=1/N. Hence,

pshk1 ∨ k2 ∨ ¯ ∨ knk
∨ ¯ ∨ kN−1jd = 1 −

1

N
.

Furthermoresand this is the next recursive stepd, the condi-
tional probability of the eventhk1∨k2∨ ¯ ∨knk

∨ ¯ ∨kN−2j
given the eventhk1∨k2∨ ¯ ∨knk

∨ ¯ ∨kN−1j is

pshk1 ∨ k2 ∨ ¯ ∨ kN−2juhk1 ∨ k2 ∨ ¯ ∨ kN−1jd = 1 −
1

N − 1
,

and so the unconditional probability must be
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pshk1 ∨ k2 ∨ . . . ∨ knk
∨ ¯ ∨ kN−2juUd

= S1 −
1

N
DS1 −

1

N − 1
D .

Repeating this procedure untill only the desired composite
eventk remains we have

pshk1 ∨ k2 ∨ ¯ ∨ knk
jd

= S1 −
1

N
D¯ S1 −

1

N − sN − nk − 1dD .

After some elementary algebra we finally recover

pshk1 ∨ k2 ∨ ¯ ∨ knk
jd =

nk

N
.

Hence, Eq.s26d holds. Q.E.D.
Corollary. The probability of mutually compatible exclu-

sive eventsk ,l ,m , . . . that can be decomposed into unions of
envariantly swappable elementary events are additive:

psk ∨ l ∨ m ∨ ¯ d = pskd + psld + psmd + ¯ . s30d

Note that in establishing lemma 5 we have only consid-
ered situations that can be reduced to certainty or impossi-
bility sthat is, cases corresponding to the absolute value of
the scalar product equal to 1 and 0d. This is in keeping with
our strategy of deriving probability and, in particular, of ar-
riving at Born’s rule from certainty and symmetries.

2. Algebra of records as the algebra of events

We can take this approach further. To this end, we shall no
longer require coarse-grained events to be mutually exclu-
sive, although we continue to insist that they be defined by
the records inscribed in the pointer states. An algebra of
eventsf20g can be then defined by simply identifying events
with records. The logical product of any two coarse-grained
eventsk ,l corresponds to the product of the projection op-
erators that act on the memory Hilbert space—on the corre-
sponding records:

k ∧ l =
def

PkPl = Pk∧l. s31ad

The logical sum is represented by a projection onto the union
of the Hilbert subspaces:

k ∨ l =
def

Pk + Pl − PkPl = Pk∨l. s31bd

Last but not least, a complement of the eventk corresponds
to

k' =
def

PU − Pk = Pk'. s31cd

With this set of definitions it is now fairly straightforward to
show the following.

Theorem 4. Events corresponding to the records stored in
the memory pointer states define a Boolean algebra.

Proof. To show that the algebra of records is Boolean we
need to show that coarse-grained events satisfy any of the
sseveral equivalent; see, e.g.,f42gd sets of axioms that define
Boolean algebras:

sad Commutativity:

Pk∨l = Pl∨k, s32ad

Pk∧l = Pl∧k. s32a8d

sbd Associativity:

Psk∨ld∨m = Pl∨sk∨md, s32bd

Psk∧ld∧m = Pl∧sk∧md. s32b8d

scd Absorptivity:

Pk∨sl∧ld = Pk, s32cd

Pk∨sl∧kd = Pk. s32c8d

sdd Distributivity:

Pk∨sl∧md = Psk∨ld∧sk∨md, s32dd

Pk∧sl∨md = Psk∧ld∨sk∧md. s32d8d

sed Orthocompletness:

Pk∨sl∧l'd = Pk, s32ed

Pk∧sl∨l'd = Pk. s32e8d

Proofs of sad–sed are straightforward manipulations of
projection operators. We leave them as an exercise to the
interested reader. As an example we give one of the proofs
of distributivity: Pk∧sl∨md=PksPl+Pm−PlPmd=PkPl

+PkPm−sPkd2PlPm=Pk∧l+Pk∧m−Pk∧lPk∧m=Psk∧ld∨sk∧md.
The other distributivity axiom is demonstrated equally easily.
Q.E.D.

These record projectors commute because records are as-
sociated with the orthonormal pointer basis of the memory of
the observer or of the apparatus: It is impossible to consult
memory cell in any other basis, so the problems with dis-
tributivity pointed out by Birkhoff and von Neumannf43g
simply do not arise—when records are kept in orthonormal
pointer states, there is no need for “quantum logic.”

Theorem 4 entitles one to think of the outcomes of
measurements—of the records kept in various pointer
states—in classical terms. Projectors corresponding to
pointer subspaces define overlapping but compatible vol-
umes inside the memory Hilbert space. The algebra of such
composite eventssdefined as coarse-grained recordsd is in-
deed Boolean. The danger of the loss of additivityswhich in
quantum systems is intimately tied to the principle of super-
positiond has been averted: The distributive law of classical
logic holds.

3. Boole and Bohr: Interpretational consequences

In a sense, this means that after a lengthy relative-state
detour we have arrived at a resolution of the measurement
problem quite compatible with the one advocated by Bohr
f44g. The set of pointer states of the apparatus along with the
prescription of howA will interact with S suffices to define
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the “classical apparatus” the Copenhagen interpretation de-
mands as a key to closure of the “quantum phenomenon”
brought about by a measurement. Our analysis shows how
one can put together such a “classical apparatus” from quan-
tum components. Continuous entangling interactions of the
memory of the observer or of the pointer of the apparatus
with the environment are essential. They assure einselection,
yielding commutingsand, hence, Boolean—see, e.g., Ref.
f45gd sets of events—sets of future records.

As we have already noted, there is a significant difference
between the transition from quantum toseffectivelyd classi-
cal we have described above and a measurement on anab
initio classical system, where one can always imagine that
there is a preexisting answer, waiting to be revealed by the
measurement. In the quantum case the answer is induced by
the measurement: Uncertainty about the outcome arises
when the observer who knows the initial state of the system
changes the observable of interest. Once the record has been
made and the interaction with the environment singled out
the preferred pointer basis, one can act “as if,” from then on,
there was a definite but unknown outcome—a probabilistic,
effectively classical preexisting event. Inconsistencies in this
neo-Copenhagen strategy based on an existential interpreta-
tion f3,8,15g could be exposed only if the observer had per-
fect control of the environment and decided to forgo knowl-
edge of the state ofS in favor of the global state ofSE.

One of the most intriguing conclusions from the study of
the consequences of envariance for quantum measurements
is the incompatibility between the observer finding outsand,
therefore, knowingd the outcome, on the one hand, and his
ability to expose quantum aspects of the whole on the other:
Whenever entanglement is present, the two are obviously
complementary. Once the state of the observer is described
by sand therefore tied tod a certain outcome, he loses the
ability to control global observables he would need to access
to confirm the overall coherence of the state vector. One of
the virtues of the existential interpretation is the clarity with
which this complementarity is exhibited.

Specifying the measurement scheme along with the cou-
pling to the environment—and, hence, with the set of pointer
states—fixes the menu of possible events. We have already
demonstratedstheorem 4d that such events associated with
future records can be consistently assigned probabilities. The
question that remains open concerns the relation between
these probabilities and the premeasurement-state vector. We
have arrived at a partial answer: Whenever the complete set
of commuting observables can be fine-grained into events
that are envariantly swappable, the associated fine-grained
probabilities must be equal. We also note that when some
potential record state appears with a coefficient that is iden-
tically equal to zero, it must be assigned zero probability.
This is very much a consequence of the existential interpre-
tation: An observer with the corresponding record simply
does not exist in the universal-state vector. Last but not least,
probabilities of mutually exclusive events are additive.

We conclude that the theory of probability that refers to
the recordsinscribed in the pointer states singled out by en-
variance can be consistently developed as a classical prob-
ability theory. This is in spite of the fact that the quantum
states these records refer to cannot be consistently repre-

sented by probabilities. A good example of this situation is
provided by Bell’s inequalitiesf46g. There the measurement
outcomes cannot be predicted by assuming any probability
distribution over the states of the members of the measured
Einstein-Podolsky-RosensEPRd pair, but records of these
outcomes are perfectly classical. This is because “an event is
not an event until it becomes a record of an event,” as one
could say paraphrasing Wheeler’s paraphrasef37g of Bohr.
The entangled state of two spins cannot be associated with
“events” that correspond to different noncompatible basis
states. However, once these states have been recorded in the
preferred basis of the apparatus, event space can be defined
by the records and all steps that lead to probabilities can be
taken.

C. Born’s rule for the probability of a record

Consider now the case of unequal coefficients, Eq.s8ad.
After it is recorded by one of the memory cells of the ob-
server we get

ucSAEl = o
k=1

N

Îmk/MuskluAklu«kl, s33d

with M =ok=1
N mk. An observer can verify that the joint state

of SAE is indeedcSAE by a direct measurement in which
one of his memory cells is treated as an external system.
Given this informationfi.e., the form of the joint state, Eq.
s33dg he can convince himself that Born’s rule holds—that it
gives the correct answers about the probabilities of various
potential recordsuAkl and corresponding outcome statesuskl
fwhich need not be orthogonal—see discussion following
Eq. s22dg. This can be seen in several different waysf2–4g of
which we choose the following: Consider another premea-
surement involving a counterC that leads to

ucSECl ~ o
k=1

N

Îmkusklu«kluCkl. s34d

This correlation can be established either by interaction with
S or E salthough this last option may be preferred, as it
seems “safer”—in the absence of any interaction withS
probabilities of future recordsuAkl’s should not changed. In
any case, the fact that this can be done by interaction with
either S or E leading to the sameucSECl proves that this
“safety concern” was not really justified.

As before, we now imagine that

uCkl = o
jk=mk−1+1

mk

ucjk
l/Îmk, s35d

with mk=mk−1+mk andm0=0. Note that the observer knows
the initial state of the systemuwl, Eq. s12d. Hence, we can
safely assume that he also knows the coefficients of the state
cSE or cSAE he will be dealing with. Therefore, findingC
with the desired dimensionality of the respective subspaces
and correlating it withE in the right way is not a “hit-or-
miss” proposition—it can be always accomplished using the
information in the observer’s possession. It is also straight-
forward in principle to find the environment degrees of free-
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dom that would decohere the fine-grained states ofC, so that
the complete state would become

uCSECl ~ o
jk=1

M

usks jkd,cjk
luejk

l, s36d

where ks jd=k iff mk−1, j ømk. This state is obviously en-
variant under swaps ofusks jkd ,cjk

l. Hence, by Eq.s7ad,

pjk
; pscjk

d ; psusks jkd,cjk
ld = 1/M .

Moreover, measurement of the observable with the eigen-
stateshusklj yields

uA0luCSECl ~ o
k=1

N

uAkl o
jk=mk−1+1

mk

usks jkd,cjk
luejk

l. s37d

These disjoint sets correspond to different record statesuAkl
that are labled byk, each of them containingmk individual
equiprobable events. Therefore, using Eq.s26d, lemma 5, and
its corollary, we recover Born’s rule

pk ; psskd = o
jk=mk−1+1

mk

psusks jkdu,ucjk
ld = mk/M = uaku2.

s38d

As before, extending it to the case of when the probabilities
are not rational is straightforward since rational numbers are
dense among the real numbers.

This appeal to continuity can be made more precise now,
providing we recognize that—essentially as a consequence
of lemma 5—the probability of an eventl that includes an
eventk must be at least as large as the probability ofk:

k P l ⇒ pskd ø psld. s39d

This is easily seen as a consequence of Eqs.s29d ands30d. It
is then straightforward to set up a limiting procedure that
bounds an irrational probability from above and from below
with sequences of states with rational probabilities such that
mn

−/Mnøpskdømn
+/Mnø. As Mn approaches infinity,pskd

= uaku2 obtains in the limit.
We have waited until now to detail this continuity argu-

ment because it can be rigorously put forward only after
additivity of probabilities has been established. And as has
been known since the inception of modern quantum theory,
the superposition principle is in conflict with the additivity of
probabilities: For example, Eq.s39d would not hold if
“events” were not associated with the records, as Eq.s30d
does not hold for arbitrary states. Furthermore, Eq.s30d and
the distributivity axioms are violated in the double-slit ex-
periment if “particles passing through the leftsrightd slit” are
identified as events. They regain validity when “thespointer
basisd record of a particle passing through the leftsrightd slit”
are regarded as eventssand the interference pattern disap-
pearsd. We note again that this is essentially Bohr’s mantra,
as reported by Wheelerf37g. The only difference is that the
record need not be made by anab initio a classical
apparatus—an effectively classical apparatus with a set of
memory states fixed as a consequence of incessant monitor-
ing by E suffices to do the job. It takes a bit more effort to

extend Born’s rule to the case of continuous spectra. We
show how to do that in Appendix.

In this section we have established that events associated
with anticipated future records correspond to a Boolean
structure. This allowed us to assign probabilities to potential
outcomes. Any compatible set of outcomes—any set of mea-
surements that can be associated with orthonormal memory
states of the observer, apparatus, etc.—can be analyzed in
this fashion. An observer makes a choice of what he will
measure, but the inevitable entangling interaction with the
environment will select a certain preferred set of pointer
states. So, ultimately, the observer uses probabilities to an-
ticipate his future state.

Once we have established that pointer states can be as-
signed probabilities, we have asked about their connection
with the coefficients of the premeasurement state of the sys-
tem. Here the answer was based on the same idea of envari-
ance invoked in Sec. II. In effect, coarse-grained outcome
states are compatible and can be always fine-grained by us-
ing suitable ancilla so that Hilbert-space volumes corre-
sponding to various possible compatible fine-grained out-
comes contain same “concentrations” of probability. This
was done by “dilution” of the original state with the help of
the counterweight ancillaC. Envariance can be then used to
confirm that all of the fine-grained cells must be assigned the
same measure—and, hence, the same probability. The prob-
ability of coarse-grained events was derived by counting the
number of fine-grained cells. It is givensas we have estab-
lished in lemma 5d by the fraction of the total number of
such envariantsand, hence, equivalentd cells. This is very
much in the spirit of the Laplacian definition of probability—
“the ratio of the number of favorable events to the total num-
ber of events.” The advantage of the quantum discussion
rests in its ability to rigorously show when such elementary
events are envariantly swappable and, hence, equiprobable.
This transforms a subjective definition based on the state of
mind of the observer into objective, experimentally testable,
statement about symmetries of entangled states.

VI. BORN’S RULE, RELATIVE FREQUENCIES,
AND ENVARIANCE

The envariance-based derivation of Born’s rule introduces
probability as a tool the observer adopts to predict the
future—or, more precisely, to predict his future state given
that he decides to measure some specific observable. The
outcomes of the planned measurements are uncertain be-
cause of quantum indeterminacy. Even when the observer
knows all that can be known about the system—even whenS
is in a pure state—ignorance appears whenever the to-be-
measured observable does not have the state prepared by the
preceding measurement among its eigenstates.

The observer’s aim is to assess the likelihood of a particu-
lar future record in comparison with the alternatives. The
measure that emerges is based on the equiprobability of cer-
tain mutually exclusive eventssorthogonal statesd under
swaps. They are provably equally probable because the glo-
bal SE state can be restored by counterswaps in the environ-
ment. The environment can be invoked already for the pure
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state ofS, Eq. s12d, when contemplating possible outcomes
of the future measurements: it will inevitably and predictably
entangle with the records causing decoherence and unpre-
dictability.

The fundamentally predictive role of probabilities re-
flected in our derivation of Born’s rule is often contrasted
with the “relative frequency interpretation”f18,19g. Imagine
an observer who—instead of counting numbers of mutually
exclusive envariantly swappable states—performs the same
experiment over and over and infers his chances of getting a
certain outcome in the next round from the past records by
assuming that he is in effect dealing with an infinite en-
semble deduced from his finite data.

Supporters of the Bayesian-Laplacian “epistemic” and
subjective view of probabilities and of the opposing “relative
frequency” approach have been often at odds, taking their
own views to dogmatic extremes while pointing out flaws of
the oppositionf19g. The central difficulty pointed out by the
frequentists in their criticism of the Bayesian approach—that
ignorance gives one no right to make any inferences and,
hence, no right to assignany probabilities to the possible
outcomes—is difficult to ignore. Therefore, Bayesian appeals
to symmetry through the principle of indifference are inap-
propriate when they involve the “state of mind” of the ob-
server.

However, while such criticisms are very relevant in the
classical setting, they simply do not apply here: In quantum
physics ignorance of a future outcome can be demonstrated
and quantified by employing objective symmetries of the
preexisting stateswhich can be perfectly known to the ob-
serverd. This was our strategy. Thus, in questions of funda-
mental significance it would seem appropriate to deduce the
probability by identifying the relevant quantum symmetry—
envariance under swaps—and by counting the fundamentally
swappablesand, hence, equiprobabled outcomes.

This strategy may not be always applicable—for instance,
in some situations where such fundamentally equiprobable
events are difficult to identify. So reliance on actuarian tables
in the insurance business is difficult to question. However, in
quantum measurements we are dealing with probabilities of
a single event at a very fundamental level. Frequencies
should be secondary. The relative frequency approach was
rightly criticized for requiring infinite ensembles. Indeed,
this task of extrapolating—deducing the infinite ensemble
required for future predictions from the relative frequencies
of the past outcomes—involves a subjective element studied,
e.g., by de Finettif47g.

Nevertheless, even when one can deduce probabilitiesa
priori using envariance, they better be consistent with the
relative frequencies estimated by the observera posterioriin
sufficiently large samples. Such a “consistency check” is one
of the motivations for this section. More importantly, our
discussion will explore and clarify the relation of thea priori
probabilities to the relative frequencies. This has significance
for understanding the implications of envariance in an exis-
tential interpretation of quantum physics. We shall conclude
that when probabilities can be deduced directly from the pure
state, the two approaches are in agreement, but that thea
priori probabilities obtained from envariance-based argu-
ments are more fundamental.

Given the central idea of our approach—that the symp-
toms of classicality and the effective collapse are induced by
the interaction with the environment—we shall conduct our
discussion in the relative state setting. Thus, we imagine an
observer presented with a large ensemble of systems, each
prepared in the same stateuwl, Eq. s12d. The observer em-
ploys a counterC to spredmeasure each of the systems in the
same basisuskl:

s40d

Note that the aboveN measurements are carried out “in
parallel,” one on each ofN systems. We have reflected this
difference in notation by using “⇒” instead of “→” of, say,
Eq. s11bd. To simplify the notation we limit our consider-
ations to the case when there are just two possible outcomes,
so that

us1l = u0l, us2l = u1l,

with k0u1l=0. Moreover, as before, we imagine that for
some integerm and M s0,m,Md we haveuau2= uk0uwlu2

=m/M, uau2+ ubu2=1, so that a countable way exists to fur-
ther “resolve” the state above into superpositions that have
the same absolute values of the coefficients. In this manner,
starting from

uwl = au0l + bu1l, s129d

we arrive at

uFSCE
N l ~ p

l=1

N So
j=1

m

u0lucjluejl + o
j=m+1

M

u1lucjluejlD
l

. s41d

The steps that lead to this state in the composite Hilbert
spacesHS ^ HC ^ HEd^N can be reproduced by the reader
following the strategy of Sec. II. We assumefin analogy with
Eqs.s9d and s35dg that

uC0l = o
j=1

m

ucjl/Îm, uC1l = o
j=m+1

M

ucjl/ÎM − m.

In effect, we assume that the Hilbert space of each counter
cell has a sufficient dimensionality to allow for the increased
resolution needed to “even the odds” between the mutually
exclusive fine-graineducjl.

We can now carry out the product in Eq.s41d. The result-
ing sum hasMN distinct terms:

uFSCE
N l = M−No

hhCj

uhSCEl. s42d

Individual recorded histories have the form of ordered prod-
ucts:

uhSCEl = ¯ su0lk1
ucjømlk1

uejlk1
d ¯ su1lk2

ucj.mlk2
uejlk2

d ¯ .

s43ad

That is, they reflect individual sequences of fine-grained
records made by the observer. EachuhSCEl is completely de-
termined by the history of fine-grained counts:
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uhCl = ¯ ucjlk1
¯ ucjlk2

¯ . s43bd

Thus,hSC is obviously implied byhC. Moreover, by assump-
tion, states of theN distinct environments are individually
Schmidt states, Eq.s41d—that is, orthonormal and in one-to-
one correspondence with the states ofC. So, in the end, given
the initial state ofE, eachhSCE is completely determined by
hC: The history of the fine-grained counts implies the whole
history of measurements—sequences of the detected states of
the system as well as the “history of decoherence:”

uhSCEl = p
k=1

N
„uskscjdlucjluejl…k = uhSshCdl ^ uhCl ^ uhEshCdl.

s44d

This structure of the set of complete histories and the fact
that hC⇒hSC as well ashC⇒hSCE are important for two rea-
sons. We shall use them to prove that the superensemble
uFSCE

N l is suitably envariantsso that we can attribute the same
probability to the distinct historieshSCd. Moreover, we shall
have to count numbers of equiprobable histories that yield
the same numbers of detectionssof, say, “1”d in S to com-
pute relative frequencies.

Let us start with the proof of envariance. We need to
demonstrate that any two fine-grained historieshSC that ap-
pear in the above superensemble, Eq.s44d, can be envari-
antly swapped. A general form of the history representing
correlated states ofS andC only is

uhj1j2¯ jN
SC l = us1lucj1

lus2lucj2
l ¯ usklucjk

l ¯ usNlucjNl.

s45d

The SC swap operator that exchanges any two histories is
given by

uSCshj1j2¯ jN
SC 
 h

j18 j28¯ jN8
SC d = uhj1j2¯ jN

SC lkh
j18 j28¯ jN8
SC u + H.c.

s46ad

or, more succinctly,

uSCshSC
 h8SCd = uhSClkh8SCu + H.c. s46bd

When both histories appear in the state, Eq.s41d, this swap
can be obviously undone by a counterswap in the environ-
ment:

uEshj1j2¯ jN
E 
 h

j18 j28¯ jN8
E d = uej1

l ¯ uejNlkejN8 u ¯ kej18
u + H.c.

s46cd

We have now established that each fine-grained history in
our many-worlds version of an ensemble has the same prob-
ability:

pshd = M−N. s47d

To facilitate the calculation of the relative frequencies we
sort the superensemble of Eq.s42d which hasMN terms into
2N terms that differ only by the pattern of detections of the
state “u1l” si.e., we group different fine-resolution terms to-
getherd. Next, we group these 2N terms intoN+1 terms that

differ only in the total numbern of 1’s si.e., we ignore the
“order of appearance” of 0’s and 1’sd.

This operation involves summing up the numbers of de-
tections of 1’s. It could even be implemented in the memory
of the apparatus or of the observer by aregister R. The
register performs a unitary transformation—a “subroutine”
that operates on states of the counterC that has the record of
the complete fine-grained history. The register sums up the
number of detections of 1 and writes down the result “n” in
the suitable register cell:

Ru0lRuhCl = unlRuhCl.

The register cell could work equally well by summing up the
number of 1’s directly in the states of the systemS, Eq.
s43ad, but it seems more appropriate to let the observer useC
for this purpose. The register cell has at leastN possible
states.

The result can be written in an abbreviated form as

uFSCRE
N l ~ o

hC
unlRuhSCluhEl s428d

=o
n=0

N SN
n
DunlRu0lN−nu1ln

3So
j=1

m

ucjluejlDN−nS o
j=m+1

M

ucjluejlDn

. s429d

The first line above has allMN histories—it represents the
whole superensemble before any sorting was implemented.
Equations429d groups histories with the same numbers of 1’s
together. There, we have compensated for not distinguishing
betweens N

n
d distinct sequences of 0’s and 1’s with the coef-

ficient.
The probability that the observer will detectn 1’s in N

measurements is proportional to the number of envariantly
swappable fine-grained histories withn detections of 1:

pNsnd = SN
n
DmN−nsM − mdn

MN = SN
n
Duau2sN−ndubun. s48d

This is of course the familiar binomial distribution. As be-
fore, we can address the case when probabilities are not com-
mensurate by noting that rational numbers are dense among
real numbers.

The above discussion was valid for anyN. We now note
that, for a largeN, the binomial distribution of Eq.s48d can
be approximated by a Gaussian:

pNsnd = SN
n
Duau2sN−ndubun

<
1

Î2pNuabu
expH− Sn − Nubu2

ÎNuabu
D2J . s49d

Hence, in the limit of largeN the relative frequency of 1’s is
sharply peaked around the value predicted by Born’s rule:
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rBorn =
nBorn

N = ubu2. s50d

The peak has a finite width, so that the expected deviationdn
is of the order

dn = ÎNuabu. s51d

Generalization to the case when there are more than two
outcomes is straightforward: All of the steps leading to Eq.
s48d can be repeated, and the large-N limit can be the taken
using Tchebychev’s theoremf20g.

While the relative frequencyr =n/N is sharply peaked
aroundrBorn, its “correct” value, the probability that the num-
ber of 1’s concidesexactlywith nBorn predicted by Eq.s50d,
tends todecreasewith increasingN. This is so even when
ubu2 is a rational number with a denominator that is a mul-
tiple of N. More significantly, the count of envariantly swap-
pable histories that yieldnP fnBorn−Dn,nBorn+Dng de-
creases with increasing half-width of the distribution, Eq.
s51d, asDn/ÎNuabu.

On the other hand, the half-width of the distribution in-
creases only withÎN. Therefore, for a sufficiently largeN
almost all histories will yield a relative frequency within any
fixed-size relative frequency intervalrBorn−Dr , r , rBorn
+Dr. Moreover,

lim
N→`

pNsn/Nd = dsr − rBornd. s52d

Analogous conclusions are known in standard probability
theoryf20g. We recount them here for the quantum superen-
semble, Eq.s42d, as similar questions have led to confusion
in the past in the quantum setting of many-worlds relative
frequency derivationsssee, e.g., the critical comments of
Squires f28g pointing out inconsistencies of frequency
operator-based approachesf22,23g to derivation of Born’s
ruled.

It is tempting to compare the superensemble of Eqs.s42d
and s44d with the “collective” employedsespecially by von
Misesf18gd to define probabilities using relative frequencies.
A collective is an ordered infinite ensemble of events when
sid it allows for the existence of limiting relative frequencies
that are sii d independent under a selectionsusing the so-
called “place selection function”d of any infinite subset of the
members of the collective. Place selection functions are
meant to represent betting strategies: The playersor ob-
serverd can selectsor rejectd the next member of an ensemble
using any algorithm that does not refer to the outcomes of
future measurements—to the state of the next member of the
ensemble—but only to its “address,” its “place” in the en-
semble. There was initially some controversy related to this
randomness postulate: Obviously, it is possible to influence
limits in infinite series by selecting subsets of terms. This
problem has been, however, settledsmore or less along the
lines anticipated by von Misesd by the work of Solomonoff,
Kolmogorov, and Chiatin: The algorithmic randomness they
have introducedsseef48g for an overview and referencesd
provides a deep and rigorous definition of what is random.
However, the very idea of usinginfinite ensembles to define
probabilities forces one to extrapolatefinite data sets—

outcomes of measurements. Any such extrapolation is a sub-
jective guess.

Chance and determinism combine in an unanticipated
manner in quantum theory: The Everettian superensemble of
Eq. s42d evolves unitarily and, hence, deterministically. Nev-
ertheless, it satisfies a natural generalization of the von
Mises’ randomness postulate without any restrictions on
place selection functions. This is easy to see, as each mea-
surement yields every outcome with the same coefficients, so
choosing any subset of measurements—any subset ofk’s in
the product representation of the superensemble—will have
no effect on the limiting relative frequencies.

The randomness postulate of von Mises is mirrored by the
assumption of “exchangeability” introduced in a fundamen-
tally very differents“subjectivist”d approach based on deci-
sion theoryssee, e.g., de Finettif47gd. There the goal is to
deduce probability of the next outcome from a finite se-
quence of outcomes of preceding measurements. Exchange-
ability is meant to assure that the “rules of the game” do not
change as the consecutive measurements are carried out. It
captures thesvon Mises’d idea that each new measurement is
“drawn at random from the same collective” but—in keeping
with the Laplacian spirit—avoids reference to preexisting in-
finite ensembles. The superensemble of equationss40d–s42d
is obviously exchangeable: it is a superposition of all pos-
sible ensembles, with all possible relative frequencies.
Hence, the order of any two measurements can be permuted
with no effect on the partial relative frequencies, etc., pro-
viding that the preparation of the initial-state vector and the
measured observable remain unchanged.

“Maverick branches” with relative frequencies that are in-
consistent with Born’s rulese.g., a branch with 1’s onlyd
plagued the many-worlds relative frequency approach
f21–28g. Maverick branches are “alive and well” in the su-
perensemble, but have negligible probabilitiessdeduced now
directly from envarianced and, therefore, forN@1, are of
little consequence. We have already discussed the case of
small departures above. As the numberN of measurements
increases, the probability of detecting a frequency that is
inconsistent with the predictions of Born’s rule becomes neg-
ligible in accordance with Eqs.s48d and s49d. Thus, it is
conceivable but very improbablethat an observer will record
in his experiments a relative frequency of 1’s that is far from
rBorn.

VII. DISCUSSION

Past approaches to the derivation of Born’s rule have of-
ten had, usually as an explicitly stated goal, the “recovery”
of the classical definition probabilities. The limitations inher-
ent in such a formulation of the problem were in part respon-
sible for their limited success. The recovery of something as
ill defined and controversial as any of the classical defini-
tions of probability was bound to be plagued with difficul-
ties. Moreover, the recovery of classical probabilities sug-
gests that the process should start with getting rid of most
quantum aspects of quantum theory to make it closer to clas-
sical.

The only known way to recognize effective classicality in
a wholly quantum universe is based on decoherence. But
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decoherence is off limits as it employs tools dependent on
Born’s rule. On the other hand, when classicality was “im-
posed by force” by Gleasonf30g or in Refs. f31,32g, this
seemed to work to a degree, although interpretational issues
were left largely unaddressed and doubts have rightly per-
sistedf26–29,33g.

A. Envariance and decoherence

We have taken a very different approach. The derivation
of Born’s rule described here is extravagantly quantum: En-
variance relies on entanglement, perhaps the most quantum
manifestation of quantum physics, still regarded by some as
a “paradox.” Instead of first taming quantum theory to make
it look classical, we have used purely quantum symmetries
of entangled states as a key to unlocking the meaning of
probability in a quantum universe. So to arrive at Born’s rule
we have put asidesat least temporarilyd tools—and, hence,
results—of decoherence, as relying on them threatened cir-
cularity. This meant that even such basic symptoms of clas-
sicality and key ingredients of contemporary quantum mea-
surement theory as the einselection of preferred pointer states
had to be motivated and rederived anew.

Putting aside tools and results of decoherence did not
force us to forget about the role of the environment. To un-
derstand the emergence of the classical one must regard
quantum mechanics as a theory of correlations between sys-
tems. This stresses the relational aspects of quantum states
emphasized by Rovellif49g. Moreover, to understand the
origins of ignorance, to motivate the introduction of prob-
abilities, and to appreciate their role in making predictions
one needs to analyze systems that interact with their environ-
ments and focus on correlations that survive in such open
settings.

Once thesesin retrospect, naturald steps are taken, it is
possible to see how an observer can be ignorant about the
outcome of the measurement he is about to perform on the
perfectly known system—onS, which is in a pure state:
Ignorance of the future outcome arises as a consequence of
quantum indeterminacy and the interactionsof the system,
the pointer of apparatus, or the observer’s memoryd with the
environment. Decoherence inevitably follows premeasure-
ments. Entanglement between the system and memory takes
memory out of the “ready-to-measure” pointer state into a
superposition ofsoutcomed pointer states. This in turn means
that theSA entanglement spreads into correlations with the
environment in such a way that the observer may as well
assume from the outset thatS sand/or Ad was entangled
with E.

Eigenstates of the to-be-measured Hermitian observable
turn—as a result of measurement and decoherence—into
Schmidt states ofS in the resulting decomposition of the
entangled state ofSE. This is also the case whenE is in a
mixed state to begin with—such states can be purified, and
conclusions about the Schmidt states ofS follow. The rest of
our argument goes through unimpeded. Thus, the observer
may as well recognize the inevitable and focus on the re-
maining information about the system that can be deduced
from the resulting entangled state. Envariance can be then

readily demonstrated and—given additional assumptions we
shall not recapitulate here—used to arrive at Born’s rule.
And when measurements are not ideal,si.e., do not preserve
the state of the system, do not correlate record states with
orthonormal states ofS, etc.d future record states ofA
swhich can be safely assumed to be orthogonald can be used
to motivate an envariance-based approach.

One key difference between the classical definition of
probability and our envariant derivation of Born’s rule is the
reliability of the prior information about the state of the sys-
tem available to the observer in the quantum case: That is,
the observer can use his information about the initial state of
the systemuwl to assess the chances of outcomes of future
measurements onS he may contemplate. In classical discus-
sions the nature and implications of ignorance were the most
contentious issuesf17–20g. Inferring the prior probability
distribution “from ignorance alone” is impossible, as was
rightly noted by frequentists. Attempts to invoke symmetry
f50g were ultimately unconvincingf19g, as they had to refer
to subjective knowledge of the observer and not to the un-
derlying physical state.

By contrast, in quantum physics an observer can reliably
deduce the extent of his ignorance about the future outcome
from the perfect information he has about the present state of
the system and verify his symmetry arguments by perform-
ing appropriate swaps and confirmatory measurements on the
state of, e.g., the compositeSE. This approach preserves
some of the spirit of Laplace, but now the analog of “indif-
ference” is no longer subjective: It is grounded in
measurable—and testable if not yet deliberately tested—
quantum symmetry of entangled states.

Once inevitability of correlations withE is recog-
nized, their key consequence—environment-induced
superselection—can be recoveredwithout the usual tools of
decoherence: Trace and reduced density matrices can be put
aside in favor of a more fundamental approach based on
correlations and environment-assisted invariance. Envariance
shows that phases of states appearing in the Schmidt decom-
position are of no consequence for results of any measure-
ment on the subsystemS sor, for that matter,Ed of the whole
SE. So superpositions of Schmidt states ofS cannot exist, as
relative Schmidt phases have no bearing on the state ofS.

B. Envariance behind the ignorance

Envariance pinpoints the source of ignorance: It is ulti-
mately traced to the globalsquantumd symmetry of entangled
states which in turn implies a nonlocal character of quantum
phases of the coefficients in the Schmidt decomposition. This
immediately leads to the envariance of swaps—they are gen-
erated by changing phases in the eigenvalues of unitaries
diagonal in a basis complementaryse.g., Hadamardd to the
eigenstates of the to-be-measured Hermitian observable.
Swaps are envariant when the state is even and the corre-
sponding Schmidt coefficients have the same absolute val-
ues: Nonlocality of phases implies ignorace about the states
of subsystem and, hence, ignorance of the outcome. Once
envariance of phases is accepted, envariance under swaps
follows and implies equiprobability. A simple counting argu-
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ment leads then very naturally to Born’s rule in case when
coefficients have unequal absolute values.

Note that even an observer presented with an unlimited
supply of copies of the “S half” of identically preparedSE
pairs will eventually conclude—having carried out all the
conceivable measurements—that the state ofS is mixed and
can be represented by the usual reduced density matrix. This
further underscores the objective nature of probabilities, im-
plying ignorance about the future outcomes. A similar level
of objectivity is impossible to attain in approaches that do
not recognize the role of the environment in the quantum-
classical transition precipitated by quantum measurements.
In particular, in the absence of entanglement with someE the
purity of the underlying state ofS would make it impossible
to apply arguments based on permuting outcomes to pure
states of the system: Such permutations generally change the
state of the system and can be detected. As the state is al-
tered, there is no reason to assume that probabilities would
remain the same.

An example of an approach threatened by this difficulty is
Wallace’s elaborationf36g of an idea—due to Deutsch
f24g—to apply decision theory to pure states in order to ar-
rive at Born’s rule. In the original paperf24g this difficulty
was not obvious as the presentation left open the possibility
of a “Copenhagen” point of view with explicit collapse,
where phases do not matter. Indeed, early criticism by Bar-
num et al. f51g was based on inconsistencies implied by the
“Copenhagen reading” of Ref.f24g. Wallace has pointed out
in a series of more recent papers that that criticism does not
apply to the “Everettian reading” off24g. The approach of
Ref. f36g is, however, open to two separate charges. Reliance
on the sclassicald decision theory makes the arguments of
f24,36g very much dependent on decoherence as Wallace of-
ten emphasizes. But as we have noted repeatedly, decoher-
ence cannot be practiced without an independent prior deri-
vation of Born’s rule. Thus, Wallace’s argumentssas well as
a similar “operational approach” of Saundersf52gd appear to
be circular. Even more important is the second problem: per-
muting potential outcomesse.g., using swaps to changeual
~ u1l+ u2l− u3l+ u4l into ubl~ u1l+ u3l− u2l+ u4ld changesthe
state of an isolated system. And a different state ofS could
imply different probabilities. So the key step—irrelevance of
the phases for probabilities of the outcomesswhich we have
demonstrated in theorem 1 by showing that state ofS is
unaffected by envariant transformationsd—cannot be estab-
lished without either relying onE or some very strong as-
sumptions that would have to, in effect, invalidate the prin-
ciple of superposition.

Early assesments of an envariance-based derivation of
Born’s rule f13,16,53g are incisive but also generally posi-
tive. They have focused on the equal-coefficients part of the
proof, covered here by theorems 1 and 2. This is understand-
able, as the proof of equiprobability from envariance is the
key to the rest of the derivation. The consensus so far seems
to be that, apart from the need to clarify some of the steps
sthe task we undertook hered, the envariant derivationf2–4g
of Born’s rule stands. Indeed, as argued by Barnum, assump-
tions of the original derivation could be relaxed by exploiting
the consequences of envariance more completelyf13g. More-
over, there are several interesting and nontrivial variants of

the original proof f3,13,16g, which suggests that the
envariance-based derivation is robust and that the vein of the
physical intuition it has tapped is far from exhausted.

This paper was also written as a critical ifsunderstand-
ablyd friendly review and extension of Refs.f2–4g, although
with a different focus: Any attempt at the derivation of
Born’s rule must be completely independent of any and all of
its consequences we have come to take for granted. There-
fore, my focus here was to look for circularity and to make
certain that there is none in the derivation. In this spirit, I
have fleshed out the “decoherence-free” definition of pointer
states that was briefly discussed in Refs.f2,3g.

Pointer states are the key ingredient of the quantum mea-
surement theory. They define the alternatives in the no-
collapse approach to measurement—they are the potential
events observer is going to place bets on using probabilities.
Their existence was demonstrated using an envariance-
inspired argument—by exploring the stability of correlations
se.g., apparatus systemd in the “open” setting—in the pres-
ence of envariance.

We have noted the dilemma of the observer who can ei-
ther settle for perfect knowledge of the whole—of the global
state which is useless for most purposes but could in prin-
ciple allow for reversibility—or opt to find out the outcome
of his measurement, which will irrevocably “tie him down”
to the branch labeled by the outcome. These existential con-
sequences of information acquisition would preclude him
from reversing the measurement.

Noncommutativity of the relevant global and local ob-
servables is then ultimately responsible for the observer’s
inability “to be a Maxwell’s demon”—to find out the out-
come while retaining the option of reversing the evolution.
Thus, envariance sheds light on the origins of the second law
in the context of measurements, complementing ideas dis-
cussed to datessee, e.g.,f54–56gd and may be even relevant
to some old questions concerning the verifiability and con-
sistency of quantum theoryf57g.

In particular, complementarity of global and local infor-
mation emphasizes the difference between attempting rever-
sal in classical and quantum settings: In classical physics the
state of the whole is a Cartesian product of the states of parts.
Hence, in classical physics perfect knowledge of the state of
the whole implies perfect knowledge of all the parts. In
quantum physics only a subset of states of measure zero in
the composite Hilbert space—pure product states—allows
for that. In all other casesswhich are entangledd knowledge
of the local statesi.e., of Sd precludes knowledge of the
global statesi.e., of SA or SEd. But it is the global state that
is needed to implement a reversal. We shall pursue this in-
sight into the origins of irreversibility elsewhere.

C. Remaining questions and future research

Our study of the quantum origins of probability has not
addressed all of the questions that can and should be raised.
It is therefore appropriate to point out some of the issues that
will benefit from further study. We start by noting the para-
mount role of the division of the Universe into systems. Sys-
tems are the subject of axiomssod and sii d, as well asfacts
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1–3of Sec. II. I have signaled this question beforef3,8g, but
as yet there has been really no discernible progress towards
the fundamentalanswer of what defines a system.

Another interesting issue is the distinction between
“proper” and “improper” mixturesssee, e.g.,f58gd and the
extent to which this may be relevant to the definition of
probabilities. An example of a proper mixture is an ensemble
of pure orthonormal statesseigenstates of its density matrixd
mixed in the right proportions. All that decoherence can offer
are, of course “improper mixtures.” It has been often argued
that improper mixtures cannot be interpreted through an ap-
peal to ignorancef53,58,59g.

I believe there is no point belaboring this issue here: As
we have noted before, an observer can be ignorant of his
future state, of the outcome of the measurement he has de-
cided to carry out. Whether this sort of ignorance is what
used to be meant by “ignorance” in past discussions of the
origin of probabilities may be of some historical interest, but
ignorance of the outcome of the future measurement is
clearly a legitimate use of the concept and, as we have seen
above, quite fruitful. In a sense we have touched on an issue
related to the distinction between proper and improper mix-
tures when we have distinguished between priors observer
can get from someone elsef“the preparer;” see the discus-
sion of Eq.s11dg and from his own records. The “gut feeling”
of this author is thatall the mixtures are due to entanglement
or correlations—that they are all ultimately “improper.”
This is certainly possible if the Universe, as a whole, is quan-
tum. This is also suggested by quantum formalism, which
“refuses to recognize”se.g., in the form of density matricesd
any difference between proper or improper mixtures.

The distinction between classical and quantum “missing
information” is a related issue.Quantum discordf41g seems
to be a good way to measure some aspects of the quantum-
ness of information. And as there are states—pointer states—
that are effectively classical, the question arises as to whether
being ignorant of the relatively objectivef15,3g state of the
pointer observableswhich, as time goes on, is making more
and more imprints on the environment, “advertising” its
states, so that they can be found out by many without being
perturbedd and being ignorant of a state of an isolated quan-
tum system differ in some way.

Quantum Darwinismf3,4,60g sheds light on these issues.
According to quantum Darwinism, classicality is an emer-
gent property of certain observables of a quantum universe.
It arises through selective proliferation of information about
them. Redundancy f3,4,6,60–63g is the measure of
classicality—observables are effectively classical when they
have left many independently accessible records in the rest
of the universe. Approximate classicality arises when there
are very many such records which can be independently con-
sulted. Such proliferation of information is enough to explain
the “objective classical reality” we experience. The idea of
using redundancy to disitinguish between ‘‘the classical’’ and
‘‘the quantum’’ has some “prehistory”f6,61g, and its role in
the emergence of objectivity was brought up beforef15g.
Quantifying redundancy and exploring its consequences is an
evolving subjectf3,4,60–63g which has recently led to in-
sights into the role of pointer observables and into the nature
of “objective existence” in the quantum universe. Indeed,

one can regard it as a modern embodiment of the ideas of
Bohr f44g on the role of amplification.

In light of quantum Darwinism the distinction between
ignorance about future quantum and classical statessand,
hence, quantum or classical probabilitiesd can be understood
as follows: When an observer knows the preexisting states of
a single, isolated quantum system, he may be ignorant of its
future post-measurement statesand, hence, of the outcome of
his about-to-be-carried-out measurementd. This ignorance is
quantumsor at least it is not classicald in the sense that the
observer cannot discover what is already “out there”—there
is no “classical reality” that can be attributed to an isolated
state of a quantum system.

On the other hand, when there are many copies of the
same informationsabout pointer statesd, then an initially ig-
norant observer will be able to deduce from the information
in the environment which of the stable pointer states of the
system was responsible for the imprint. Moreover, he may
confirm his deductions obtained indirectly with a direct mea-
surementswhich can be now designed as nondemolition—
the observer has enough information to know what to mea-
sured. In that situation the assumption that there was a
preexisting state ofS that could be found out without being
perturbed issat least in partd justified by the symptoms.

This relatively objective existenceis all quantum theory
has to offer to account for “classical reality,” but this seems
to be enough. Quantum Darwinism’s account of the emer-
gence of classical reality is in accordance with an existential
interpretation of quantum theoryf3,4,8,15g. Equally impor-
tantly, it is a good model for how we acquire most of our
information—by intercepting a small fraction of the informa-
tion present in the photon environment.

The envariance-based definition of pointer states should
be explored in much more detail, and its consequences com-
pared with the more traditional definitions introduced in the
studies of decoherence. In simple situationsse.g., idealized
measurementsf5–9gd there is no reason to expect any differ-
ences with the pointer states selected by the predictability
sieve. However, in realistic models the predictability sieve
often leads to overcomplete sets of pointer statesf3,15,39g,
and then it is not clear how should one go about deducing
pointer states from envariance.

The above list—the definition of systems, the proper ver-
sus improper mixtures, and “pointer states without
decoherence”—are just the top three positions of a much
longer set of questions concerningtheoreticalimplications of
envariance. However, over and above all of these items one
should place a need for a thoroughexperimentalverification
of envariance. To be sure, envariance is a direct consequence
of quantum theory, and quantum theory has been thoroughly
tested. However, not all of its consequences have been tested
equally thoroughly: The superposition principle is perhaps
the most frequently tested of the quantum principles. Tests of
entanglement are more difficult, but by now are also quite
abundant. They have focused on violations of Bell’s in-
equalities and, more recently, on various applications of en-
tanglement as a resource. These generally require global-
state preparations but local measurements. Tests of
envariance would similarily require global preparationssof
SE stated and local manipulationsse.g., swapsd, but it would
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be very desirable to also have a global final measurement to
show that, following swap in the system, one may restore the
preswap global state of the whole with counterswap in the
environment.

Until recently, the combination of preparations, manipu-
lations, and detections required would have put experimental
verification of envariance squarely in the “gedanken” cat-
egory, but recent progress in implementing quantum infor-
mation processing may place it well within the range of ex-
perimental possibilities. Stakes are high: Envariance offers
the chance to understand the ultimate origin of probability in
physics. The ease with which ignorance can be understood in
the quantum universe and the difficulty of various classical
approaches combine to suggest that perhaps all probabilities
in physics are fundamentally quantum.

Envariance sheds revealing light on the long-suspected
information-theoretic role of quantum states. Moreover, it
provides a physically transparent and deep foundation for the
emergence of “classical reality” from the quantum substrate.
In particular, envariance provides an excellent example of
the epiontic nature of quantum statesf3g: Quantum states
share the role of describing what the observer knows and
what actually exists. In the classical realm these two func-
tions are cleanly separated. Their “quantum inseparability”
was regarded as the source of trouble for interpretations of
quantum theory. In the envariance-based approach to prob-
abilities it turns out to be a blessing in disguise—it gives one
an objective way to quantify ignorance, and it leads to Born’s
rule for probabilities.
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APPENDIX: BORN’S RULE FOR CONTINUOUS SPECTRA

The derivation of Born’s rule we have put forward in the
body of the paper applies when the number of the participat-
ing Schmidt states is finite. Here I shall extend the derivation
first to the case of a countably infinite number of states and
then to the case of continuous spectrafe.g., derivepsxddx
= ucsxdu2 dxg. There are several ways to proceed. I shall
presentsbriefly and, to some extent, at the expense of math-
ematical rigord the proof that is physically the most straight-
forward.

The case of infinitely many participating orthonormal
Schmidt statesfe.g., Eq.s2ad, but with N=`g can be system-
atically approximated with a sequence of finite but increas-
ingly large Nd, chosen to be large enough to account for
almost all likely alternatives. This can be done by splitting
the Schmidt decomposition into a sum of dominant contribu-
tions and a remainder:

uCSECl = o
k=1

Nd

akusklu«kluckl + S o
k=Nd+1

`

akusklu«klDucNd+1l

= o
k=1

Nd

akusklu«kluckl + durNd+1lucNd+1l. sA1d

As Nd increases, terms with the “next largest”uaku are moved
from the unresolved remainder so that the absolute value of
the coefficientd in front of the normalizedurNd+1l decreases.
Using the previous argument based on envariance one can
readily see that

∀køNd
pk = psskd = psckd = uaku2. sA2d

Moreover, the probability of the remainder is

pscNd+1d = udu2. sA3d

It follows that Born’s rule holds for everysk.
The same conclusion can be reached in a slightly more

roundabout way that involves conditional probabilities. The
probability of the remainder ispscNd+1d= udu2. Conditional
probabilities ofsk given that køNd are therefore

pkukøNd
=

uaku2

1 − udu2
.

In the limit of vanishingd this yields Born’s rule for a se-
quence of two measurements. The outcome of the first is—in
that limit—certain: It establishes that the unknown state is
not a remainder. The second measurement is the “high-
resolution” follow-up.

The case of continuouscsxd can be treated by discretizing
it. The most natural strategy is to introduce a set of orthogo-
nal basis functions that allow for a discrete approximation of
csxd:

ucsxdl < o
k

ckukul. sA4d

For instance, we can choose

ukul = 1 for x P fkdx,sk + 1ddxd, 0 otherwise.

sA5d

These functions are neither complete on the real axis nor
normalized:

kkuuku8 l = dx 3 dkk8. sA6d

Normalization can be achieved by dividing eachukul by Îdx.
The coefficientsck are given by

ck =
1

dx
E

kdx

sk+1ddx

dx csxd = kcsxdlk. sA7d

Now,

ucsxdl = uJsxdl + fucsxdl − uJsxdlg = o
k

ckukul + ursxdl.

sA8d

Moreover,
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kJsxdursxdl = 0, sA9d

as can be seen using Eq.sA7d. This orthogonality of the
discrete approximation to the state and the remainder is use-
ful sbut not essentiald to the discussion below. Furthermore,

kJsxduJsxdl = o
k

ucku2 dx = 1 − udu2 ø 1. sA10d

For wave functions that are smooth on small scales in the
limit dx→0 the norm of the remainder vanishes,
krsxd u rsxdl= udu2→0.

One may wonder what happens whencsxd is not suffi-
ciently regular on small scales to allow for the discrete ap-
proximation above to go through without complications. It is
indeed possible to imagine, for example, fractal wave func-
tions or situations where in addition to continuouscsxd there
are discrete points associated with a non-negligible contribu-
tion to the total probability. We shall bypass issues that arise
in such cases. Their treatment is fairly straightforward and
has more to do with the theory of integration than with phys-
ics. Realistic wave functions tend to be sufficiently smooth
on small scales. Forcsxd finiteness of the total energy usu-
ally suffices to guarantee this.

We can now resume our derivation of Born’s rule. Our
aim is to calculate the probability density associated with
csxd. In the limit of very smalldx,

ukcsxduJsxdlu2 = 1 − udu2 → 1. sA11d

Therefore,csxd andJsxd have to yield the same probability
density for all measurements.sIn effect, we are using here
again the assumption of continuity that was already invoked
in Sec. II.d

So the probabilities of detecting the system within various
position intervals can be inferred using envariance from the
Schmidt decomposition:

uYSAEl = o
k

uckueifkÎdx
ukul
Îdx

uAklu«kl. sA12d

The sethukul /Îdxj is orthonormalsand, hence, can be re-
garded as a “Schmidt” setd. Therefore, the complex Schmidt
coefficients above can be used in the proof that is essentially

the same as the one given in Secs. II and V. We shall not
restate it here in detailfalthough the reader may find it en-
tertaining to rethink it in terms of approximate swapping of
the sections ofcsxdg. The conclusion is inescapable: The
probability of finding the apparatus in the stateuAkl (and,
hence, the probability of the system being found in the inter-
val xP fkdx,sk+1ddxd) is given by

pk = ucku2 dx. sA13d

It also follows that the probability of finding the system in
the larger intervalfx1,x2d is

psx1 ø x , x2d =E
x1

x2

dxucsxdu2. sA14d

This establishes our premise—Born’s rule for continuous
spectra.

As we have already noted, we have “cut corners” and
settled for a physically straightforward argument at the ex-
pense of mathematical rigor. We note that the basic structure
of the argument can be refined and that mathematical rigor
can be regained. For instance, there is no reason to use the
samedx everywhere, and one could improve the conver-
gence properties of the discrete approximation by adapting a
resolution of the mesh that is better adapted to the form of
csxd. Moreover, the basis statesukul are very artificial and
violate the smoothness assumption we have imposed on
csxd. They can be easily replaced with more sophisticated
orthonormal wavelets.

Such mathematical improvements are beyond the scope of
this work. They help us, however, make an interesting physi-
cal point: Each such new discretization ofcsxd defines in
effect a new measurement scheme, which will in turn impose
its own definition of what it exactly means for the system to
be found in a certain position interval. It is not essential to
have a unique “correct” scheme. It is, however, important for
all schemes that can be reasonably regarded as representing
an approximate measurement of position should yield com-
patible answers. In our case this is guaranteed, as in the limit
of sufficient resolution all legitimate approximations ofcsxd
are also clearly legitimate approximations of each other.
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