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I show how probabilities arise in quantum physics by exploring the implicatioreneironment-assisted
invarianceor envariance a recently discovered symmetry exhibited by entangled quantum systems. Envari-
ance of perfectly entangled “Bell-like” states can be used to rigorously justify complete ignorance of the
observer about the outcome of any measurement on either of the members of the entangled pair. For more
general states, envariance leads to Born's pyte|y;|? for the outcomes associated with Schmidt states. The
probabilities derived in this manner are an objective reflection of the underlying state of the system—they
represent experimentally verifiable symmetries, and not just a subjective “state of knowledge” of the observer.
This envariance-based approach is compared with and found to be superior to prequantum definitions of
probability including thestandard definitiorbased on the “principle of indifference” due to Laplace and the
relative frequency approachdvocated by von Mises. Implications of envariance for the interpretation of
quantum theory go beyond the derivation of Born’s rule: Envariance is enough to establish the dynamical
independence of preferred branches of the evolving state vector of the composite system and, thus, to arrive at
the environment-induced superselection (einselection) of pointer statieieh was usually derived by an
appeal to decoherence. The envariant origin of Born’s rule for probabilities sheds light on the relation between
ignorance(and, hence, informatigrand the nature of quantum states.
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[. INTRODUCTION standing on an incomplete, shaky foundation, and to rebuild
it using these elements of the old plan that are still viable, but
on a new, solid, and deep foundation and, to a large extent,
ness in physics. The key idea we shall employ isfrom_ new, rr:1or:e basu]i t?]undlmgdbl?cks. We start in the ne>§t
environment-assisted invarian¢er envariance [2-4], a re- ~ Section with the proof that leads from envariance to Born's

cently discovered quantum symmetry of entangled system&U!€. This will provide an overview of key ideas and their

Envariance allows one to use puriyerfect knowledgeofa ~ Implications. . .
joint state of an entangled pair to characterize unknown_ 1€ original presentations of envariari@-4] as well as

states of either of its components and to quantify missing{?o.St of this paper assume that quantum theory is universally
information about either member of the pair alid. They r_ely only on unitary quantum evolutions gnd thus
‘ .can be(as is decoherengeconveniently explored in the

th Thtedsettlfng of (r)]ur dlscuss:jon_ls elssent:;llly t?_'e SaME aS I} ative-state frameworkl2] (although their results are in-
e study of decoherence and einseleci®5-9. However, janendent of interpretatisnOne may equally well—as was

the tools we shall emp:loy di’ffer. Thus, as in decoherence, th%mphasized by Barnunil3]—analyze envariance in a
system of interess is “open” and can be entangled with its «copenhagen setting” that includes the collapse postulate.
environmente. We shall, however, refrain from using the gection Il bypasses the discussion of quantum measurements
“trace” and “reduced density matrix.” Their physical signifi- and is in that sense the most explicitly interpretation-neutral
cance is based on Born's ru[@0,11. Therefore, to avoid study of the consequences of envariance.
circularity, we shall focus on pure global quantum states The goal of this paper is to understand the nature of prob-
which yield—as a consequence of envariance—mixed statesbilities and to derive Born’s rule in bare quantum theory.
of their components. Successful derivation of Born's ruleThus, only unitary evolutions are allowed. The effective col-
will in turn justify the usual interpretation of these formal lapse(usually modeled with the help decoherence, which is
tools while shedding light on the foundations of quantumin effect off limits here is all one can hope for. The ground
theory and its relation to information. for the solution of the problem of the emergence of prob-
The nature of “missing information” and the origin of abilities in this setting is explored and prepared in Sec. lIl.
probabilities in quantum physics are two related themesWe start by comparing the envariant definition of probability
closely tied to its interpretation. We will be therefore forced with the approaches used in classical physics and go on to
to examine, in light of envariance, the structure of the wholeexamine quantum measurements. “Symptoms of the classi-
interpretational edifice. These fragments which depend owral” (such as the preferred basthat are taken for granted in
decoherence and einselection will have to be rebuilt withoujustifying the need for probabilities and are usually derived
the standard tools such as trace and reduced density matricegth the help of the trace operation and reduced density ma-
Once Born’s rule is “off limits,” the problem becomes not trices are pointed out. As these tools depend on Born’s rule,
just to derive probabilities and, thus, to crown the alreadytheir physical implications such as decoherence and einselec-
largely finished structure withp,=||?> as a final touch. tion have to be reexamined and often rederived if we are to
Rather, the task is to deconstruct the interpretational edificavoid circularity, and we set the stage for this in Sec. Ill.

The aim of this paper is to derive Born’s ryl&] and to
identify and analyze the origins of probability and random-
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Preferred pointer states are such a necessary precondition Il. PROBABILITIES FROM ENVARIANCE
for the emergence of the classical. Pointer states define what _ , _
information is missing—what are the potential measurement 10 derive Born's rule we recognize that;
outcomes, providing a “menu” of the alternative future (0) the Universe consists of systems;
events the observer may be ignorant of. Hence, they are in- (i) @ completely knowr(pure) state of systen& can be
dispensable in defining probabilities. Pointer states are re®epresented by a normalized vector in its Hilbert spage
covered in Sec. IV without decoherence—without relying on (i) a composite pure state of several systems is a vector
tools that implicitly invoke Born’s rule: We show how in the tensor product of the constituent Hilbert spaces;
environment-induced superselection can be understood (iii) states evolve in accordance with the Schrddinger
through direct appeal to the nature of the quantum correlagquationizi|y)=H|y) whereH is Hermitian.
tions and,“lr) partlcu_lar, to envariance. This pwotal result—in  '|n other words, we start with the usual assumptions of the
a sense “einselection without decoherence’—allows us tono-collapse" part of quantum mechanics. We have listed

avoid any circularit_y in the discussion. It is based on angam here in a somewhat more “fine-grained” manner than it
analysis of correlations between the system and apparaty

pointer (or the memory of the obseryein the presence of I8 often seen—e.g., in Ref3].
the environment. It allows one to define future events— _ _ _ _
“buds” of the dynamically independent branches that can be A. Environment-assisted invariance
assigned probabilities. Envariance is a s : )
; ; - ) . ymmetry of composite quantum states:
Section V discusses probabilities from the “personal poin . -
of view” of an observer described by quantum theory. Prob%lg:]rﬁg dabstslteigﬁsgg if gc?iilr gLIZfStng;S'g can be trans
abilities arise when the outcome of a measurement that is YHs=Us® e 9 y or,
about to be performed cannot be predicted with certainty _ _
from the available data, even though the observer knows all Udlihse) = (Us ® Lol uhse) = | mse), (1a
that can be_known—the. initial pure state of the SyStem. it the effect ol can be undone by acting solely érwith
The relative frequencies of outcomes are considered in thgn aporopriatel f:hoseld 1@ U
light of envariance in Sec. VI, shedding light on the connec- 2PProPNately Emasere
tion between envariance and the statistical implications of
quantum states. P Uel mse) = (1s ® Ug)| mse) = [ise); (1b)

In the course of the analysis we shall discover that none. ., lse) is called envariant undey
[} SE S+

of the standard classical approaches to probability apply di- In contrast to the usual symmetriéshich describe situ-

rectly in quantum theory. In a sense, the common statementt. hen th i f t f tion h ffect
of the goal—“recovering classical probabilities in the quan-a lons when e action of some transformation has no efiec

tum setting"—may have been the key obstacle in making’" SOMe objegtenvariance is arassisted symmetryThe
progress because it was not ambitious enough. To be sure d{oPal state is transformed by, but can be restored by
was understood long ago that none of the traditional ap@cting on&, some other subsystem of the Universe, physi-
proaches to the definition of probability in the classical worldcally distinct(e.g., spatially separatgétom S. We shall call
were all that convincing: They were either too subjectivethe part of the global state that can be acted upon to affect
(relying on the analysis of the observer’s “state of mind,” hissuch a restoration of the preexisting global stageenviron-
lack of knowledge about the actual stater too artificial ~ment&. Hence, theenvironment-assisted invariana, for
(requiring infinite ensemblegs brevity, envariance We shall soon see that there may be
Complementarity of quantum theory provides the “miss-more than one such subsystem. In that case we shadl tse
ing ingredient” that allows us to define probabilities usingdesignate their union. Moreover, on occasion we shall con-
objective propertiesof entangled quantum states: The ob-sider manipulating or measurirtg So the oft-repeatethnd
server can know completely a global pure state of a compodargely unjustified; see Ref§3,4,8,14,1%) phrase “inacces-
ite system. That global state will have objective symmetriessible environment” should not be taken for granted here.
They can be experimentally verified and confirmed using Envariance of pure states is a purely quantum symmetry:
transformations and measurements that yield outcomes withhe classical state of a composite system is given by the
certainty(and, hence, that do not involve Born's ruldhese  Cartesian(rather than tensoiproduct of its constituents. So
objective properties of the global state imply—as we shallto completely know the state of a composite classical system
see—probabilities for the states of local subsystems. Perfecne must know the state of each of its parts. It follows that
information about the whole can be thus used to demonstrat®hen one part of a classical composite system is affected by
and quantify ignorance about a part. Circularity of classicakthe analogue olg, the “damage” cannot be undone—the
approaches which assume ignorance—e.g., “equadtate of the whole cannot be restored—by acting on some
likelihood"—to establish ignorance and to define probabili-other part of the whole. Hence, pure classical states are never
ties is avoided: Probabilities enter as an objective property oénvariant.

a state. They reflect perfect knowledgmther than igno- Another way of stating this conclusion is to note that
rance of the observer. These and other interpretational issuestates of classical objects are “absolute,” while in quantum
are discussed in Sec. VII. theory there are situations—entanglement—in which states

This paper can be read either in the order of presentatioarerelative That is, in classical physics one would need to
or “like an onion,” starting from the outer laye{Secs. Il and  “adjust” the remainder of the Universe to exhibit envariance,
VI, followed by Secs. Il and IV, etg. while in quantum physics it suffices to act on systems
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entangled with the system of interest. For instance, in a hyef a suitable pure global state entails no loss of generality.
pothetical classical universe containing two and only two At first sight, envariance may not seem to be all that sig-
objects, a boost applied to either object could be counteredificant, since it is possible to show that it can affect only
by simultaneously applying the same boost to the other: Thehases.
only motion in such a two-object universe is relative. There- Lemma 2 All envariant unitary transformations have
fore, simultaneous boosts would make the new state of thatigenstates that coincide with the Schmidt expansion of
hypothetical universe indistingushable frotand, hence, |#s:)—i.e., have the form of E¢(3a).
identical tg the initial preboost state. This will not work in Proof is by contradiction. Suppose there is an envariant
our Universe, as the center of mass of the two boosted ohinitaryUg that cannot be made codiagonal with the Schmidt
jects will be now moving with respect to the rest of its matterbasis of s, EQ. (2). It will then inevitably transform the
content.(That is, unless we make the second object the resbchmidt states of:
of our Universe: this thought experiment brings to mind the N N
famous “Newton’s bucket’—i.e., Newton's suspicion that - _ _ i~
the meniscus formed by water rotating in a bucket would Us ® 15"'[/59_kzz“lak(ﬁ‘g's&)'sk%glak[g@'sk% [7s¢)-
disappear if the rest of the Universe was forced to corgtate.

To give an example of envariance, consider Schmidt delf Us is envariant, there must g such that
composition ofifs.: N

N 1e ® Tglse) = 2 alslew) = [¥se)-
|thse) = 2 alsdlew)- (2 k=1
=t But unitary transformations acting exclusively &fy cannot
Above, by definition of Schmidt decompositiofis)} and  change states ifi{s. So the new set of Schmidt statgg of
{|le})} are orthonormal and, are complex. Any pure bipartite 7s¢ cannot be undonérotated back) to |s,) by anyT. It
state can be written this way. A whole class of envarianfollows that—when Schmidt states are uniquely defined—
transformations can be identified for such pure entangledhere can be no envariant unitary transformation that acts on

quantum states. the environment and restores the global state/te after
Lemma 1 Any unitary transformation with Schmidt Schmidt states of were altered byis. Q.E.D.
eigenstateg|sy)}, Corollary. Properties of global states are envariant iff they
N are a function of the phases of the Schmidt coefficients.
us= S explihols(sd (3a) Phases are often regarded as inaccessible and are even
ST = WIS S sometimes dismissed as unimportaitéxtbooks tend to
speak of a “ray” in Hilbert space, thus defining a state
is envariant. modulo its phase Indeed, Schmidt expansion is occasion-
Proof. Indeed, any unitary with Schmidt eigenstates carally defined by absorbing phases in the states which means
be undone by a “countertransformation.” that all the nonzero coefficients end up real and posiiwel
N hence all the phases are taken to be kerhis is a danger-
Us= D expl— iy + 2 )|e) e, (3b)  ous oversimplification. Phases matter—the reader can verify
k=1 that it is impossible to write all of the Bell states when all the

relative phases are set to zero. Indeed, the aim of the rest of
this paper is, in a sense, to carefully justify when and for
what purpose phases can be disregarded and to understand
nature of the ignorance about the local state of the system as
a consequence of the global nature of these phases.

wherel, are arbitrary integers. Q.E.D.

Remark The environment used to undg;, need not be
uniquely defined: For examplejs acting on a GHZ-like
state,

N
|Wseer) = 2 adsolewler), (4a) B. State of a subsystem of a quantum system
k=1

_ . _ Independence of the state of the syst8iftom phases of
can be envariantly undone by acting either&or on&’ or  the Schmidt coefficients will be our first important conclu-

by acting on both parts of the joint environment. sion based on envariance. To establish it we list below three
It is perhaps useful to point out that one can ygg: to  facts—additional assumptions that may be regarded as obvi-
obtain reduced density matrix ous. We state them here explicitly to clarify and extend the
meaning of terms(subsystem” and “state” we have already
Pse= 2 |ak|2|sk><sk| ® |8k><8k| . (4b) used in a)qomio)_(m)
k

Fact 1 Unitary transformations must act on the system to
This means that even when the correlated statg@ afid€ is  alter its state(That is, when the evolution operator does not
mixed and of this form, one can in principle imagine thatoperate on the Hilbert spadés of the system; i.e., when it
there is an underlying pure state. States of the above forthas a form--® 15®--- the state ofS remains the samge.
can arise in measurements or as a consequence of decoher-Fact 2 The state of the systefis all that is neede¢and
ence. The discussion of envariance can be thus rephrasedati that is availablg to predict measurement outcomes, in-
terms of pure states in all cases of interest. The assumptiaziuding their probabilities.
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Fact 3 The state of a larger composite system that in-directly: Whena, =|ale/%1, a,=|ale/?2, every swap can be un-
cludessS as a subsystem is all that is neededd all that is  done by the correspondingpunterswap:
available to determine the state of the systein .
. - . — 2) = @ (P12 P1=pp*2ml 1)
We have already implicitly appealed to fact 1 earlier— Ug(1 = 2) = ™0z 70252l )(eo| + H.c.  (6D)

e.g., in the proof of lemma 2. Note that the abdaetsare  Thjs proves envariance of swaps for equal values of the co-
interpretation-neutral and that stat@sg., “the state 065”)  efficients of the swapped states. Converse follows from lem-
they refer to need not be pure. mas 1 and 2: Envariant transformations can affect only

With the help of the facts can now establish the following. phasesof Schmidt coefficients, so the global state cannot be

Theorem 1For an entangled global state of the systemrestored after the swap when theibsolute valuegliffer.
and the environment all measurable properties 0fQ E.D.

S—including probabilities of various outcomes—cannot de-
pend on the phases of Schmidt coefficients: The stat§ of
has to be completely determined by the set of pair
{la . Is0}-

Proof. Envariant transformationg could affect the state
of S. However, by definition of envariance the effectwof
can be undone by a countertransformation of the fdgn
® ug which—by fact 1—cannot alter the state 8fAs S€ is
returned to the initial state, it follows from fact 3 that the ;o |s)) does not alter the state ofat all.

state ofS must have been also restored. Bby fact D it~ g envariantly swappable state of the system defines per-
could not have been effected by the countertransformationg ¢ ignorance We emphasize the direction of this implica-

So it must have been left unchanged by the envaugnn  yjon. The state ofS is provably completely unknowmot
the first place. It follows(from the above and fact)Zhat  hoqqse of the subjective ignorance of the oberver. Rather, it

measurable properties Sfare unaffected by envariant trans- i ,nknown as a consequence of complementarity: the state

formations. But by lemmas 1 and 2, envariant transformag SE is after all perfectly known. Moreover, it can be ob-

tions can alter phases and only phases of Schmidt coefflgctively known to many observers. All of them will agree
cients. Therefore, any measurable propertySafplied by 4t their perfect global knowledge implies complete local
its state must indeed be completely determined by the set 9f,qrance. Thereforeprobabilities are objective properties
pairs{e,[so}. QE.D. of this state

Remark The information content of the ligte,|s} that Symmetries of the state af€ imply ignorance of the
describes the state & is the same as the information con- opserver about the outcomes of his future measurements on
tent of the reduced density matrix. We do not know yet,s. This emergence of objective probabilities is purely quan-
however, what are the probabilities of various outcome stategim. Objective probabilities are incompatible with classical
IS0 setting (where there is an unknown but definite preexisting

Thus, envariance of Schmidt phases proves that only alstatg. In the quantum setting, the objective nature of prob-
solute values of Schmidt coefficients can influence measuregpilities arises as a consequence of the entanglement—e.g.,

ment outcomes. Yet the dismissive attitude towards phasegith the environment.
we have reported above is incorrect. This is best illustrated in
an example: Changing phases between the Hadamard states,

Remark When S€ is in an even statéyse) (which is
therefore envariant under swapsxchangels;)=|s,) does
%hot affect the state oS—its consequences cannot be de-
tected by any measurement Sfalone.

Lemma 3 we have just established is the cornerstone of
our approach. We now know that when the global stat§&f
is even(i.e., with equal absolute values of its Schmidt coef-
ficients, then a swapwhich predictably takeknown |s,)

3

C. Born’s rule from envariance

|£)y=(s) |52>)/\s’§, So far, we have avoided referring to probabilities. Apart
from brief mention in fact 2 and immediately above we have
can change the state of the system frfsp to |s,). More ~ not discussed how they relate to quantum measurements.
generally, This will have to wait until we consider quantum measure-
Lemma 3 Iff the Schmidt decomposition of Eq2) has ~ ments, records, and observers from an envariant point of
coefficients that have the same absolute value—that is, théew. But it turns out that one can derive the rule connecting
state iseven probabilities with entangled-state vectors such|@s:) of
Eq. (2) from relatively modest assumptions about their prop-
o N erties. The next key step in this direction is the following.
|ihse) o« > €M s)er), (5) Theorem 2The probabilities of Schmidt states Sfthat
k=1 appear in|yse) with coefficients that have same absolute
value are equal.
There are several inequivalent ways to establish theorem
oy — 2. Indeed, the reader may feel that it was already established:
Us(1=2) = €¥dsy)(s;| + Hec. (63 The remark that followed lemma 3 plus a rudimentary sym-
Proof. By lemma 1, the swap is envariant—it can be gen-metry argument suffices to do just that. However, for com-
erated byug diagonal in the Hadamard basis of the two statepleteness, we now spell out some of these arguments in more
(which is also Schmidt when their coefficients differ only by detail. Both Barnum13] and Schlosshauer and Fifi26]
a phasg Swaps can be seen to be envariant also moréave discussed some of the related issues. Reporting some of

it is also envariant under swap:
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their conclusiongand anticipating some of oyré appears then the probabilities of all outcomes of any exhaustive mea-
that envariance plus a variety of small subsets of naturaturement corresponding to any orthocomplete basis that
assumptions suffice to arrive at the thesis of theorem 2. gpans that subspace #f are the same

_ To proceed we first establish that when complete swaps,
1. Envariance under complete swaps Eq. (6a), between a subset of states of some orthonormal

We start with the first version of the proof. basis that span#(s leave the state af unchanged, then so
(@ When operations that swap any two orthonormaldo partial swapson the same subspace.
states leave the state §funchanged, the probabilities of the Lemma 4 Partial swapsdefined by pairwise exchange of
outcomes associated with these states are equal any two orthonormal basis sefis,)} and{[§)} that spareven

Proof (a) is immediate. When the entangled stateSsf subspaceHs of Hs which admits full swaps, Eq(6a), are
has equal values of the Schmidt coefficients—eld¢ise)  also envariant.

o 2iL,€ %s0|e—the local state ofS will be indeed unaf- Proof. A partial swap can be expressed as a unitary:
fected by the swapsgby theorem 1 and lemma 3 abgve

Consequently, with assumptidia), the thesis of theorem 2 B =1{shH= > [Bsd. (60)
follows. Q.E.D. —

. . .. H
The above argument is close in the spirit to Laplace’s I80<Hs

“principle of indifference” [17]. We prove that swapping This is the obvious generalization of the simple swap of Eq.
possible outcome states—shuffling cards—*makes no differ¢gg). Partial swafis({3}=1{sJ) can be undone by the cor-
ence.” However, in contrast to Laplaeee show “objective  respondingpartial counterswapof the Schmidt partners of
indifference” of the physical state of the system in questionhe swapped pairs of states. It follows from lemma 3 that
rather than the observer's subjective indifference based Orl]/jsg—a state envariant under complete swaps—must have a
his state of knowledge form

Note that in the absence of entangleméand, hence,
envariancga swap generally changes the underlying state of o K
the system also when the coefficients of states corresponding [hse) o > e€s)lep),
to various potential outcomes have the same absolute values. k=1
For example, the pure stat@s)«|1)+|2)—|3)+|4) and |B3) _
«|1)+|3)—|2)+|4) are orthogonal even though they have thewhereK=Dim(H). The basig[§)} spans the same subspace
same absolute values of coefficients and differ only by 3975- Therefore,
swap. Thus, without entanglement with the environnteet,

in the absence of lemmas 1 and 2 and, hence, without theo- . K K K
rem 1, which allows one to ignore phases of Schmidt coef- lse) o X )| > €9Glsoleny | = 2 [BIED.-
ficienty assumptior(a) would be tantamount to the assertion I=1 k=1 I=1

that phases of the coefficients are unimportant in specifying i o ]

the state. For isolated systems this is obviously wrong, i%"ve” that{|e,} are Schmidt states, it is straightforward to

blatant conflict with the quantum principle of superposition. verify that{fe,)} are orthonormal, and, therefore, the expan-
In the absence of envariance the key to our argument—thgion on the right-hand side above is also a Schmidt decom-

assertion that thetateof S is left unchanged by a swap—is position. Consequently,

simply wrong. This is easily seen by considering the en-

semble of identical pure statésuch aga)). Through mea- By ={ed) = > [Bled, (6d)

surements, an observer can find out the state of systems in exeHy

that ensemblée.qg.,|a) or |8)). By contrast, if this ensemble

becomes first entangled with the environment in such a washe desired partial counterswap exists. This establishes en-

that|1)- - |4) are Schmidt states, an observer with acces$ to variance under partial swaps. Q.E.D.

only would conclude that the state of the system is a perfect Corollary. When complete swaps are envariant in the sub-

mixture and would not be able to tell if the predecoherenc%pacgﬁse Hs, so are all the unitary transformations 13—03;

state waga) or [B). Indeed, the set of all partial swaps is the same as the set of all

unitary transformations on the subspddg.

We can now give the second proof of theorem 2:

The second strategy we shall use to prove theorem 2 relies Proof (b): Equality of probabilities under envariant swaps
on a somewhat different “dynamical” definition of indiffer- follows immediately from the above corollary and assump-
ence. We note that when we have some information about thigon (b). Q.E.D.
state, we should be able to “detect motigpbssibly using Using lemma 4 and its corollary, we can identify math-
an ensemble of such statesto observe changes caused by ematical objects that represent even state${jn Only a
the dynamical evolution. This intuition is captured by the yniform distribution of pure states ovét; is invariant under
following assumption. ~ all unitaries. The alternative representation, which is more

(b) When the state af is left unchanged by all conceiv-  famjjiar, is the(reducedl density matrix. It has to be propor-
able unitary transformations acting on a subspéceof Hs,  tional to the identity operator,

2. Envariance under partial swaps and dynamics
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ps ™ 1g, To demonstrate this equality we consider a subspace of
Hs spanned by Schmidt statés) and|s), so that the cor-

to be invariant under all unitaries. responding fragment afis¢ is given by

So envariance and the no-collapse axidms(iii ), plus
the threefacts imply that our abstract stat@vhose role is lhse) = -+ +alsolew +als)lep + -+ .
defined by fact 2leads to a distribution uniform in the Haar .
We assume that the following.

m.ea.sur_e + or equivalently, to the rgduced density matfiy (c) In the Schmidt decomposition partners are perfectly
within Hs. Note that these conclusions follow from lemma 4, o related: i.e., detection ofs) implies that a subsequent
which does not employ assumptidh). The form of the  measurement of a Schmidt observable (i.e., an observable

mathematical object representing an envariantly swappablgith Schmidt eigenstates) @hwill certainly obtain|e,) (this
state ofS follows directly from the symmteries of the under- “partner state” will be recorded with certainty—e.g., with

lying entangled composite state 8£. In particular, we have probability 1).

in a sense obtained the reduced density matrix in the special pygof (c) From assumptiotc) we immediately have that
case without the usual argumehi®,11—i.e., without rely-

ing on Born’s rule. Moreover, assumptidb) is needed only Ps(Ska)) = Pelexay) -
when we want to interpret that reduced density matrix in .
terms of probabilities. Consider now a swag.=s. It leads fromise, Eq.(2), to

Assumption(b) can also be regarded as a quantum coun- SN
terpart of Laplace'grinciple of indifferencg17]. Now there 75e) +ads)lao +alsoley +
are, however, even more obvious differences between thRow, using agair(c) we get
quantum situation and shuffling cards than those we have
already mentioned in the discussion of preaf A classical P5(Sky) = Pelei) = Ps(Si) -

deck cannot be shuffled into a superposition of the origina|n effect, this establishes the “pedantic assumption[8]

cards. This can obviously happen to a “quantum deck:” In

quantum physics we can consider arbitrary unitary transforySiNg envarnance and perfect correlation assumpfin

mations(and not just discrete swapsThis consequence of Probabilities get exchanged when the states are swapped. So

the nature of quantum evolutions can be traced all the way t e could go_ba(;k to the proof of Re2] W'th a somewh.at

the principle of superpositiofand, hence, to phases ifferent motivation. But we can also continue and consider a
The other distinction between the quantum and classicdfounterswap IE that yields

prmmple_s_of |nd|ffere_nce we _hav_e already“ noted is even 195) = -+ +as)|e) +aylsdled + -

more striking: In classical physics it was the “state of knowl-

edge” of the observer—his description of the system—thatVe now consider the case whéam|=|a|=a. Counterswap

may (or may noj have been altered by the evolution—the restores such an even state:

underlying physical state wadwaysaffected when shuffling _ _

(evolution were nontrivial. In quantum theory there is no [0y = -+ +alg)le) +alsle + -+ =|wse).

distinction between the epistemic “state-of-knowledge” role

of the state and its objectiv&ontic”) role. In this sense BY facts 2 and 3 the overall state as well as the stat§ of

guantum states are “epiontitg]' must have been restored to the Or|g|na|. Therem@(k))
Probabilities are, in any case, abjectivereflection of  =Ps(Si)- Together withpz(s k) =Ps(Sk)) established before

symmetries of such states: They follow from the quantunthis yields

complementarity between global and local observables. They B

can be defined and quantified using envariance, an experi- Ps(Sik) = Ps(Sk)»

mentally verifiable property of entangled quantum states. when the relevant Schmidt coefficients have equal absolute

values. Q.E.D.
We have now established in three different ways that in an
Both of the proofs above start with the assumption thatentangled state in which all of the coefficients have the same
under certain conditions probabilities of a subset of states adbsolute value so that every stdsg) can be envariantly
the system are equal, and then establish the thesis by showyapped with every other stals), |ng>oc2|’:‘_leil/’k|sk>|8k>,
ing that this assumption is implied by envariance undety| the possible orthonormal outcome states have the same
swaps—both are in that sense Laplacian. The third proof alsgropapility. Let us also assume that states that do not appear
starts with an assumption of an equality of probabilities, bu§, the above superpositicine., appear with Schmidt coeffi-
now we consider the relation between the probabilities of thgjent zerg have zero probabilitWe shall give a motivation
Schmidt states of and&. This approachiBarnum[13]; see for this rather natural assumption later in the pap@iven
also discussion in Ref16]) recognizes that pairs of Schmidt {he customary normalization of probabilities we get for even
states(|s|ey) in Eq. (2) are perfectly correlated, which im- («gejLjike” ) states the following.
plies that they have the same probabilities. Thus, one can Corollary. For states with equal absolute values of
prove the equality of probabilities of envariantly swappablegchmidt coefficients,
Schmidt states directly from envariance by relying on perfect
correlations between Schmidt statessbénd €. pc=p(s)=1/N [Ok. (74

3. Equal probabilities from perfectSE correlations
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Moreover, the probability of any subset af mutually Mo
exclusive events is additive. Hence DD e'¢ik|sk(jk>,cjk)|ejk>. (80)
P

Pltiqp <o = P(Sq B8 0 - Hsg) =N (7b) Above, M=3N. m.=uy and k=k(j) is the obvious “stair-
Above, we have assumed that orthogonal states correspomdse” function; i.e., whem,_;<j < w, thenk(j)=k.
to mutually exclusive events. We shall give a motivation also  The state¥ ¢ is envariant under swaps of joint Schmidt
for this (very natural assumption of the additivity of prob- states|sK(jk),cjk> of SC. Hence, by Eq(7a),
abilities further in the discussion of quantum measurements
in Sec. V(thus going beyond the starting point of, e.g., Glea- pj, = P(c;) = P(Sj,Cj) = 1M.

son [30]). Here we only note that while the additivity of M Ea(7b) imolies that if ; . bout
probabilities looks innocent, in the quantum céskere the Oreover, t _q.( ) implies that if we were to enquire abou
the probability of the state of alone, the answer must be

principle of superposition entitles one to add complex ampli-". b
tudes it should not be taken for granted. In the end, we shal@'ven by

conclude that additivity of probabilities is tied to envariance, o
which makes phase&nd, hence, quantum superposition = > P(|Sk(j 1,Cj.) = MM =|ay % (10
principle) irrelevant for Schmidt states of the subsystems of iEme-1+1 ok

the entangled whole. o ; :
We also note that the probability entered our discussion ir?1rhIS is Born's rule. The extension to the case wHegf are

) Lo . . ... _Incommensurate is straightforward by continuity as rational
a manner that bypasses circularity: We have simply identifie
. ) " ) umbers are dense among reals.
certainty with the probability of Isee, e.g., assumptida)
abovd. This provides us with the normalization, while the

symmetries revealed by envariance determine probabilities Ill. ENVARIANCE, IGNORANCE, AND CHANCE

in the case when there is no certainty. We have now presented a fairly complete discussion of
envariance, and we have derived Born’s rule. The aim of the
D. Born’s rule: The case of unequal coefficients rest of this paper is to consider some of the other implica-

tions of envariance for our quantum Universe. This section
serves the role of the intermission after the first act of a play.
The basic plot is already in place. We can now take a few
moments to speculate on how it will develop. In particular,
we shall compare the definition of probabilities based on

N . envariance with the prequantum discussions of this concept.

[ZBEPIREIENERS (8@  We shall also set the stage for an investigation of the impli-

k=1 cations of envariance for the interpretation of quantum
We now introduce acounterweight-counte. It can be theory. This includegbut is not limited t9 the issue of the
thought of either as a subsystem extracted from the environdecoherence-free” derivation of the preferred pointer basis.
ment& or as an ancilla that becomes correlated Wito that

To complete the derivation of Born’s rule consider the
case when the absolute values of the coefficiepts the
Schmidt decomposition are proportional {on,, where m,
are natural numbers:

the combined state is A. Envariance and the “principle of indifference”
N The idea that invariance under swaps implies ignorance
|,/,Sgc>o<2 Vme X s)le)|Cl, (8b) and hence probabilities is old and goes back at least to
k=1 Laplace[17]. We illustrate it in Fig. 1a). The appeal to in-

variance under swaps leads to a definition that is known as
“standard”(or, sometimes, “classical’—the adjective we re-
serve in this paper for its other obvious meanirlg classi-

cal physics the standard definition has to be applied with

where{|C,)} are orthonormal. Moreover, we assume tiGa}
are associated with subspacegf of sufficient dimension-
ality so that the “fine-graining” represented by

B apologies, as it refers to observessbjective lack of knowl-
ICo = > Ic; >/Vﬂ( (9a) edgeabout the system, rather than to the objective properties
el of the state of the systeer se That the observefplayen

does not care abolis indifferent tg swapping of the cards

in a shuffled deck is the consequence of the fact that he does

not know their “face values.” It is a subjective reason—not

reflected in the objective symmetries of the actual state of the
|Cjk>|8k> N |Cjk>|ejk>’ (9b)  deck[see Fig. 1b)]. To recognize this, it is said that certain

possible states are, in his subjective judgment, “equally

Where|ejk> are orthonormal states éfthat correlate with the |ikely.”

individual states of the count€r(e.g., causing decoherence As always in physics, subjectivity is a source of trouble.

We have now arrived at the state vector that represents la the case of the above principle of indifference this trouble

perfectly entangledequal coefficient or “even’state of the is exacerbated by the fact that the objective classical state

composite system consisting §€ and &: (e.g., of the deck of carglss well defined and does not

is possible. Aboveg, = w1+my, and uy=0.
We also utilize ac-sHIFT, a c-NOT-like gate[3] that cor-
relates states of with the fine-grained states ¢f
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FIG. 1. Envariance is related to the “principle of indifferenc¢et the “principle of equal likelihood”used by Laplac¢l7] to define
subjective probabilities. However, envariance—a purely quantum symmetry—leatigetive probabilities based on an invariance of the
underlying physical state of the systefe principle of indifference is illustrated ii@). An observer(or a card playerwho knows that one
of the two cards is a spade but does not see their faces and does not care—is indifferent—when cards geteveappbeén a spade is
needed to wih When the probability of a favorable outcome is the same before and after the swap, then the two possible events—drawing
a spade or not drawing a spade—appear equally likety ). This leads tasubjectiveprobabilities given the ratio of the number of favorable
outcomes to the totab‘:%. Laplace’s definition is based on the observer’s ignorance and not on the actual physical state. It is often
regarded as the sole justification of the Bayesian approach. It is controversial because of its subjective nature. In particular, it does not reflect
the actual “physical” state of the system: As seeiffbn states before and after the swap are not equivalent, (c) shows how quantum
theory leads to probabilities based on the physical state when the system of idtdsesintangled with “the environment. Such
entanglement can occur as a result of decoherence. \Wteamd £ are maximally entangled, the swap Srhas no effect on its state. This
is clear, since its effect can be undone without actingSerby a “counterswap” that involves onl§. The final states are simply the same,
so the probability of the swapped statesSofnust also be the same. Envariance can be used to fseeetheorem)2that for such “even”
entangled states that have the same absolute values of the coeffigibite makes them envariantly swappablehe probabilities of
mutually exclusive alternative@rthonormal Schmidt stateare equal. Generalization to the case of unequal coefficients is straightforward
and establishes Born’s rug=|°.

respect “symmetries of the state of mind” of the observer.  There are problems with this strategy as well. My discom-
Subjectivity was the principal reason this “standard defi-fort with relative frequencies stems from the fact that infinite
nition of probabilities” has fallen out of favor and was ensembles generally do not exist and, hence, have to be
largely replaced by the *“relative frequency approach”imagined—i.e., must beubjectivelyextrapolated frondinite
[18-20. We shall not discuss it in detail as yet, but we sets of data. So subjectivity cannot be convincingly exor-
remind the reader that in this approach the probability of acised in this manner.
certain event—i.e., a certain outcome—is given by its rela- | bring up relative frequencies here only to note that the
tive frequency in arnnfinite ensemble. strategy of using swaps to define equiprobable events would
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work also in this setting. When a swépe., relabeling all,  that can be predicted with certainty. This is how the concept
as s—e.g., renaming “heads” as “tails” andce versa  of probability enters our discussion. The observer is certain
applied to an ensemble leaves all the relative frequencies aff the global state anglising envariangecan count the num-
the swapped states unchanged, their probabilities must hawer of envariantly swappabland, hence, equiprobableut-
been equal. In a sense, this observation may be regardedmes.

as an independent motivation of the assumpti@an of The aim of the observer is to use records of the outcomes
Section 1. of past measurementhis data that in effect define the glo-

In quantum physics, the exact symmetry of a compositdal state to predict future events—his future record of the
state—envariance—can be used to demonstrate that the ofmeasurement of the local system. Tools that can be legally
server need not care about swapping, as envariant swappiegnployed in this task include observers’ knowledge of the
provably cannot alter anything in his part of the bipartite “no-collapse” quantum physics, encapsulated in the opening
system whenjs, is “even”—that is, of the form given by Eq. paragraph of Sec. Il, as well as tfaets 1-3of the preceding
(5). We illustrate it in Fig. 1c). As we have already seen, section. They do not include Born’s rule: Hence the trace
envariance makes ignorance and probabilities easier to deperation, reduced density matrices, etc., are off limits in our
fine. The circularity of the “standard definition” is easier to derivations(although once we succeed, the embargo on their
circumvent in the quantum setting. It is, however, importantuse will be lifted.
to understand what fixes this “menu of options” and to find In the no-collapse settings, the effective classicality of the
out when they can be regarded as effectively classical. memory can be justified through appeal to decoherence

[3-8,15. But here we cannot appeal to full-fledged decoher-
ence, cannot rely on trace, etc. Is there still a way to recover
B. Quantum and classical ignorance enough of the “effectively classical” to justify the existence

Motivating the need for probabilities using ignorance of c!assical records we took for granted in the preceding
about a preexisting state is often regarded as synonymo@&ction?
with theignorance interpretationWe have relied on a simi-
lar approach. However, for our purpose a narrowly classical
definition of ignorance through an appeal to definite classical
possibilities, one of which actually exists independently of There were several attempts to make sense of probabili-
observer and can be discovered by his measurements withotigs in the no-collapse settif@1-25. They have relied al-
being perturbed, is simply too restrictive: An observer can benost exclusively on relative frequencieounting probabili-
ignorant of the outcome of his future measurement also wheties) [21-23. The aim was to show that, in the limit of
the system in question is quantum and when there are niafinitely many measurements, only branches in which the
fixed preexisting alternatives. He can then choose betweerlative frequency definition would have given an answer for
various noncommuting observables and the correspsondirgrobabilities consistent with Born’s rule have a nonvanishing
sets of alternative “events” defined by their complementarymeasure. However, that meant dismissing infinitely many
eigenstates. That choice of what to measure determines whétnaverick”) branches where this isot the case, because
is it the observer is ignorant about—what sort of informationtheir amplitude becomes negligible in the same infinite limit.
his about-to-be-performed measurement will reveal. All of these attempts have been shown to use circular argu-

The quantum definition of probabilities based on envari-ments[25-29: In effect, they were all forced to assume that
ance is superior to the above-mentioned classical approachtés relative weights of the branches are based on their am-
because it justifies ignorance objectively, without appealinglitudes. That meant that another measure was introduced,
to observers’ subjective “lack of knowledge.” The entangledwithout physical justification, in order to legitimize the use
guantum state oS¢ (or any pair of entangled systejnsan  of a relative frequency measure based on counting.
be perfectly known to the observer beforehand. There can be By contrast, derivations of Born’s rule that assume “col-
multiple records of that state spread throughout the environlapse” either explicith{ 30,32 or implicitly [31]—that is, by
ment, making it “operationally objective”—simultaneously consideringab initio infinite ensembles of identical systems
accessible to many observers. They can use its objective glgo that “branches” with “wrong” relative frequency of counts
bal properties to demonstrate—employing real swaps onsimply disappear as their amplitudes vanish in the infinite
can carry out in the laboratory—that the outcomes of some&nsemble limit—have been regarded as successifiiough
of the measurements one can perform are provably swagsee[33] for a more critical assessment of R€f31,32).
pable and, hence, equiprobable. In this sense, observers canindeed, Gleason’s theoref30] is now an accepted and
directly measureprobabilities of various outcomes without rightly famous part of quantum foundations. It is
having to find out first what the outcome is. rigorous—it is after all a theorem about measures on Hilbert

Note that this can be accomplished without an appeal t@paces. However, regarded as a result in physics it is deeply
an “ensemble,” “likelihood,” or any other surrogate for prob- unsatisfying: it provides no insight into the physical signifi-
ability: All that is needed is a single systef) as well as  cance of quantum probabilities—it is not clear why the ob-
appropriate€ andC. The entangled states we have studied inserver should assign probabilities in accordance with the
the preceding section can be then created, and their symmmeasure indicated by Gleason’s approd@2-29,31-3%
tries can be verified through manipulations and measurefhis has motivated various primarily frequentist approaches
ments. Moreover, the measurements involved have outcom¢22—-29,31,32,3% However, as was already noted in the dis-

C. Problems of no-collapse approaches

052105-9



WOJCIECH HUBERT ZUREK PHYSICAL REVIEW A71, 052105(2009

cussion of the relative frequency approach, an appeal to irsuggested by Deutsch and Wallace. | shall comment on these
finite ensembles is highly suspef27-29,33, especially in Sec. VII.
when—as is the case here—the desired effect is achieved
only when the size of ensembié=cc.

In view of these difficulties, some have even expressed V. POINTER STATES, RECORDS, AND “EVENTS”
doubts as to whether there is any room for the concept of
probability in the no-collapse settirf@6—29. This concern
is on occasion traced all the way to thdentity of the ob-

Probability is a tool observers employ in the absence of
certainty to predict their futuréincluding in particular the

server who could define and make use of probabilities in 4uUfuré state of their own memorsing already available

many worlds universe. Such criticism was often amplified bydai@—present state of their memory. Sometimes these data
pointing out that, in the predecoherence versions of@an determine future events uniquely. However, often predic-

Everett—inspired interpretations—decomposition of the uniions will be probabilistic—the observer may count on one of
versal state vector is not uniqme, e.g., comments in Ref. the potentlal outcomes, but will not know which one. Our
[27]), so it is not even clear what “events” should such prob-task is to replace questions of uncertain outcomes of future
abilities refer to. This difficulty was regarded by some as soneasurements on the system with situations that allow for a
severe that even staunch supporters of Everett considerggrtainty of prediction about the effect of some actions
adding anad hocrule to quantum theory to specify a pre- (swap$ on an enlarged system. In that sense we are reducing
ferred basis(see, e.g., Ref[35]) in clear violation of the questions about probabilities in general to the straightfor-
spirit of the original relative-state propoqdi2]. ward case—to the questions that yield answers with certainty

Basis ambiguity was settled by einselecti@+9,14,15. (i.e., with probability of 1). This special case makes the con-
But standard tools of decoherence are off limits here. Anchection with probability in a situation when the probability is
even if we were to accept decoherence-based resolution &hown. It provides us with the overall normalization. Using
basis ambiguity and used einselected pointer states to defiileis connection, we then infer the probabilities of possible
branches, we would be still faced with at least one remainingputcomes of measurements Srfrom the analog of the La-
aspect of the “identity crisis:” In the course of a measure-placian “ratio of favorable events to the total number of equi-
ment the memory of the observer “branches out” so that iprobable events,” which we shall see in Sec. V is a good
appears to recor¢and, hence, critics conclude, the observerdefinition of quantum probabilities for events associated with
should presumably perceivall of the outcomes. If that effectively classical records kept in pointer states. In quan-
were so, then there would be no room for distinct outcomesum physics this ratio can be determined using envariance
and choice and, hence, no need for probabilities. and even verified experimentally prior to finding out what

The existential interpretatioris based on einselection the event is. But we do need events. Hence, we need pointer
[3,8,15 and can settle also this aspect of the identity crisis. listates.
follows the physical state of the observer by tracking its evo- In classical physics it can be always assumed that a ran-
lution, also in the course of measurements. A complete dedom event was predetermined—i.e., that the to-be-
scription of observers’ state includes the physical state of higliscovered state existed objectively beforehand and was only
memory, which is updated as he acquires new records. Sevealed by the measurement. Indeed, such an objective pre-
what the observer knows is inseparable from what the obexistence is often regarded as a precondition of the “igno-
server is An observer who has acquired new data does notance interpretation” of probabilities. In quantum physics, as
lose his identity: He simply extends his records—his historyWheeler put it paraphrasing Bohr, “No phenomenon is a phe-
The identity of the observer as well as his ability to measurenomenon until it is a recorded phenomen$&7]. Objective
persists as long as such updates do not result in too drasticexistence cannot be attributed to quantum states of isolated,
change of that statesee Wallacd36] for a related point of individual systems. When the system is being monitored by
view). For instance, Wigner’s friend would be able to con-the environment, one may approximate objective existence
tinue to act as an observer with reliable memory in eaclby selectively proliferating quantum informatidthis is the
“outcome branch,” but the same cannot be said abougssence ofjuantum Darwinismas we shall discuss in Sec-
Schrédinger’s cat. tion VII C ). The operational definition of objectivity—one

But the existential interpretation depends on decoherencef the key symptoms of classicality—can be recovered using
Therefore, we have to either disown it altogether while em-+his idea, as selective proliferation leads to many copies of
barking on derivation of Born’s rule or reestablish its foun-the information about the same “fittest” observable.
dations without relying on trace and reduced density matri- Here we deal with individual quantum events—outcomes
ces to derive Born’s rule. Once we are successful, we caof future measurements on individual quantum systems—not
then proceed to reconstruct all of the “standard lore” of de-carried out as yet. They need n@nd, in general, do npt
coherence, including all of its interpretational implications, preexist even in the sense of quantum Darwinism—selective
on a firm and deep foundation—quantum symmetry of enproliferation of information has not happened as yet. The
tangled states. observer will decide what observable he will meas(aed,

We note that when(at the risk of circularity we have hence, what information will get proliferated and become
detailed abovedecoherence is assumed, Born’s rule can beeffectively classical The menu of events should be deter-
readily derived using a variety of approaci&s24] includ-  mined by the observable he chooses to measure.
ing versions of both standard and frequentist points of view Objective preexistence of events is not neeblefbrethe
[8] as well as approaches based on decision thE4y36| measurement. On the other hand, as noted above, we need
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some aspects of classicality to represent the memory of thgible record states of the memory, the correlation between
observerafter the measurement. Objectivity would be best,them and the states of the relevant fragments of the Universe
but we can settle for less: The key ingredient is the existencis all that matters: An observer will be “aware” of what he
of well-defined “events"—record states that, following mea-knows, and all he knows is represented by his data. The key
surement, will reliably preserve correlation with the recordeds, however, to identify relativpointer stateghat are suit-
state of the system in spite of the immersion of the memoryable as memory states.
in the environment. Pointer statgs-9] are called for, but we We start our discussion with a confirmatory premeasure-
are not allowed to use decoherence. ment in which there is no need for the full-fledged “col-
There are at least three reasons why preferred statéapse.” The observer is presented with a system in a gtate
(which are stable in spite of the openness of the systm and told to measure an observable that haags one of its
essential. The original reason for their introductibhwas to  eigenstates. He need not know the outcome beforehand.
assure that observers’ memory is effectively classical—Given a set of potential mutually exclusive outcomes
einselection of preferred basis ascertains that his “hardware’..,¢, ...} the observer can devise an interaction that will—

can keep records only in the pointer basis. with certainty—lead to
It follows that model observers will store and process in- (oo
formation more or less like u@nd more or less like a clas- |Ao>®N|qD> N |Ao>®N_1|A¢>|<P>- (113

sical computer For instance, the human brain is a massiv-

elly parallel, and as yet far from understood, but neverthelesfbove, ‘ready-to-record” memory cells are designated by

classical information processing device. And classicalAo), and the symbol above the arrow representing the mea-

records cannot existannot be accesseih Superpositions_ surement indicates that the set of possible outcomes includes
A more pertinent reason to look for preferred states is thep- This premeasurement can be repeated mianytimes:

recognition that the information processing hardware of ob- Loed

servers is open—immersed in the environment. Interaction A *Me)— ... _>|A0>®N—m|A<p>®m|(p>.

with £ is a fact of life. Unless we find in the memaory Hilbert 3

space “quiet corners” that remain quiet in spite of this open- " (11b

ness, reliable memorfand hence reliable information pro- Each new outcome can be predicted by the observer from the
cessing will not be possible. _ first record providing that—as we assume here and below—
Last but not least, the very idea of measuring makes sensfiere is no evolution between measurements and that the
only when measurement outcomes can be used for predigheasured observable does not change.
tions. But most of the systems of interest are “open” as well. |y spite of the concerns we have reported before there is
Therefore, predictability can be hoped for only in specialng threat to the identity of the observer. Moreover, in view of
cases—for the einselected pointer states of systems that c@fk recorded evidence, E¢L1b), and his ability to predict
remain correlated with the apparatus that has measured theiture outcomes in this situation, an observer may assert that
[5,6,8]. the system is in the state Indeed, if we did not assume that
Decoherence methods used to analyze the consequenc&ig observer is familiar with quantum physics, we could try
of such immersion in the environment employ reduced dengng convince him that—in view of the evidence—the system
sity matrices and trad@-9,14,13. They are based on Born's myst have been in the preexisting “objective stateslready
rule. Once decoherence is assumed, Born's rule can bgefore the first measurement. This happens to be the case in
readily derived 8], but this strategy courts circularif$,38.  our example, but the state of a single system is not “objec-
Obviously, if we temporarily renounce decohereitse that  tive” in the same absolute sense one may take for granted in
we can attempt to derive,=|y{*), we have to find some the classical realm: Obviously, in quantum theory a long se-
other way to either justify the existence of pointer states angyuence of records after the measurement is no guarantee of
the einselection-based definition of branches in ahe “objective preexistence” of the observer-independent
decoherence-independent manner or give up and concludgate before the measurement in the same sense as was the
that, while Born’s rule is consistent with decoherence, it cancase in the classical realm.
not be established from more basic principles in a no- \when the observer subsequently decides to measure a dif-

collapse setting. We shall show that, fortunately, preferrederent observable with the eigenstatés)} such that
states obtain more or less directly from envariance. That is,

environment-induced superselection and, hence, pointer ba- N

sis and branches can be defined by analyzing correlations lo) = 2 (sde)lse), (12
between quantum systems, very much in the spirit of the k=1

original “pointer basis” proposdb] and without the danger the overall state viewed “from the outside” will become
of circularity that may have arisen from reliance on trace and
reduced density matrices.

N

{Is}
|AENTMANE M 0} — [A)ENTTYANETY (| @) Al
A. Relative states and definite outcomes: k=l
Modeling the collapse (133

The essence of the no-collapse approach igdtative It is tempting to regard each sequence of records as a
statenature—its focus on correlations. Once we identify pos-‘branch” of the above state vector. It certainly represents a
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possible state of the observer with the data concerning hias can be known about the system—he is in an excellent
“history,” including records of the state of the system. Fromposition to deduce the chances of different conceivable out-
his point of view, the observer can therefore describe thicomes of the new measurement he is about to perform.
“personal” recorded history as follows: “As long as | was  This is the second lesson of our discussion and an impor-
measuring observables that shared the eigengtatee out-  tant conclusion: In quantum physics, ignorance can be quan-
come was certain—it was always the same. After the firstified more reliably than in the classical realm. Remarkably,
measurement, there was no surprise. In that operational senstile the criticisms about assigning probabilities “on the ba-
the systenwasin the statg). When | switched to measur- sis of ignorance” have been made before in the classical
ing {|sy}, the outcome becamgay) |s;7), and the system context of Eq.(11), perfect knowledge available in the quan-
was in that state thereafter.” This conclusion follows from histum case was often regarded as an impediment.

records:

s} B. Environment-induced superselection without decoherence

Isi
®m ®m
A @) = - [ Ar)sio) We shall return to the discussion of probabilities shortly.
(s} ol e o However, first we need to deal with the preferred basis prob-
= = AT sia) lem pointed out above. The prediction observer is trying to
I-1 (13b) make—the only prediction he can ultimately hope to
verify—concerns the future state of his memoty We need
There will be, of course,N such branches, each of to identify—without appeals to full-fledged decoherence—
them labeled by a specific record (e.g., Wwhich memory states are suitable for keeping records and,
A A JA® ). But especially when records more generally, which states in the rest of the Universe are
are well defined and stable, then there is again no threat tgufficiently stable to be worth recording. The criterion: such
the identity of the observefAlso note that in the equation states should be sufficiently well behaved so that the corre-
above we have stopped counting the “still available” emptylation between observers’ records and the measured systems
memory cells. In a tradition that dates back to Turing weshould have predictive powgs]. Predictability shall remain
shall assume, from now on, that an observer has enougbur key concerr(as was the case in the studies employing
“blank memory” to record whatever needs to be recorded. decoherencg€3-9,14,15,39 although now we shall have to
Now come the two key lessons of this section: To “firstformulate a somewhat different—"decoherence-free”—
approximation,” from the point of view of the evidentiee.,  approach.
records in observer possessiothere is no difference be- The issue we obviously need to address is the basis am-
tween the “classical collapse” of many future possibilitiesbiguity: Why is it more reasonable to consider a certain set
into one present actuality he experiences after his first “conf{Aw} as memory states rather than some othef|Bg}} that
firmatory” measurement, Eq11), and the “quantum col- spans the saménmemory cell or apparatus poinjeklilbert
lapse,” Eqg.(13). Before the confirmatory measurement thespace? One answer is that the observer presumably tested his
observer was told what observable he should measure, amdemory before, so that the initial state of his record-bearing
he found out the state. A very similar thing happened when memory cells as well as the interaction Hamiltonian used to
the observer switched to a different observable with eigenmeasure—to generate conditional dynamics—has the struc-
states{|s)}: After the first measurement with an uncertain ture that implements a “truth table” of the form
outcome a predictable sequence of confirmations followed.
In the “second approximation,” there is, however, an es- [AQ S — |AY]S - (14)
sential difference: In the case of the classical collapse, Eq.
(12), the observer hatkssof an idea about what to expect But this is not a very convincing or fundamental resolution
than in the case of genuine quantum measurement(1B);.  of the broader problem of the emergence of the preferred set
This is because now—in contrast to the “ersatz collapse” obf effectively classicalpredictabl¢ states from within the
Eg. (11)—the observer knows all that can be known aboutHilbert space. Clearly, the state on the RHS of EiBa is
the system he is measuring. Thus, in the case of Bk}, the  entangled. So one could consult in any basis{|B))} and
observer did not know what to expect: He had no certifiablydiscover some corresponding stateSf
accurate information that would have allowed him to gauge
what will happen. He could have been left completely in the N
dark by the preparefin which case he might have been ) =2 (BIAN(S] @[S0 (15)
swayed by the arguments of Lapldd&] and to assign equal k=1
probabilities to all conceivable outcomesr might have o ]
been persuaded to accept some other Bayesian priors 6f1€ question is, why should the observer remember his past,
could have been even deliberately misled. Thus, in the claghink of his future, and perceive his present state in terms of
sical case of Eq(11) the observer has no reliable source of {{/AQ}'s rather than{|B))}'s? Future measurements of one of
information—no way of knowing what he actually does notthe stateg|r;)} (which form in general a nonorthogonal, but
know—and, hence, na priori way of assigning probabili- typically complete set within the subspace spanne¢|$})
ties. By contrast, in the quantum case of Etp) observer could certainly be devised so that the outcome confirms the
knows all that can be known. Therefore, he knows as mucimitial result. Why then did we write down the chain of Eq.
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(13b) using one specific set of statéand anticipating the {ls}
corresponding set of effectively classical correlati@ns LJAsidleEm— .. = LA s e
1
1. Pointer states from envariance: The case of perfect correlation
The trace in Eq(17) that yields density matrix is, however,
Basis ambiguity is usually settled by an appeal to deco¢illegal” in the discussion aimed at derivation of Born’s rule:
herence. That is, after the premeasurement—after thBoth the physical interpretation of the trace and of the re-
memory A of the apparatus or of the observer becomes enduced density matrix are justified assuming Born’s rule. So
tangled with the system-4 interacts with the environment we need to look for a different, more fundamental justifica-
&, so that€ in effect premeasured: tion of the preferred set of pointer states.
Fortunately, envariance alone hints at the existence of the
{ N preferred states: As theorem 1 demonstrates, phases of
S . .
1A )eqy — (2 <54<|90>|Ak>|51<>)|80> Schmidt coefficients have no relevance for the states of en-
k=1 tangled systems. In that sense, superpositions of Schmidt
states for the systers or for the apparatusd that are en-
tangled with some do not exist either. Now, this corollary
of theorem 1 comes close to answering the original pointer
basis question5]: When measurement happens, into what
basis does the wave packet collapse? Obviously, if we dis-
The observable left Unperturbed by the interaction with tthua“fy all Superpositions of some preferred set of states,
environment should be the “record observable”4fThen  only these preferred states will remain viable. This is an
the preferred pointer stat¢f\)} are einselected. envariant version of the account of the negative selection
Note that this very same combined state would have reprocess, thepredictability sievethat is usually introduced
sulted if the environment interacted withand “measured it”  using full-fledged decoherence. The aim of this section is to
directly in the basig|s,)}, before the correlation ol andS.  refine this envariant view of the emergence of preferred basis
Clearly, there is more than one way to “skin a Schrédingef2,3] by investigating the stability and predictive utility of
cat.” This remark is meant to motivate and justify a simpli- correlations between candidate record states of the apparatus
fication of notation later on in the discussion. In reality, it is and the corresponding state of the system.
likely that both.A and S would have interacted with their The ability to infer the state of the system from the state
environments and that each might be immersedoime or  of the apparatus is now very much dependent on the selec-
more physically distinct€’s. Recognizing this in notation is tion of the measurement ofl. Thus, thepreferred basis
cumbersome and has no bearing on our immediate goal dfA,)} yields one-to-one correlations betweghand S that
showing that einselection of pointer states can be justifiedo not depend o#g:
without taking a trace to compute the reduced density matrix.
In the situation when the measured observable is Hermit- IAXA W s 1) = |AD|S] € - (189
ian (so that its eigenstates are orthogoraid the environ-
ment premeasures the memory in the record states(1By. Above, we have written out explicitly just the relevant part
has the most general form possible. It is therefore enough tof the resulting state—i.e., the part that is selected by the
focus on a single& and reserve the right to entangle it some- projection.
times with A and sometimes witks, and sometimes with By contrast, if we were to rely on any other basis, the
both. information obtained would have to do not just with the sys-
Given that the measured observable is Hermitian and redem, but with a joint state of the system and the environment.
ognizing the nature of the conditional dynamics of tA€  For instance, measurement in the complementary basis,
interaction, the resulting density matrix would have the form

{le} N
- g;-<sk|‘P>|Ak>|sk>|8k> =|Vsue). (16)

N g2mkiN
N B)=2 A
k=1
Psa=TrelWsue)(Ws el = 2 Ksd ARSI (A
k=1 would result in rather messy entangled stateSaind &:
(17 -
s -i27kI/N olen -
BBV s4) > [B)) ——alsolew |. (18
Preservation of the perfect correlation betweeand A in AT sA ' k=1 VN K

the preferred set of pointer states dfis a hallmark of a

successful measurement. Entanglement is eliminated by déhis correlation with the entanglefi€ state obviously pre-
coherencée.g., discord disappedi41]) but one-to-one clas- vents one from inferring the state of system of inter8st
sical correlation with the einselected states remains. Thiglone from memory states in the bagiB))}: Bases other
singles ouf|Ay}'s as “buds” of the new branches that can bethan pointer state$|A,)} do not correlate solely witls, but
predictably extended by subsequent measurements of theth global entangled (or, more generally, mixed but corre-
same observable—e.g., lated) states of5€.
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We conclude that the pointer states4fcan be defined in  from zero. The key conclusion can be now summed up with
the “old fashioned way’—as states best at preserving correthe following.
lation with S, and nothing bus. This perfect correlation will Theorem 3When the environment-apparatus interaction
persist even when the environment is initially in a mixedhas the form of Eq(19a, only the pointer observable of
state. Our decoherence-free definition of preferred states apt can maintain perfect correlation with the states of the
peals to the same intuition as the original argumeri6iror  measured system independently of the initial stat€ ahd
as the predictability sievgl5,39,3,8,9, but does not require time t.
reduced density matrices or other ingredients that rely on Proof. From Eq.(19b) it is clear that statefA,) maintain
Born’s rule. perfect 1-1 correlation with the statgsg) at all times and for
all initial states ofé—i.e., independently of the coefficients
Y This establishes tha#,) are good pointer states.

To complete the proof, we still need to establish the
converse—i.e., that these are tobaly such good record

The example of einselection considered above allowed Ustates. To this end, consider another set of candidate memory
to recover pointer states under very strong assumptions—i.estates ofA:

when{|s)}, {|A}, and{|ey} are all orthonormal. But such

tripartite Schmidt decompositions are an excepfii. It is B) =2 bilAY.

therefore important to investigate whether our conclusions k

remain valid when we look at a more realistic case of anThe corresponding conditional state of the resSgf€ is of
apparatus that first entangles wéthrough premeasurement the form

and thereafter continues to interact whThe SA interac-

tion may be brief and can be represented by Hamiltonians BB W s.4e) = [B) X adoislex(®) (190
that induce conditional dynamics summed up in the truth K

table of Eq.(14). The effect of immersion of the apparatus |t js clearly an entangled state &€ unless allkk’ that
pointer or the memory cell in the environment is often mod-appear with nonzero coefficients differ only by a phase. That
eled by an ongoing interaction generated by the Hamiltoniaondition implies that (g,(t) | £y (1)) =exp(i ¢y )—that is,
with the structure |&e(H)]=1. This would in turn mean that the environment

2. Pointer states from envariance: Einselection, records,
and dynamics

_ has not become correlated with the stdfg$.
Hae= % I ANA ® [e,)e,, (193 In general,|{ ()| <1. Thus, states af€ correlated with
_ ) the basis|B,) of the apparatus are entangled—records con-
which leads to a time-dependent state tained in that basis do not reveal information about the sys-
» tem alone(as records in the basj8,) do), but, rather, about
— t —
W sae) = % als)lAY Y v,67% lle,) = Ek adsolAled®). jildefined entangled states of the system of inte@stnd

environment (which is of no interest Thus, as stated in the
(19b) thesis of this theorem, the only way to assure a 1-1 record-

outcome correlation for atlindependently of the initial state

of £ is to use pointer statdgy). Q.E.D.
Lo = {elew) = > |y, |2€! @it (190 Remark The aboye argument sheds intert_asting Iight on

v the nature of the environment-induced loss of information. In

. . . . the case of imperfections the state correlated with records
responsible for suppressing off-diagonal terms in the reduce opt in the memory has the form of EQ.9d—that is, it can
den_si_ty matrixps 4 is generally no_nvanishing _alfchoug_h, for be apure entangled state a$&, and not the state Qﬁ’,alone.
suff!me_ntly larget and large environments, It Is typically he observer still knows exactly the state, but it is a state of
vamsﬁmgly e course, as yetl—l.e., in the ab;encg 0 wrong system. Instead of the “system on interéstit is a
Born’s rule—we have no right to attribute any physical S'g'global state of a composit8€. Consequently(i) even if the

nlfllcanhce tg Its va_Iue. ite st A b i observer knew the initial state &f the state of the system of
n the above tripartite state onyAy} are by assumption interestS cannot be deduced. Moreovsii) typically the

orthonormal. We need not assert that abiga}—the initial  jnitial state of€ is not known, which makes the state &f

truth table might have been, after all, imperfect, or the meagyen more difficult to find out.

sured observable may not be Hermitian. St|”, even in this We have provided a definition of pointer states by exam-

case with relaxed assumptions perfect correlation of thening the structure of correlations in the pure states involving

states of the system with a fixed set of records—pointefs 4, andé. It is straightforward to extend this argument to

states{|A)}—persists, as the reader can verify by repeatinghe more typical case whehis initially in a mixed statefor

the calculations of EQ(18). example, by “purifying”€ in the usual manngrSo all of our
The decomposition of Eq19b) is typically not a Schmidt  discussion can be based on pure states and projections—

decomposition when we regaJA€ as bipartite, consisting preferred pointer states emerge without invoking trace or re-

of SA andé—product statefA,)|s,) are orthonormal, but the duced density matrices.

scalar products of the associated statgé)) are given by In spite of the more basic approach, our motivation has

the decoherence factdjy (t), which is generally different remained the same: preservation of the clasgimaht least

The decoherence factor
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“one way classicalT41]) correlations—i.e., correlations be- V. PROBABILITY OF A FUTURE RECORD
tween the preferred orthonormal set of pointer states of the

apparatus and of thépossibly more genefalstates of the To arrive at Born’s rule within the “no-collapse” point of

system that can be access@y measuring pointer observ- view we now follow the envariant strategy of Sec. Il, but
Y 9p with one important difference: The probability refers explic-

?Sbfe%;gswr:goz;[ ofusrbrrlre):i_l,?rfs ':)r:altn ]ct(r)]rem[?rt'lec;g.rr-le-ze[r)?;?];g} '(t)b?_tly to the possi_ble future_ state of the_ obsgrve_r. This approach
servable is very much in _the spirit of th@m;tenhal interpretation
which in turn builds on the ide&which was most clearly
stated by Everetfl2]) to let quantum formalism dictate its
interpretation.
The existential interpretation is introduced more carefully

commutes with thedA€ interaction Hamiltonian, Eq(193), and discussed in detail elsewhdr£s,8,3. It combines a

A= % MdAY(A

responsible for decoherence: relative-state point of view with the recognition of the emer-
gence and role of the preferred pointer states. In essence and
[AH4e]=0. (200 in the context of the present discussion, according to the

existential interpretation an observer will perceive himself
r, to be more precise, his mempmn one of the pointer
tates and therefore attribute to the rest of the Universe a
” - . state consistent with his records. His memory is immersed in
from the same condition of the preservation of correlatlon§he environment. His recordstored in pointer statgsre not

we have invaked here. secret. Indeed, because of the persistent monitoring by the

Pointer states coincide with Schmidt states in Fhe trlpartlteenvironment, many copies of the information inscribed in his
SAE when a perfect premeasurement of a Hermitian observ-

ble is followed b rfect decoheren that is, wij possession are “in public domain"—in the environmental de-
avle 1S Tollowed Dy pertect deconerence—inat 1S, wigh rees of freedom: Hence, the content of his memory can be
=0. This case was noted and its more general consequen

S .
2o ) ) N~principle deducede.g., by many other observers, moni-
were anticipated by brief comments about pointer state§0ri?]g ingependent fraggmen>t/s of tg/e environméram mea-
emerging from envariance ir2,3].

surements of the relevant fragments of the environment. Se-
We also note that the recorded statesSaio not need to lective proliferation of information about pointer observables
be orthonormal for the above argument to go through. W

; . Qllows records to be in effect “relatively objectivé3,8].
have relied on the orthogonality of the record stafiég)} This operational notion of objectivity is all that is needed for

and invoked some of its consequences without having @nq «gpjective classical reality” to emerge. Obviously, an ob-
assume idealized perfect measurements of Hermitian obser¥ser will not be able to redefine memory pointer states—

ables. We note that this strategy can be used to attributg,re|ations involving their superpositions are useless for the
probabilities to nonorthogonali.e., overcomplete basis purpose of prediction.

states ofS, as long as they eventually correlate with ortho-" e existential interpretation is usually justified by an ap-

normal record states. _ _ peal to decoherence, which limits the set of states that can

The ability to recover pointer states without appeal ©Oyetain yseful correlations to pointer states—states that can
trace—and, hence, without an implicit appeal t0 Bom'Spegis; and, therefore, exist—to a small subset of all possible
rule—is a pivotal consequence of envariance: We have juslaies in the memory Hilbert space. As we have seen in the
shown that einselection can be deduced and *branches” mayeceding section, the case for persistence of the pointer
emerge without relying on decoherence. Rather than USEates can be made by exploiting nature—and, especially,

trace and reduced density matrices we have produced a defjgrsistence—of ths.A correlations established in the course
vation based solely on the ability of an open sys@mour 4 the measurement in spite of the subsequent interaction

case memoryd) to maintain correlations with the test sys- it the environment. In short, we can ask about the prob-

tem S in spite of the interaction with the environmefit ability that the observer will end up in a certain pointer
In hindsight, this ability to find a preferred basis without gate_that his memory will contain the corresponding record
reduced density matrices—although unanticipd@38— 5 the rest of the Universe will be in a state consistent with

can.be readily understoo@ihe emergence of preferred States these records—without using trace operation or reduced den-
(which in the usual decoherence-based approach habltualgﬁy matrices of full-fledged decoherence.

appear on the diagonal of the reduced density matsixa

consequence of the disappearance of the off-diagonal terms A. Case of equal probabilities
But off-diagonal terms disappear when states of the environ- begin with the case of equal probabilities. That is, we
ment correlated with them are orthonormal—when the deco{:onsider ’
herence factor defined by the scalar prodigle)) disap-

pears ifk#1. So as long as we do not use trace to assign i )
weights(probabilitieg to the remainingdiagona) terms, we @) o 2 s (12)

are not invoking Born’s rule. In short, one can find out eigen- k=t

states of the reduced density matrix without enquiring abouaind note that following premeasurement and as a conse-
its eigenvalues and especially without regarding them aguence of the resulting entanglement with the environment
probabilities. we get

This simple equation, valid under special circumstances, w
derived in the paper that has introduced the idea of pointe
states in the context of quantum measuremgbtsstarting

N
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N N |\FSA5), Egs.(2D)—(23). As all measurements follow this gen-

W48y = 2 €Ml A]e) = 2 €5, AlS0) e eral pattern, we can—without any loss of generality—
k=1 k=1 anticipate this decoherence-causing entanglementé&néthd
(21)  start the analysis with the appropriate state.
The notation on the RHS above is introduced temporarily to An observer can in principle carry out measurements, of

emphasize that the essential unpredictability observer is dea14’ or £ as well as global measurements SHE that will

ing with concerns his future state. As the record stgtgs  (apB08 T B0 RGBT BAE CL O ierent
are orthogonal, explicit recognition of this focus of attention y gnp

allows one to consider probabilities of more general mea_potential outcomes. The key measurement in this strategy is

the confirmation that the composite systems of interest are
surements where the outcome stdieg} of the system are returned to the initial pure statgay, |¢ss ) or [We)) after

not necessarily associated with the orthonormal eigenstatqﬁe appropriate swaps and counterswaps are carried out. For

of Hermitian operators. .
. . . . example, a sequence of operations
The orthogonality of states associated with events is P q P

needed to appeal to envariance—we want events to be “mu- g _

tually exclusive.” Now it can be provided by the record A thse)  — AN Wse), (249
states. Both measurements of non-Hermitian observables as

well as “destructive measurements” that do not leave the

system in the eigenstate of the measured observable belong Us(k = Dlrse) = [73e). (24b)
to this more general category. For instance, foeed
S o
N A mse)  — 1A, ibse)s (240
[} A]e0) = (E e'¢k|sk>)|Ao>80> — |50 2 [A(S)ew >
k=1 k _
(22) ug(k = D[ nse) = |thse), (249
is a possible idealized representation of a “destructive” mea- o fdee) o
surement such as a photodetection that leaves the relevant IADWse) —  |AS ise) (240
mode of the field in the vacuum statg) but allows the Vse
detector to record the premeasurement stat8. of allows the observer to conclude that the even global state

Most of our discussion below will be applicable to such
more generaland more realisticmeasurements. However,
the most convincing “existential” evidence for the “collapse
of the state of the system is provided by nondemolition mea
surements. In that case repeating the same measurement
yield the same outcome:

|4s¢) can be transformed by “a swapdhinto the statg7se),

» but that it can be restored tgisc) by the appropriate coun-
terswap in€. Observers familiar with quantum theory and
ith the basicfacts 1-3concerning the nature of systems
that allowed us to establish theorems 1 and 2 will be also
convinced that the probabilities of the outcomes of the en-

_ N variantly swappable states Sfare equal. Sequences of op-
|W s 010) = >, €5 AY )™ (23)  erations that can be carried out as well as the perfect predict-
k=1 ability of the records(e.g., ---\AJSS)|A’;S£>|Ai )-++) that
SE

The observer will be led to conclude on the basis of hisalways—that is, with certainty—appear at the end of the ex-
record[e.g., - |A)*MA1»)®!, Eq.(13D)] that a “collapse” of  periments will convince the observer that each of the envari-
the state from the superposition of the potential outcomeantly swappable outcomes is equally likely—that each
[Eq. (12)] into a specific actual outcom@s,7) has oc-  should be assigned the same probability.
curred. From his point of view, this clearly is an unpredict- Note that, in principle, the observer could treat one of his
able event. own record cells as an external system. This happens when
The obvious question—"given records of my previousthe record is made by the memory of the apparatus and the
measurementfA,)®™, what are the chances that I, the ob- observer is not yet aware of the outcome. Then this record
server, will end up with a recordA)® of any specific cell comes to play a role of the extension of the system; i.e.,
|s)?"—can be now addressed. The same question can be @6 state can be swapped along with the stateSdf has
course posed and answered in the more general case, whestorded. There is little difference between this set of mea-
confirmation through the remeasurement of the system is n@urements and swaps and the sequence we have just dis-
possible, although then collapse is not as well documentedussed, Eq(24). The sequence involving memory cell states
Here we focus on nondemolition measurements of Hermitiariwhich are certifiably orthogonalvould allow one to assign
operators to save on notation. probabilities to the states ¢f that are not orthogonal, as was

The motivation for consideringyse) or [ W 4¢) instead of ~ noted above.
the pure initial state of the system in the study of probabili-
ties should be by now obvious: We have already noted in the
course of the discussion of pointer states that the anticipated We now implement the strategy outlined in Sec. Il, our
and inevitable interaction with€ will lead from [py to  “interpretation-neutral” version of the derivation of Born's

B. Boolean algebra of records
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rule from envariancehut we shall use records as “events.” To prove additivity of probabilities using envariance we
This will allow us to start at a more fundamental level thanconsider the state
in Sec. Il. To begin with, we will be able to establish what in

Sec. Il was the additivity assumption, E@b). We shall then 1Y Zase) > |KK>2 IAYISOlew), (27)
go on to derive Boolean logitwhich is behind the calculus K

of probabilities [20]) and rederive Born’s rule from this

ke k

“logical” point of view. representing both the fine-grainéd,) and coarse-grained
o - _ |A,) records. We first note that the form pf ; 4s¢) justifies
1. Additivity of probabilities from envariance assigning zero probability t{s;)'s that do not appear—i.e.,

In the axiomatic formulation of the probability theory due @PP€ar with zero amplitude—in the initial state of the sys-
to Kolmogorov(see, e.g., Ref20]) as well as in the proof of tem. Quite simply, there is no state .of the observer with a
Born’s rule due to Gleasof80] additivity is anassumption _recorg of such zero-amplitude Schmidt states of the system
motivated by the mathematical demand—probability is an |Yaase) Ed.(27). S
measure On the other hand, in the standard approach of TO establish lemma 5 we shall further accept basic impli-
Laplace[17] additivity can be established starting from the cations of envariance: When there are tdtalenvariantly
definition of probability of a composite event as a ratio of theSWappable outcome states and they exhaust all of the pos-
number of favorable equiprobable events to the total. Théible outcomes, each should be assigned probability b 1/
key ingredient that makes this derivation of additivity pos-in accordance with Ed(.7a). We also note that when coarse-
sible is equiprobability: We have independent proof thatdrained events are defined as unions of fine-grained events,
there exists a set of elementary events that are swappabfél- (25, the conditional probability of the coarse-grained

and, hence, have the same probability. event is
Envariance under swaps is such an independent criterion. B
Using it we can establisbbjectively(in contrast to Laplace, Pk =1, ke «, (283
who had to rely on the subjective “state of mind” of the
observey that certain events are equiprobable. We can then p(kk) =0, k¢ «. (28Db)

follow Laplace’s strategy and use equiprobability to prove

additivity. This is important, as additivity of probabilities To demonstrate lemma 5 we need one more property—the
should not be automatically and uncritically adopted in thefact that when a certain event [p(i/)=1] can be decom-
quantum setting. After all, quantum theory is based on thgosed into two mutually exclusive eventg=kOx*, their

principle of superposition—the principle of additivity of probabilities must add to unity:
complex amplitudeswhich is prima facie incompatible

with additivity of probabilities, as is illustrated by the pU) = p(k Oxt) = p(x) + p(ct) =1. (29
double-slit experiment.

Phases between the recdpbinten states(or, more gen-  This assumption introduce® a very limited setting addi-
erally, between any set of Schmidt statée not influence tivity. It is equivalent to the statement that “something will
the outcome of any measurement that can be carried out atertainly happen.”
the apparatusor memory, as theorem 1 and our discussion  Proof of lemma 5 starts with the observation that prob-
in Sec. IV demonstrate. This independence of the locahbility of any composite event of the form of Eq.(25) can
state from global phases invalidates the principle ofbe obtained recursively—by subtracting, one by one, prob-
superposition—the systems of inter¢st the pointer of the abilities of all the fine-grained events that belongkto and
apparatus or the memory of the obsejvare “open"— exploiting the consequences of the implication, E28),
entangled with the environment. As a consequence, we caajong with Eq.(29). Thus, as a first step, we have
in effect, starting from envariancestablish(rather than pos-
tulate the Laplacian formula for the probability of a com- p({ky Ok, O -+ Ok, O--- Oknoqt + plky) = 1.
posite event. “

Lemma 5The probability of a compositeoarse-grained  Moreover, for all fine-grained eventgk)=1/N. Hence,
event consisting of a subset

1
k={ki Ok 0+ Oky } (25) P(ky Do O - Dk, O -+~ Oknoa} =1-1.

of n,. of the totaIN envariantly swappable mutually exclusive Furthermore(and this is the next recursive sigghe condi-
exhaustive fine-grained events associated with records corrggpnal probability of the evenfk; Ok,O- -~ Ok, O- - Ok}
sponding to pointer states of the global state, E2fl), given the eventk, Ok, 0+ Ok, O -+ Oky_q} is
W 5460 = Zhis€ XS0 A £ = 2L 1€ s, A s e, s given ‘
by 1

p({ky Ok O -+ Oky-oHfky Okp O -+ Dkn-1D) =1-377.
n

(26)

() = N and so the unconditional probability must be
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p({kl Ok O ... Ok, O - DkN_2}|u) (8 Commutativity:
_(1 1><1 1 ) P.or = Proe (329
- N N-1/
. . . . . PKD}\ = P)\DK' (323)
Repeating this procedure untill only the desired composite o
eventx remains we have (b) Associativity:
p({ky Oko O -+ Ok, }) Ponyow = Protop (32b)
1 1 ,
=<1_N> (1—m>. P(KD)\)DM: P}\D(KDM)‘ (32b)
" (c) Absorptivity:
After some elementary algebra we finally recover
n P.om) = Pe (320
p(fky Dk 0+ T ) =
PKD()\DK) = PK' (320,)
Hence, Eq(26) holds. Q.E.D. C
Corollary. The probability of mutually compatible exclu- (d) Distributivity:
sive eventsc,\, u, ... that can be decomposed into unions of P00 = Pt ) (320)
envariantly swappable elementary events are additive:
Pk ONOp O --) =p(x) + p(\) +p(p) + -+ . (30) P oo = Pyt - (32d)
Note that in establishing lemma 5 we have only consid- (e) Orthocompletness:
ered situations that can be reduced to certainty or impossi-
bility (that is, cases corresponding to the absolute value of Peonot) = P (329
the scalar product equal to 1 ang This is in keeping with
our strategy of deriving probability and, in particular, of ar- P.omd) = P (32¢€)

riving at Born’s rule from certainty and symmetries. _ ) _
Proofs of (a)—(e) are straightforward manipulations of

2. Algebra of records as the algebra of events projection operators. We leave them as an exercise to the
We can take this approach further. To this end, we shall nanterested reader. As an example we give one of the proofs
longer require coarse-grained events to be mutually excluef  distributivity:  P,q,p,)=P«(P\+P,~P\P,)=P.P,
sive, although we continue to insist that they be defined byP P, ~(P,)2P,P,=P,+P,,~ P, Prr, =Pl o) -
the records inscribed in the pointer states. An algebra ofhe other distributivity axiom is demonstrated equally easily.
events[20] can be then defined by simply identifying events Q.E.D.
with records. The logical product of any two coarse-grained These record projectors commute because records are as-
eventsx,\ corresponds to the product of the projection op-sociated with the orthonormal pointer basis of the memory of
erators that act on the memory Hilbert space—on the correthe observer or of the apparatus: It is impossible to consult
sponding records: memory cell in any other basis, so the problems with dis-
def tributivity pointed out by Birkhoff and von Neuman3]
k ON=P,P, =P, . (31a  simply do not arise—when records are kept in orthonormal
r;?ointer states, there is no need for “quantum logic.”
Theorem 4 entitles one to think of the outcomes of
measurements—of the records kept in various pointer

The logical sum is represented by a projection onto the unio
of the Hilbert subspaces:

def states—in classical terms. Projectors corresponding to

kON=P,+Py =P P\ =P (31b) pointer subspaces define overlapping but compatible vol-

Last but not least, a complement of the evertorresponds Umes inside the memory Hilbert space. The algebra of such
to composite eventédefined as coarse-grained recordsin-
deof deed Boolean. The danger of the loss of additiitsich in

k=P, ,—P,.=P,. (310 guantum systems is intimately tied to the principle of super-

position has been averted: The distributive law of classical

With this set of definitions it is now fairly straightforward to logic holds.
show the following.

Theorem 4Events corresponding to the records stored in
the memory pointer states define a Boolean algebra. In a sense, this means that after a lengthy relative-state

Proof. To show that the algebra of records is Boolean wedetour we have arrived at a resolution of the measurement
need to show that coarse-grained events satisfy any of thgroblem quite compatible with the one advocated by Bohr
(several equivalent; see, e.f42]) sets of axioms that define [44]. The set of pointer states of the apparatus along with the
Boolean algebras: prescription of howA will interact with S suffices to define

3. Boole and Bohr: Interpretational consequences
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the “classical apparatus” the Copenhagen interpretation desented by probabilities. A good example of this situation is
mands as a key to closure of the “quantum phenomenonprovided by Bell's inequalitie§46]. There the measurement
brought about by a measurement. Our analysis shows howutcomes cannot be predicted by assuming any probability
one can put together such a “classical apparatus” from quantistribution over the states of the members of the measured
tum components. Continuous entangling interactions of thginstein-Podolsky-Rose(EPR) pair, but records of these
memory of the observer or of the pointer of the apparatugutcomes are perfectly classical. This is because “an event is
with the environment are essential. They assure einselectiofgt an event until it becomes a record of an event,” as one
yielding commuting(and, hence, Boolean—see, e.g., Ref.qqq say paraphrasing Wheeler’s paraphf@@ of Bohr.

[45]) sets of events—sets of future r ecorgg._ . . The entangled state of two spins cannot be associated with
As we have alrga}dy noted, there is a 3|gn!f|cant dIf'ferenc""events" that correspond to different noncompatible basis
Szltv\\,’fee?]gcg gggcs:;i“k?en dfg)bn(;vgugrr:gug ﬁfggﬂ\r/eemeﬂta(sastl)-an states. However, once these states have been recorded in the

referred basis of the apparatus, event space can be defined

initio classical system, where one can always imagine th
there is a preexi);ting answer, waiting to be ?/evealegd by th y the records and all steps that lead to probabilities can be
' en.

measurement. In the quantum case the answer is induced
the measurement: Uncertainty about the outcome arises
when the observer who knows the initial state of the system C. Born’s rule for the probability of a record

changes the observable of interest. Once the record has beencgnsider now the case of unequal coefficients, Ba).
made and the interaction with the environment singled oUitier it is recorded by one of the memory cells of the ob-
the preferred pointer basis, one can act “as if,” from then onggper we get

there was a definite but unknown outcome—a probabilistic,

effectively classical preexisting event. Inconsistencies in this N

neo-Copenhagen strategy based on an existential interpreta- |Ws.4e) = 2 VMM A e, (33
tion [3,8,15 could be exposed only if the observer had per- k=t

fect control of the environment and decided to forgo knowl-yjth M= m,. An observer can verify that the joint state
edge of the state of in favor of the global state af¢. of SAE is indeedys ¢ by a direct measurement in which
One of the most intriguing conclusions from the study ofone of his memory cells is treated as an external system.
the consequences of envariance for quantum measurememt$/en this informatior{i.e., the form of the joint state, Eq.
is the incompatibility between the observer finding Gand,  (33)] he can convince himself that Born's rule holds—that it
therefore, knowingthe outcome, on the one hand, and hisgjyes the correct answers about the probabilities of various
ability to expose quantum aspects of the whole on the Othefpotential record$A) and corresponding outcome statgs
Whenever entanglement is present, the two are obviouslyyhich need not be orthogonal—see discussion following
complementary. Once the state of the observer is describ@q_ (22)]. This can be seen in several different wggs4] of

by (and therefore tied foa certain outcome, he loses the which we choose the following: Consider another premea-
ability to control global observables he would need to accesgyrement involving a countet that leads to

to confirm the overall coherence of the state vector. One of
the virtues of the existential interpretation is the clarity with —
which this complementarity is exhibited. |#sec) = 2 \mysole] Co- (34

Specifying the measurement scheme along with the cou- k=t
pling to the environment—and, hence, with the set of pointefThis correlation can be established either by interaction with
states—fixes the menu of possible events. We have already or £ (although this last option may be preferred, as it
demonstratedtheorem 4 that such events associated with seems “safer—in the absence of any interaction with
future records can be consistently assigned probabilities. Therobabilities of future recordg,)'s should not change In
question that remains open concerns the relation betweeany case, the fact that this can be done by interaction with
these probabilities and the premeasurement-state vector. Viéther S or £ leading to the saméysq) proves that this
have arrived at a partial answer: Whenever the complete segafety concern” was not really justified.
of commuting observables can be fine-grained into events As before, we now imagine that
that are envariantly swappable, the associated fine-grained
probabilities must be equal. We also note that when some —
potential record state appears with a coefficient that is iden- ICo= , _E |Cjk>/ VM,
tically equal to zero, it must be assigned zero probability. L
This is very much a consequence of the existential interprewith = w,;+m, and uy=0. Note that the observer knows
tation: An observer with the corresponding record simplythe initial state of the systerw), Eq. (12). Hence, we can
does not exist in the universal-state vector. Last but not leassafely assume that he also knows the coefficients of the state
probabilities of mutually exclusive events are additive. Yise OF s e he will be dealing with. Therefore, finding

We conclude that the theory of probability that refers towith the desired dimensionality of the respective subspaces
the recordsinscribed in the pointer states singled out by en-and correlating it with€ in the right way is not a “hit-or-
variance can be consistently developed as a classical proiss” proposition—it can be always accomplished using the
ability theory. This is in spite of the fact that the quantuminformation in the observer’s possession. It is also straight-
states these records refer to cannot be consistently représrward in principle to find the environment degrees of free-

N

Mk

(35
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dom that would decohere the fine-grained stateS, s that extend Born’s rule to the case of continuous spectra. We
the complete state would become show how to do that in Appendix.
M In this section we have established that events associated
PN with anticipated future records correspond to a Boolean
[Wsec) o jkzzl ISio-cioles: (38 Siructure. This allowed us to assign probabilities to potential
. ) ) ) ) ) outcomes. Any compatible set of outcomes—any set of mea-
wherek(j)=k iff py-1<j<me. This state is obviously en- syrements that can be associated with orthonormal memory
variant under swaps d;,),c;, ). Hence, by Eq(7a), states of the observer, apparatus, etc.—can be analyzed in
this fashion. An observer makes a choice of what he will
Pi, = P(}) = Pllsij,.Ci0) = 1M. measure, but the inevitable entangling interaction with the
Moreover, measurement of the observable with the eigenénvironment will select a certain preferred set of pointer
states{|s,)} yields states. So, ultimately, the observer uses probabilities to an-
\ ; ticipate his future state.
k Once we have established that pointer states can be as-
AW s5c) o > |Ak>_ > |Sk(Jk>'Cik>|ejk>- (37) signed probabilities, we have asked about their connection
Lo st with the coefficients of the premeasurement state of the sys-
These disjoint sets correspond to different record st@{gs tem. Here the answer was based on the same idea of envari-

that are labled bk, each of them containingy individual ~ ance invoked in Sec. Il. In effect, coarse-grained outcome
equiprobable events. Therefore, using &), lemma 5, and states are compatible and can be always fine-grained by us-
its corollary, we recover Born’s rule ing suitable ancilla so that Hilbert-space volumes corre-

sponding to various possible compatible fine-grained out-
comes contain same “concentrations” of probability. This
was done by “dilution” of the original state with the help of
the counterweight ancill€. Envariance can be then used to
(38) confirm that all of the fine-grained cells must be assigned the
As before, extending it to the case of when the probabilitiessame measure—and, hence, the same probability. The prob-
are not rational is straightforward since rational numbers ar@bility of coarse-grained events was derived by counting the
dense among the real numbers. number of fine-grained cells. It is giveias we have estab-

This appeal to continuity can be made more precise nowlished in lemma b by the fraction of the total number of
providing we recognize that—essentially as a consequencg!ch envariantand, hence, equivalentells. This is very
of lemma 5—the probability of an eventthat includes an much in the spirit of the Laplacian definition of probability—
eventk must be at least as large as the probabilityof “the ratio of the number of favorable events to the total num-

ber of events.” The advantage of the quantum discussion

ke N0 p(x) < p(\). B9 restsin its ability to rigorously show when such elementary
This is easily seen as a consequence of E2@.and(30). It ~ €vents are envariantly swappable and, hence, equiprobable.
is then straightforward to set up a limiting procedure thatThis transforms a subjective definition based on the state of
bounds an irrational probability from above and from belowmind of the observer into objective, experimentally testable,
with sequences of states with rational probabilities such tha$tatement about symmetries of entangled states.
m /M, <p(x)<m,/M,<. As M, approaches infinityp(x)
=|a,/? obtains in the limit.

We have waited until now to detail this continuity argu-
ment because it can be rigorously put forward only after
additivity of probabilities has been established. And as has The envariance-based derivation of Born’s rule introduces
been known since the inception of modern quantum theoryprobability as a tool the observer adopts to predict the
the superposition principle is in conflict with the additivity of future—or, more precisely, to predict his future state given
probabilities: For example, Eq39 would not hold if that he decides to measure some specific observable. The
“events” were not associated with the records, as )  outcomes of the planned measurements are uncertain be-
does not hold for arbitrary states. Furthermore, B8) and cause of quantum indeterminacy. Even when the observer
the distributivity axioms are violated in the double-slit ex- knows all that can be known about the system—even when
periment if “particles passing through the léfight) slit” are  is in a pure state—ignorance appears whenever the to-be-
identified as events. They regain validity when “ffp@inter ~ measured observable does not have the state prepared by the
basig record of a particle passing through the lgight) slit” preceding measurement among its eigenstates.
are regarded as eventand the interference pattern disap- The observer’s aim is to assess the likelihood of a particu-
pears. We note again that this is essentially Bohr’s mantraar future record in comparison with the alternatives. The
as reported by Wheel¢B7]. The only difference is that the measure that emerges is based on the equiprobability of cer-
record need not be made by amb initio a classical tain mutually exclusive eventgorthogonal statgsunder
apparatus—an effectively classical apparatus with a set cdwaps. They are provably equally probable because the glo-
memory states fixed as a consequence of incessant monitdral S€ state can be restored by counterswaps in the environ-
ing by & suffices to do the job. It takes a bit more effort to ment. The environment can be invoked already for the pure

MK

Pk = P(s) = 2 p(|5k(jk) ,|Cjk>) =m/M = |ak|2

J=Hy-1+1

VI. BORN'S RULE, RELATIVE FREQUENCIES,
AND ENVARIANCE
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state ofS, Eq. (12), when contemplating possible outcomes  Given the central idea of our approach—that the symp-
of the future measurements: it will inevitably and predictablytoms of classicality and the effective collapse are induced by
entangle with the records causing decoherence and unprgre interaction with the environment—we shall conduct our
dictability. discussion in the relative state setting. Thus, we imagine an
The fundamentally predictive role of probabilities re- observer presented with a large ensemble of systems, each
flected in our derivation of Born's rule is often contrastedprepared in the same statg), Eq. (12). The observer em-

with the “relative frequency interpretatioff18,19. Imagine  pioys a counte€ to (premeasure each of the systems in the
an observer who—instead of counting numbers of mutuallys 5 me basids,):

exclusive envariantly swappable states—performs the same

experiment over and over and infers his chances of getting a (s} NN
certain outcome in the next round from the past records by |C)*Ne)*V= ... =--- [T | > (sil@)|Colsy) | = D).
assuming that he is in effect dealing with an infinite en- T =\l ! (40)

semble deduced from his finite data.
Supporters of the Bayesian-Laplacian “epistemic” andNote that the above\" measurements are carried out “in
subjective view of probabilities and of the opposing “relative parallel,” one on each of/ systems. We have reflected this
freque_ncy” approach_have been oftgn at oqu, taking thedifference in notation by using=$" instead of “-” of, say,
own views to dogmatic extremes while pointing out flaws of g (111). To simplify the notation we limit our consider-

the oppositior{ 19]. The central difficulty pointed out by the  4tions to the case when there are just two possible outcomes,
frequentists in their criticism of the Bayesian approach—that; that

ignorance gives one no right to make any inferences and,

hence, no right to assigany probabilities to the possible Isp=10), [s)=11),
outcomes—is difficult to ignore. Therefore, Bayesian appeal
to symmetry through the principle of indifference are inap-

ropriate when they involve the “state of mind” of the ob- '
ger\?er y =m/M, |af>+|B|?>=1, so that a countable way exists to fur-

However, while such criticisms are very relevant in thether resolve” the state above into superpositions that have

classical setting, they simply do not apply here: In quantun’fhe same absolute values of the coefficients. In this manner,

physics ignorance of a future outcome can be demonstratedating from
and quantified by employing objective symmetries of the lo) = al0) + B|1), (12"
preexisting statéwhich can be perfectly known to the ob- .
servey. This was our strategy. Thus, in questions of funda-We arrive at
mental significance it would seem appropriate to deduce the N/ m M
probability by identifying the relevant quantum symmetry— [l ( O)cpley+ > |1>|cj>|ej>> . (4
envariance under swaps—and by counting the fundamentally I= 1 j=m+1 |
swappablgand, hence, equiprobableutcomes.

This strategy may not be always applicable—for instance

With (0]1)=0. Moreover, as before, we imagine that for
some integem and M (0<m<M) we have|a|?=[(0| @)|?

j:
The steps that lead to this state in the composite Hilbert

QN
in some situations where such fundamentally equiprobablsPaCG(HS@HC@HE) can be reproduced by the reader

events are difficult to identify. So reliance on actuarian table ?ollowmg the strategy of Sec. II. We assuifie analogy with

in the insurance business is difficult to question. However, in gs.(9) and(35)] that

quantum measurements we are dealing with probabilities of m — R

a single event at a very fundamental level. Frequencies ICoy =2 leyvm,  [C)= > [e\M -m.

should be secondary. The relative frequency approach was =1 J=m+1

rightly criticized for requiring infinite ensembles. Indeed, |n effect, we assume that the Hilbert space of each counter

this task of extrapolating—deducing the infinite ensemblege|| has a sufficient dimensionality to allow for the increased

required for future predictions from the relative frequenciesresolution needed to “even the odds” between the mutually

of the past outcomes—involves a subjective element studiegyc|usive fine-grainet;).

e.g., by de Finettj47]. We can now carry out the product in E@l). The result-
Nevertheless, even when one can deduce probabities jhg sum hasvi”V distinct terms:

priori using envariance, they better be consistent with the

relative frequencies estimated by the obseevposterioriin | DY) = MY |hSeEy, (42

sufficiently large samples. Such a “consistency check” is one {ny

of the motivations for this section. More importantly, our

discussion will explore and clarify the relation of thgoriori

probabilities to the relative frequencies. This has significance

for understanding the implications of envariance in an exis- [h°¢) = -~ (|O) |Cj<mh |€)k) = (| D JCi=mi i) "+~ -

tential interpretation of quantum physics. We shall conclude (433

that when probabilities can be deduced directly from the pure

state, the two approaches are in agreement, but thaa theThat is, they reflect individual sequences of fine-grained

priori probabilities obtained from envariance-based argurecords made by the observer. Edioff®) is completely de-

ments are more fundamental. termined by the history of fine-grained counts:

M

Individual recorded histories have the form of ordered prod-
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|hC> = ... |¢J.>k |Cj>k . (43b) differ only in the total numben of 1's (i.e., we ignore the
' z “order of appearance” of 0's and 1's
Thus,h*¢ is obviously implied byh’. Moreover, by assump- This operation involves summing up the numbers of de-

tion, states of theV distinct environments are individually tections of 1's. It could even be implemented in the memory
Schmidt states, Eq41)—that is, orthonormal and in one-to- of the apparatus or of the observer byremister i. The

one correspondence with the stateg 080, in the end, given register performs a unitary transformation—a “subroutine”
the initial state of¢, eachh®“® is completely determined by that operates on states of the cour@téhat has the record of
h’: The history of the fine-grained counts implies the wholethe complete fine-grained history. The register sums up the
history of measurements—sequences of the detected statesmafmber of detections of 1 and writes down the resattif

the system as well as the “history of decoherence:” the suitable register cell:

N

o\ — c
0529 =TT (seppleple= () @ i) @ | (H). POl = o)

k=1 The register cell could work equally well by summing up the
(44)  number of 1's directly in the states of the systein Eq.

This structure of the set of complete histories and the faci‘l?’a)'.but It seems more appropriate to let the observnguse
or this purpose. The register cell has at leAStpossible

thath®0 h*¢ as well ash®0 h°°¢ are important for two rea-

plates.
sons. We shall use them to prove that the superensemb Th it b itten i bbreviated f
|, is suitably envariantso that we can attribute the same € result can be written in ah abbreviated form as
probability to the distinct historieb‘). Moreover, we shall N o )
have to count numbers of equiprobable histories that yield |Dseme) EC WE il (42)
the same numbers of detectiofaf, say, “1”) in S to com- h
pute relative frequencies.

Let us start with the proof of envariance. We need to N N
demonstrate that any two fine-grained histofié$ that ap- => ( )|n>fﬁ|0>N_n|1>"
pear in the above superensemble, Efl), can be envari- n=0 \ N
antly swapped. A general form of the history representing m N-n/ M n
correlated states af andC only is X(E |cj)|ej)> ( > |cj>|ej>) . (42"
=1 j=mt+1
|hicj2~--j/ = |51>|le>|52>|012> e |Sk>|cjk> e |SN>‘CLV>'

The first line above has aM* histories—it represents the
(45 whole superensemble before any sorting was implemented.

The SC swap operator that exchanges any two histories iEquation(42’) groups histories with the same numbers of 1's

given by together. There, we have compensated for not distinguishing
o . between("Y) distinct sequences of 0's and 1's with the coef-
SC R _hSC .
Use(hfj, -, = hJ'iJ'é"'i’N) = |hjlj2"'jﬁ/><hjijé”'j}) +H.c. ficient.

The probability that the observer will deteatl’s in N
(468  measurements is proportional to the number of envariantly

or, more succinctly, swappable fine-grained histories withdetections of 1:

SC . 1 SCy = [hSCY(h/SC| + N\mV""M-m)" (N ~

Usc(h =h ) |h ><h | H.c. (46b) p'/\/(n) - ( i ) MN - . |a|2(./\/ n)|ﬁ|n (48)
When both histories appear in the state, E{), this swap
can be obviously undone by a counterswap in the environThis is of course the familiar binomial distribution. As be-
ment: fore, we can address the case when probabilities are not com-

< W€ _ mensurate by noting that rational numbers are dense among

uf(hjliz"'J,v* hjijémjjv) - |ejl> ‘eiwxeifd <eJ'1'| +H.c. real numbers.
(460 The above discussion was valid for aing We now note

that, for a largeV, the binomial distribution of Eq(48) can
We have now established that each fine-grained history ibe approximated by a Gaussian:

our many-worlds version of an ensemble has the same prob-

ability: N
P =< )|a|2W-n>|B|"
p(h) =M~V (47) n
_ 2\ 2
To facilitate the calculation of the relative frequencies we -1 expl — (M . (49
sort the superensemble of Hg¢2) which hasM* terms into V27N af| \//T/]a/3|

2V terms that differ only by the pattern of detections of the
state {1)" (i.e., we group different fine-resolution terms to- Hence, in the limit of largeV the relative frequency of 1's is
gethej. Next, we group these’2terms intoA/+1 terms that  sharply peaked around the value predicted by Born’s rule:
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Nsorm ) outcomes of measurements. Any such extrapolation is a sub-
fBom™ ")~ = 1Bl°. (50)  jective guess.
Chance and determinism combine in an unanticipated
The peak has a finite width, so that the expected devidtion manner in quantum theory: The Everettian superensemble of
is of the order Eq. (42) evolves unitarily and, hence, deterministically. Nev-
— ertheless, it satisfies a natural generalization of the von
on=\Napg|. (51) Mises’ randomness postulate without any restrictions on

Generalization to the case when there are more than tWBIace selec_tion functions. This is_easy to see, as ?‘?‘Ch mea-
outcomes is straightforward: All of the steps leading to Eq_surement yields every outcome with the same coefficients, so

(48) can be repeated, and the latyelimit can be the taken choosing any subset of measurements—any subsis af
using Tchebychev's theoref0]. the product representation of the superensemble—will have

While the relative frequency=n/A is sharply peaked no e:ect og the limiting r(TIativef frequgncieg. . d by th
aroundrg,m, its “correct” value, the probability that the num- The randomness postulate of von Mises is mirrored by the

ber of 1's concide®xactlywith ng,,, predicted by Eq(50), assumption. of “excﬂhangea.billity" introduced in a fundamgn-
tends todecreasewith increasingV. This is so even when t"’_‘"y very different( SUbJeCt'.V'St'). approach based on_deC|-
|8J? is a rational number with a denominator that is a mul-S'on theory(see_,_e.g., de Finetf7)). There the goa_l IS to
tiple of V. More significantly, the count of envariantly swap- deduce probability of the nex'F outcome from a finite se-
pable histories that yieldn € [Ngyy— AN, NgortAn] de- quence of outcomes of precedlng“measurements. E"xchange-
creases with increasing half-width of the distribution, Eq.ablllty IS meant to assure that the *rules of the game do not
(51), aSAn/V’/MCVB|- change as the consecutive measurements are carried out.
On the other hand, the half-width of the distribution in- C2Ptures thévon Mises) idea that each new measurement is
creases only with V. Therefore, for a sufficiently larga/ drawn at random from the same collective” but—in keeping

almost all histories will yield a relative frequency within any }/ivrllti?etr;;_:rgl;man_rshplr|t—av0|ds refbelren?e to ptzzgx'szg)g In-
fixed-size relative frequency intervalgy—Ar<r<rggn . . €s. The superensembie of equa 5
is obviously exchangeable: it is a superposition of all pos-
+Ar. Moreover, . . . ; .
sible ensembles, with all possible relative frequencies.
lim py(n/N) = 8(r = rgom) - (520  Hence, the order of any two measurements can be permuted
Nee with no effect on the partial relative frequencies, etc., pro-

Analogous conclusions are known in standard probabilit))’idi“g that the preparation qf the initial-state vector and the
theory[20]. We recount them here for the quantum superen/neasured observable remain unchanged. .
semble, Eq(42), as similar questions have led to confusion “I\/!avenck _branches” with relative frequenc!es that are in-
in the past in the quantum setting of many-worlds relativeconsistent with Born's rulge.g., a branch with 1's only
frequency derivationgsee, e.g., the critical comments of Plagued the many-worlds relative frequency approach
Squires [28] pointing out inconsistencies of frequency [21-28. Maverick branches are “alive and well” in the su-
operator-based approachf22,23 to derivation of Born’s p_erensemble, but hgve negligible probabilitideduced now
rule). Q|rectly from envarianceand, therefore,_for/\f> 1, are of

It is tempting to compare the superensemble of E4B) little consequence. We have already discussed the case of
and (44) with the “collective” employedespecially by von _smaII departures abovg_. As the numb)érof measurements
Mises[18]) to define probabilities using relative frequencies.increases, the probability of detecting a frequency that is
A collective is an ordered infinite ensemble of events wherj"consistent with the predictions of Born's rule becomes neg-
(i) it allows for the existence of limiting relative frequencies ligible in accordance with Eqs48) and (49). Thus, it is
that are (i) independent under a selectidusing the so- _con_celvable_ but very |mpr_obabﬂaat an observer WI!| record
called “place selection functiopbf any infinite subset of the N his experiments a relative frequency of 1's that is far from
members of the collective. Place selection functions arésom
meant to represent betting strategies: The player ob-
servej can selector rejec) the next member of an ensemble
using any algorithm that does not refer to the outcomes of Past approaches to the derivation of Born’s rule have of-
future measurements—to the state of the next member of tHen had, usually as an explicitly stated goal, the “recovery”
ensemble—but only to its “address,” its “place” in the en-of the classical definition probabilities. The limitations inher-
semble. There was initially some controversy related to thient in such a formulation of the problem were in part respon-
randomness postulate: Obviously, it is possible to influenceible for their limited success. The recovery of something as
limits in infinite series by selecting subsets of terms. Thisill defined and controversial as any of the classical defini-
problem has been, however, settlgdore or less along the tions of probability was bound to be plagued with difficul-
lines anticipated by von Misg¢dy the work of Solomonoff, ties. Moreover, the recovery of classical probabilities sug-
Kolmogorov, and Chiatin: The algorithmic randomness theygests that the process should start with getting rid of most
have introducedsee[48] for an overview and referenges quantum aspects of quantum theory to make it closer to clas-
provides a deep and rigorous definition of what is randomsical.
However, the very idea of usingfinite ensembles to define The only known way to recognize effective classicality in
probabilities forces one to extrapolafaite data sets— a wholly quantum universe is based on decoherence. But

t

VIl. DISCUSSION
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decoherence is off limits as it employs tools dependent omeadily demonstrated and—given additional assumptions we
Born’s rule. On the other hand, when classicality was “im-shall not recapitulate here—used to arrive at Born’s rule.
posed by force” by Gleasof80] or in Refs.[31,32, this  And when measurements are not idéag., do not preserve
seemed to work to a degree, although interpretational issuébe state of the system, do not correlate record states with
were left largely unaddressed and doubts have rightly pererthonormal states ofS, etc) future record states ofd
sisted[26-29,33. (which can be safely assumed to be orthogpnah be used
to motivate an envariance-based approach.
One key difference between the classical definition of
A. Envariance and decoherence probability and our envariant derivation of Born’s rule is the

We have taken a very different approach. The derivatiorfe"ab”itY of the prior informatio_n about the state of the sys-
of Born's rule described here is extravagantly quantum: Eni€m available to the observer in the quantum case: That is,
variance relies on entanglement, perhaps the most quantuﬂﬂe observer can use his information about the initial state of
manifestation of quantum physics, still regarded by some at1e Systerme) to assess the chances of outcomes of future
a “paradox.” Instead of first taming quantum theory to makeMeasurements ofi he may contemplate. In classical discus-
it look classical, we have used purely quantum symmetrie§ions the nature and implications of ignorance were the most
of entangled states as a key to unlocking the meaning dfontentious issuefl7-20. Inferring the prior probability
probability in a quantum universe. So to arrive at Born's ruledistribution “from ignorance alone” is impossible, as was
we have put asidéat least temporarilytools—and, hence, rightly noted_ by frequentlstg. Attempts to invoke symmetry
results—of decoherence, as relying on them threatened cif20] were ultimately unconvincingl9], as they had to refer
cularity. This meant that even such basic symptoms of claslo subjective knowledge of the observer and not to the un-
sicality and key ingredients of contemporary quantum meaderlying physical state. _ _
surement theory as the einselection of preferred pointer states BY contrast, in quantum physics an observer can reliably
had to be motivated and rederived anew. deduce the extent of his ignorance about the future outcome

Putting aside tools and results of decoherence did ndrom the perfect information he has about the present state of
force us to forget about the role of the environment. To un{he system and verify his symmetry arguments by perform-
derstand the emergence of the classical one must regatdd appropriate swaps and confirmatory measurements on the
guantum mechanics as a theory of correlations between sy§tate of, e.g., the composit6€. This approach preserves
tems. This stresses the relational aspects of quantum statg@me of the spirit of Laplace, but now the analog of “indif-
emphasized by Rovelli49]. Moreover, to understand the ference” is no longer subjective: It is grounded in
origins of ignorance, to motivate the introduction of prob- Measurable—and testable if not yet deliberately tested—
abilities, and to appreciate their role in making predictionsquantum symmetry of entangled states.
one needs to analyze systems that interact with their environ- Once inevitability of correlations withe is recog-

ments and focus on correlations that survive in such opefized, their —key  consequence—environment-induced
settings. superselection—can be recovengidhout the usual tools of

Once thesdin retrospect, naturplsteps are taken, it is depoherence: Trace and reduced density matrices can be put
possible to see how an observer can be ignorant about ti@gside in favor of a more fundamental approach based on
outcome of the measurement he is about to perform on theorrelations and enwronment-asmst_ed invariance. Envariance
perfectly known system—oi$, which is in a pure state: shoy\{s that phases of states appearing in the Schmidt decom-
Ignorance of the future outcome arises as a consequence B@Sition are of no consequence for results of any measure-
quantum indeterminacy and the interacti@f the system, Ment on the subsystes(or, for that mattere) of the whole
the pointer of apparatus, or the observer’'s memuigh the SE. So superposmons of Schmidt statgs&xﬁannot exist, as
environment. Decoherence inevitably follows premeasuretelative Schmidt phases have no bearing on the stafe of
ments. Entanglement between the system and memory takes
memory out of the “ready-to-measure” pointer state into a
superposition ofoutcome pointer states. This in turn means
that theS.A entanglement spreads into correlations with the Envariance pinpoints the source of ignorance: It is ulti-
environment in such a way that the observer may as welately traced to the globé&juantum symmetry of entangled
assume from the outset th& (and/or A) was entangled states which in turn implies a nonlocal character of quantum
with &. phases of the coefficients in the Schmidt decomposition. This

Eigenstates of the to-be-measured Hermitian observablienmediately leads to the envariance of swaps—they are gen-
turn—as a result of measurement and decoherence—intrated by changing phases in the eigenvalues of unitaries
Schmidt states ofS in the resulting decomposition of the diagonal in a basis complementafs.g., Hadamandto the
entangled state of&. This is also the case whehis in a  eigenstates of the to-be-measured Hermitian observable.
mixed state to begin with—such states can be purified, an@waps are envariant when the state is even and the corre-
conclusions about the Schmidt statesSdbllow. The rest of  sponding Schmidt coefficients have the same absolute val-
our argument goes through unimpeded. Thus, the observeles: Nonlocality of phases implies ignorace about the states
may as well recognize the inevitable and focus on the reef subsystem and, hence, ignorance of the outcome. Once
maining information about the system that can be deducednvariance of phases is accepted, envariance under swaps
from the resulting entangled state. Envariance can be thefollows and implies equiprobability. A simple counting argu-

B. Envariance behind the ignorance
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ment leads then very naturally to Born’s rule in case wherthe original proof [3,13,16, which suggests that the

coefficients have unequal absolute values. . ~ envariance-based derivation is robust and that the vein of the
Note that even an observer presented with an unlimiteghhysical intuition it has tapped is far from exhausted.
supply of copies of theS half’ of identically preparedsé This paper was also written as a critical(ifnderstand-

pairs will eventually conclude—having carried out all the ably) friendly review and extension of Refi2—4], although
conceivable measurements—that the stats &f mixed and _ with a different focus: Any attempt at the derivation of
can be represented by the usual reduced density matrix. Thigorn's rule must be completely independent of any and all of
further underscores the objective nature of probabilities, imj;g consequences we have come to take for granted. There-
plying ignorance about the future outcomes. A similar levelg, o “my focus here was to look for circularity and to make
of objectivity is impossible to attain in approaches that doggain ‘that there is none in the derivation. In this spirit, |
gf)atsg?g zglgtrxazrfsitt?(fn rgﬁg;ég&g”&%ﬁgﬁgﬂ?nggzsquﬂzmzmgave fleshed out the “decoherence-free” definition of pointer
g X . tates that was briefly discussed in R¢853].
In particular, in the absence of entanglement with sartfee Pointer states are the key ingredient of the quantum mea-

urity of the underlying state af would make it impossible i ) .
Fo agply argument>s/ bgased on permuting OUtCOHF’)IES to pur%urement theory. They define the alternatives in the no-

states of the system: Such permutations generally change tf@/2PS€ approach to measurement—they are the potential
state of the system and can be detected. As the state is £VeNts observer is going to place bets on using probabilities.
tered, there is no reason to assume that probabilities woul§h€ir existence was demonstrated using an envariance-
remain the same. inspired argument—by exploring the stability of correlations
An example of an approach threatened by this difficulty is(€-9-» apparatus systerm the “open” setting—in the pres-
Wallace’s elaboration[36] of an idea—due to Deutsch €nce of envariance. _
[24]—to apply decision theory to pure states in order to ar- We have noted the dilemma of the observer who can ei-
rive at Born’s rule. In the original papg@4] this difficulty ther settl_e fo_r perfect knowledge of the whole—of the_globgl
was not obvious as the presentation left open the possibilitptate which is useless for most purposes but could in prin-
of a “Copenhagen” point of view with explicit collapse, C|pI¢ allow for rever3|b|I|§y—or opt to find out.thel outcome
where phases do not matter. Indeed, early criticism by Bar©f his measurement, which will irrevocably “tie him down”
num et al.[51] was based on inconsistencies implied by thet0 the branch labeled by the outcome. These existential con-
“Copenhagen reading” of Ref24]. Wallace has pointed out Seguences _of information acquisition would preclude him
in a series of more recent papers that that criticism does ndtom reversing the measurement.
apply to the “Everettian reading” d24]. The approach of Noncommutativity .of the relevant _gIobaI and local ob-
Ref.[36] is, however, open to two separate charges. Re”ancgervga_bles is then ultimately responsible _for the observer’s
on the (classical decision theory makes the arguments ofinability “to be a Maxwell's demon”—to find out the out-
[24,36] very much dependent on decoherence as Wallace of0me Whlle_retalnlng the_ option of reversing the evolution.
ten emphasizes. But as we have noted repeatedly, decohé_rhusy envariance sheds light on the origins of the sgcond Ie_xw
ence cannot be practiced without an independent prior derin the context of measurements, complementing ideas dis-
vation of Born’s rule. Thus, Wallace’s argumerés well as ~ cussed to datésee, e.g.[54-56) and may be even relevant
a similar “operational approach” of Saundgsg]) appear to  t0 some old questions concerning the verifiability and con-
be circular. Even more important is the second problem: perSistency of quantum theofs7]. _
muting potential outcomege.g., using swaps to change) Ir_1 part|cular,_complemgntarlty of global and Iocal infor-
x|1)+|2)~|3)+|4) into |B)x|1)+|3)~|2)+|4)) changesthe  Mation empha3|zes the dlfferenc_e between attempting rever-
state of an isolated system. And a different stateS auld sal in classical anq quantum settings: In classical physics the
imply different probabilities. So the key step—irrelevance ofState of the whole is a Cartesian product of the states of parts.
the phases for probabilities of the outcontesich we have Hence, in c!ass!cal physics perfect knowledge of the state of
demonstrated in theorem 1 by showing that stateSci the whole |mpl|es perfect knowledge of all the parts. In_
unaffected by envariant transformatipascannot be estab- quantum physms.only a subset of states of measure zero in
lished without either relying oig or some very strong as- the composite Hilbert space—pure product states—allows
sumptions that would have to, in effect, invalidate the prin-for that. In all other casegvhich are entanglédknowledge
ciple of superposition. of the Iocal_ state(i.e., of S) precl_uqles knowledge of the
Early assesments of an envariance-based derivation (_giobal state(l.e_., of SA or §€). But it is the global state th_at_
Born’s rule[13,16,53 are incisive but also generally posi- 1S needed to implement a reversal. We shall pursue this in-
tive. They have focused on the equal-coefficients part of théight into the origins of irreversibility elsewhere.
proof, covered here by theorems 1 and 2. This is understand-
able, as the proof of equiprobability from envariance is the
key to the rest of the derivation. The consensus so far seems
to be that, apart from the need to clarify some of the steps Our study of the quantum origins of probability has not
(the task we undertook herehe envariant derivatiof2—4] addressed all of the questions that can and should be raised.
of Born’s rule stands. Indeed, as argued by Barnum, assumiit-is therefore appropriate to point out some of the issues that
tions of the original derivation could be relaxed by exploiting will benefit from further study. We start by noting the para-
the consequences of envariance more compl@islly More-  mount role of the division of the Universe into systems. Sys-
over, there are several interesting and nontrivial variants ofems are the subject of axionis) and (ii), as well asfacts

C. Remaining questions and future research
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1-3of Sec. Il. I have signaled this question bef@88], but  one can regard it as a modern embodiment of the ideas of
as yet there has been really no discernible progress towardgohr [44] on the role of amplification.
the fundamentaknswer of what defines a system. In light of quantum Darwinism the distinction between

Another interesting issue is the distinction betweenignorance about future quantum and classical stées,
“proper” and “improper” mixtureqsee, e.g.[58]) and the hence, quantum or classical probabilijiesan be understood
extent to which this may be relevant to the definition of as follows: When an observer knows the preexisting states of
probabilities. An example of a proper mixture is an ensembla single, isolated quantum system, he may be ignorant of its
of pure orthonormal statdgigenstates of its density matrix future post-measurement stésmd, hence, of the outcome of
mixed in the right proportions. All that decoherence can offerhis about-to-be-carried-out measuremefihis ignorance is
are, of course “improper mixtures.” It has been often arguedjuantum(or at least it is not classicain the sense that the
that improper mixtures cannot be interpreted through an apsbserver cannot discover what is already “out there”—there
peal to ignoranc¢s3,58,59. is no “classical reality” that can be attributed to an isolated

| believe there is no point belaboring this issue here: Asstate of a quantum system.
we have noted before, an observer can be ignorant of his On the other hand, when there are many copies of the
future state, of the outcome of the measurement he has deame informatior{about pointer statg¢sthen an initially ig-
cided to carry out. Whether this sort of ignorance is whatnorant observer will be able to deduce from the information
used to be meant by “ignorance” in past discussions of tha the environment which of the stable pointer states of the
origin of probabilities may be of some historical interest, butsystem was responsible for the imprint. Moreover, he may
ignorance of the outcome of the future measurement igonfirm his deductions obtained indirectly with a direct mea-
clearly a legitimate use of the concept and, as we have seeurement(which can be now designed as nondemolition—
above, quite fruitful. In a sense we have touched on an issune observer has enough information to know what to mea-
related to the distinction between proper and improper mixsure. In that situation the assumption that there was a
tures when we have distinguished between priors observereexisting state of that could be found out without being
can get from someone el$&the preparer;” see the discus- perturbed igat least in paitjustified by the symptoms.
sion of Eq.(11)] and from his own records. The “gut feeling” This relatively objective existencis all quantum theory
of this author is thaall the mixtures are due to entanglement has to offer to account for “classical reality,” but this seems
or correlations—that they are all ultimately “impropér to be enough. Quantum Darwinism’s account of the emer-
This is certainly possible if the Universe, as a whole, is quangence of classical reality is in accordance with an existential
tum. This is also suggested by quantum formalism, whichinterpretation of quantum theof,4,8,19. Equally impor-
“refuses to recognize(e.g., in the form of density matrices tantly, it is a good model for how we acquire most of our

any difference between proper or improper mixtures. information—Dby intercepting a small fraction of the informa-
The distinction between classical and quantum “missingion present in the photon environment.
information” is a related issu€uantum discord41] seems The envariance-based definition of pointer states should

to be a good way to measure some aspects of the quanturbe explored in much more detail, and its consequences com-
ness of information. And as there are states—pointer statesspared with the more traditional definitions introduced in the
that are effectively classical, the question arises as to whethestudies of decoherence. In simple situatides., idealized
being ignorant of the relatively objectiéd5,3] state of the measurements-9)) there is no reason to expect any differ-
pointer observabléwhich, as time goes on, is making more ences with the pointer states selected by the predictability
and more imprints on the environment, “advertising” its sieve. However, in realistic models the predictability sieve
states, so that they can be found out by many without beingften leads to overcomplete sets of pointer sta8$5,39,
perturbed and being ignorant of a state of an isolated quan-and then it is not clear how should one go about deducing
tum system differ in some way. pointer states from envariance.

Quantum Darwinisni3,4,60 sheds light on these issues.  The above list—the definition of systems, the proper ver-
According to quantum Darwinism, classicality is an emer-sus improper mixtures, and “pointer states without
gent property of certain observables of a quantum universelecoherence”—are just the top three positions of a much
It arises through selective proliferation of information aboutlonger set of questions concernitigeoreticalimplications of
them. Redundancy([3,4,6,60-63 is the measure of envariance. However, over and above all of these items one
classicality—observables are effectively classical when theghould place a need for a thorougkperimentaberification
have left many independently accessible records in the resif envariance. To be sure, envariance is a direct consequence
of the universe. Approximate classicality arises when theref quantum theory, and quantum theory has been thoroughly
are very many such records which can be independently cortested. However, not all of its consequences have been tested
sulted. Such proliferation of information is enough to explainequally thoroughly: The superposition principle is perhaps
the “objective classical reality” we experience. The idea ofthe most frequently tested of the quantum principles. Tests of
using redundancy to disitinguish between “the classical” andentanglement are more difficult, but by now are also quite
“the quantum” has some “prehistonf6,61], and its role in  abundant. They have focused on violations of Bell's in-
the emergence of objectivity was brought up befpt&]. equalities and, more recently, on various applications of en-
Quantifying redundancy and exploring its consequences is atanglement as a resource. These generally require global-
evolving subject3,4,60-63 which has recently led to in- state preparations but local measurements. Tests of
sights into the role of pointer observables and into the naturenvariance would similarily require global preparatiqo$
of “objective existence” in the quantum universe. Indeed,S€ statg and local manipulationée.g., swaps but it would
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be very desirable to also have a global final measurement to Ns *

show that, following swap in the system, one may restore the  |[Wsee) = >, alsdle|cd + ( > ak|sk)|sk>> |on )
preswap global state of the whole with counterswap in the k=1 k=Ns+1

environment. Ns

Until recently, the combination of preparations, manipu- = alsylen|cd + 51rN5+1>|CN5+1>- (A1)
lations, and detections required would have put experimental k=1

verification of envariance squarely in the “gedanken” cat-pg N, increases, terms with the “next largei;] are moved
egory, but recent progress in implementing quantum inforfrom the unresolved remainder so that the absolute value of
mation processing may place it well within the range of ex-the coefficients in front of the normalizedry, ;) decreases.
perimental possibilities. Stakes are high: Envariance offerg;sing the previous argument based on ehvariance one can
the chance to understand the ultimate origin of probability inreadily see that

physics. The ease with which ignorance can be understood in

the quantum universe and the difficulty of various classical Ok=n,  Pe=P(S) = p(c) = &, (A2)
approaches combine to suggest that perhaps all probabiliti
in physics are fundamentally quantum.

_ Envar_lance she(_js revealing light on the Iong-suspect_ed IO(CN5+1):|ﬂ2- (A3)
information-theoretic role of quantum states. Moreover, it

provides a physically transparent and deep foundation for thé follows that Born’s rule holds for evers.

emergence of “classical reality” from the quantum substrate. The same conclusion can be reached in a slightly more
In particular, envariance provides an excellent example ofoundabout way that involves conditional probabilities. The
the epiontic nature of quantum statd8]: Quantum states Pprobability of the remainder i(cy 1) =|6°. Conditional
share the role of describing what the observer knows angrobabilities ofs, giventhatk=N; are therefore

what actually exists. In the classical realm these two func- 2

tions are cleanly separated. Their “quantum inseparability” Pfken, = ﬂ

was regarded as the source of trouble for interpretations of e 1-]8

qu_a_n_tum_ theory. In the envarlar_lce-_bas_ed ?pp“’?‘ch to prol?ﬁ the limit of vanishingé this yields Born’s rule for a se-
abilities it turns out to be a blessing in disguise—it gives one

an obiective wav to quantify ianorance. and it leads to Born’ guence of two measurements. The outcome of the first is—in
Jective way 1o qu ify ig ’ : Sthat limit—certain: It establishes that the unknown state is
rule for probabilities.

not a remainder. The second measurement is the “high-
resolution” follow-up.

The case of continuoug(x) can be treated by discretizing
it. The most natural strategy is to introduce a set of orthogo-

] nal basis functions that allow for a discrete approximation of
I would like to thank my colleagues Howard Barnum, ,(x):

Robin Blume-Kohout, Fernando Cucchietti, Harold Ollivier,
and especially David Poulitwho provided me with exten- (X)) = >, ko). (A4)
sive comments on the manuscjigor stimulating discus- k

sions.

Ff\ﬁoreover, the probability of the remainder is

ACKNOWLEDGMENTS

For instance, we can choose

lky=1 forx e [kox,(k+1)éx), O otherwise.

APPENDIX: BORN'S RULE FOR CONTINUOUS SPECTRA (A5)

The derivation of Born's rule we have put forward in the These functions are neither complete on the real axis nor
body of the paper applies when the number of the participat?®rmalized:
ing Schmidt states is finite. Here | shall extend the derivation (kK'Y = OX X S (AB)
first to the case of a countably infinite number of states and .
then to the case of continuous spedieag., derivep(x)dx  Normalization can be achieved by dividing edkh) by v éx.
=|(x)|>dx]. There are several ways to proceed. | shallThe coefficientsy are given by

present(briefly and, to some extent, at the expense of math- 1 (Do
ematical rigoy the proof that is physically the most straight- W= — f dX g(x) = (X)) (A7)
forward. kéx

The case of infinitely many participating orthonormal Now
Schmidt statefe.g., Eq.(2a), but with N=«] can be system- ’
atically approximated with a sequence of finite but increas- — = _I= -
ingly large N5, chosen to be large enough to account for [#09) = [200) + [0} = [Z(0)] Ek Wlke) +1r ().
almost all likely alternatives. This can be done by splitting
the Schmidt decomposition into a sum of dominant contribu-
tions and a remainder: Moreover,

(A8)
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(EX)r(x))=0, (A9) the same as the one given in Secs. Il and V. We shall not
) ) ) restate it here in detajlalthough the reader may find it en-
as can be seen using EGA7). This orthogonality of the tertaining to rethink it in terms of approximate swapping of
discrete appromma}tmn to thg state_ and the remainder is US@se sections ofy(x)]. The conclusion is inescapable: The
ful (but not essentialto the discussion below. Furthermore, probability of finding the apparatus in the stafg) (and,
(EX)|EX) = s w2 x=1-|62<1. (A10) hence, the probability of the system being found in the inter-
K val x e [kéx, (k+1)5x)) is given by

For wave functions that are smooth on small scales in the Py = |d? Ox. (A13)
limt ox—0 the norm of the remainder vanishes, N o .
r(x) [r(x)=|82—0. It also follows that the probability of finding the system in

One may wonder what happens whetx) is not suffi-  the larger intervalx;,x;) is

ciently regular on small scales to allow for the discrete ap- %o

proximation above to go through without complications. It is P(X < X< Xp) = f dx|(x)[2. (A14)
indeed possible to imagine, for example, fractal wave func- X1

tions or situations where in addition to continug(x) there _ . . , .

are discrete points associated with a non-negligible contribuThIS establishes our premise—Born’s rule for continuous
tion to the total probability. We shall bypass issues that aris pectra.

in such cases. Their treatment is fairly straightforward and As we have already no'ged, we have “cut comers” and
has more to do with the theory of integration than with phyS_settled for a physically straightforward argument at the ex-

ics. Realistic wave functions tend to be sufficiently smoothPENse of mathematical rigor_. We note that the basic structure
on small scales. Fog(x) finiteness of the total energy usu- of the argument can be refined and that mathematical rigor
ally suffices to guarantee this. can be regained. For instance, there is no reason to use the
We can now resume our derivation of Born’s rule. Oursame‘SX everywhere, anq one could Improve the conver-
aim is to calculate the probability density associated withdenee P roperties of the dlscr.ete approximation by adapting a
#(x). In the limit of very smallx resolution of the mesh t_hat is better adapted t(_)_the form of
' #(x). Moreover, the basis statéls,) are very artificial and
Ky Ex)>=1-|8?— 1. (A1l)  violate the smoothness assumption we have imposed on
#(x). They can be easily replaced with more sophisticated
orthonormal wavelets.
Such mathematical improvements are beyond the scope of

Therefore,(x) and E(x) have to yield the same probability
density for all measurementdn effect, we are using here

again the assumption of continuity that was already invokeqhiS work. They help us, however, make an interesting physi-

in Sec. 1) . . Lo > ;
. - . cal point: Each such new discretization ¢fx) defines in
So the probabilities of detecting the system within various P . ot .) . .
o : . : effect a new measurement scheme, which will in turn impose
position intervals can be inferred using envariance from the A .
Schmidt decomposition: its own definition of what it exactly means for the system to
P ' be found in a certain position interval. It is not essential to
have a unique “correct” scheme. It is, however, important for
all schemes that can be reasonably regarded as representing
o an approximate measurement of position should yield com-
The set{|k-)/\éx} is orthonormal(and, hence, can be re- patible answers. In our case this is guaranteed, as in the limit
garded as a “Schmidt” setTherefore, the complex Schmidt of sufficient resolution all legitimate approximations )

coefficients above can be used in the proof that is essentiallgre also clearly legitimate approximations of each other.

Youe) =2 |¢k|ei¢k\”3(“,(ﬂz>|Ak>|8k>- (A12)
k VX
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