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Environment-Assisted Invariance, Entanglement, and Probabilities in Quantum Physics
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I introduce environment-assisted invariance or envariance —a symmetry exhibited by correlated
quantum systems and related to causality—and describe how it can be used to understand the nature of
ignorance and, hence, the origin and interpretation of Born’s rule for quantum probabilities.
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Quantum theory has a peculiar feature conspicuously
absent from classical physics: One can know precisely the
state of a composite object (consisting, for example, of
the system S and the environment E) and yet be ignorant
of the state of S alone. The purpose of this paper is to in-
troduce environment-assisted invariance, or envariance,
to capture this counterintuitive quantum symmetry that
allows an observer to use his perfect knowledge (of SE)
as a proof of his ignorance of S: When a uS acting on S
alone can be undone by a transformation acting solely on
E, so that the joint state of SE is unchanged, this state will
be said to be envariant with respect to uS .

Clearly, envariant properties do not belong to S alone.
Hence, entanglement between S and E that enables en-
variance implies ignorance about S. Envariance is asso-
ciated with phases of the Schmidt decomposition of the
state of SE. It anticipates some of the consequences of
environment-induced superselection (‘‘einselection’’) and
allows one to derive and interpret Born’s rule [1] relating
amplitudes and probabilities, in a manner more physi-
cally motivated than the theorem of Gleason [2].

It has become increasingly popular to associate the
transition from quantum to classical with decoherence
[3–5] and its key consequence, einselection of pointer
states [6,7]. Pointer states remain unperturbed in spite of
immersion of the system in the environment. This allows
for predictability and other symptoms of ‘‘objective ex-
istence,’’ cornerstones of classicality. However, while this
approach has had notable successes, its very foundation is
sometimes regarded as ad hoc, opening it to a charge of
providing the solution ‘‘for all practical purposes only’’
[8]. In particular, as it was pointed out by supporters and
detractors alike [9–11], the relation of quantum states to
probabilities is not settled by decoherence: Born’s rule has
to be postulated separately. Yet, it is used to arrive at the
concept of the reduced density matrix [12,13] — the key
tool of the decoherence program.

To motivate envariance, we imagine a system S en-
tangled with a dynamically decoupled environment E:

j SEi �
XN
k�1

�kj�kij"ki: (1)

The question we now pose is: Given the state of the com-
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�k and with fj�kig and fj"kig orthonormal — what sort of
invariant quantum facts can be known about S?

The usual answer would be to use  SE to obtain a
reduced density matrix of the system:

	S � TrEj SEih SEj �
XN
k�1

j�kj
2j�kih�kj: (2)

This step presumes Born’s rule [pk � j�kj
2 is employed

[12,13] to get from Eq. (1) to (2)]. Therefore, we cannot
take it: We are looking for a more fundamental reason to
trace out the environment, and we aim to derive Born’s
rule. If successful, such derivation would in turn justify
tracing, reduced density matrices, etc.

In order to proceed, we can rely only on these prin-
ciples of quantum theory that manifestly do not employ
Born’s rule. To this end, we identify properties of the
entangled state  SE that do not belong to S alone. The
strategy is straightforward: Apply transformations that
act on the Hilbert space HS of the system and investigate
whether their effect on the joint state  SE can be undone
by ‘‘countertransformations’’ acting solely on HE . When
the transformed property of the system can be so ‘‘un-
transformed’’ by acting only on the environment, it is not
the property of S. Hence, when SE is in the state j SEi
with this characteristic, it follows that the envariant
properties of S must be completely unknown.

This motivating discussion leads to the more formal
definition of envariance: When for a certain j SEi and for
US � uS � 1E there exists a UE � 1S � uE such that

UE�USj SEi	 � j SEi; (3)

then for this state the properties of S affected — trans-
formed — by uS (and, in particular, connected with any
observables that do not commute with uS) are envariant.

To paraphrase Bohr’s famous dictum about quantum
theory,‘‘if the reader does not find envariance strange, he
has not understood it’’: A state of two coins (say, a penny
and a cent) would be envariant when the first penny could
be flipped, and then the cent ‘‘counterflipped,’’ so that the
joint state is restored, i.e., no measurement on SE reveals
any difference from the initial state. Pure (perfectly
known) quantum states can exhibit this symmetry. If
this was the case classically, one would conclude that
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the coin flips must have been in part ignorant about their
initial state (that is, he could have known the correlation
between coins — e.g., only that they were ‘‘same side
up’’). This connection between envariance and ignorance
anticipates our approach to Born’s rule.

In quantum theory, envariance is possible for pure joint
states. This is because of entanglement. Assume that the
joint state j SEi is pure, expressed in Schmidt form,
Eq. (1). Pairs of uS and uE that satisfy uS � uEj SEi �P
N
k�1 �k�uSj�ki	�uEj"ki	 �

P
N
k�1 �kj�kij"ki exist for an

arbitrary set of coefficients �k: Such uS are generated by
the Hamiltonians of the system that have Schmidt eigen-
states fj�kig. For, in this case, the only effect on the
system is the rotation of the phases of the coefficients in
the Schmidt decomposition:

uSj�ki � ei!
S
k tS j�ki � ei’k j�ki: (4)

Any such uS can be countered by a uE:

uEj"ki � e
i!
E
k tE j"ki � e
i�’k�2�lk	j"ki; (5)

where lk is an integer. Phases of the coefficients in the
Schmidt decomposition can be arbitrarily changed by
local interactions. Note that we are affecting phases of
the coefficients solely by acting on the states. Note also
that — in this case — eigenvalues of the system Hamil-
tonian f!S

k g can be selected at random. It is the matching
of ei!

S
k tS with e
i!

E
k tE (allowing for the obvious freedom

of choice of the eigenvalues, etc.) that matters.
We conclude that an envariant description of the system

must ignore phases of the coefficients in Eq. (1). Such
description must be based on a set of pairs fj�kj; j�kig.
Hence, something with the information content of the
reduced density matrix (i.e., an object dependent solely on
j�kj and on the associated states) provides a complete
description of S alone given that the overall state of SE
has a form we have assumed. This conclusion assures
causality: Phases of Schmidt coefficients of  SE can be
influenced by acting on E alone. If this could be detected
by measuring S, faster than light communication would
be possible. Indeed, we could have used causality to argue
independence of the state of S from any operations (in-
cluding phase rotations) carried out on E. The assumption
of causality is, however, more ‘‘costly’’ (and not entirely
quantum) as compared to envariance.

To justify Born’s rule, we still need the relation between
j�kj and probabilities. On the other hand, from the
uniqueness of Schmidt decomposition we have already
recovered the set of the preferred states fj�kig: They are
the ‘‘fixed points,’’ eigenstates of the envariant transfor-
mations uS (as well as of the local Hamiltonians that
generate such uS). In a sense, this is yet another derivation
of the pointer states [6]. Schmidt states are known to
enjoy an intimate relationship with them, and have been
even regarded as ‘‘instantaneous pointer states’’ [14,15].
One can think of such properties invariant under en-
variant transformations as quantum facts.
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The set fj�kig is not unique when the absolute values of
a subset of the coefficients j�kj are equal and nonzero. I
now turn to investigate this case. It will lead to Born’s
rule — to the relation between the coefficients �k of the
corresponding set of the candidate pointer states fj�kig
and their probabilities. The entangled state vector,

j �  SEi �
XN
k�1

j�jei’k j�kij"ki; (6)

with all the coefficients of equal magnitude has a much
larger set of envariant properties than Eq. (1): Now any
orthonormal basis can be regarded as Schmidt. In par-
ticular, a unitary transformation diagonal in a Hadamard
transform of any pair of basis states of fj�kig generates a
different looking transformation of S that consists of a
(weighted) sum of an identity and a ‘‘swap’’:

uS�i$ j	 � ei’i;j j�iih�jj � H:c:; (7a)

Swap is envariant —it can be undone by a ‘‘counterswap’’:

uE�i$ j	 � ei�’i;j�’i
’j�2�lij	j"iih"jj � H:c:; (7b)

where lij is an integer. An i$ j swap switches j�ii and
j�ji. After the associated counterswap, also the states of
E and their phases ‘‘get swapped.’’ Thus, iff j�ij � j�jj,

uS�i$ j	 � uE�i$ j	�j �  SEi � j �  SEi; (8)

which proves envariance under swaps for j �  SEi of
Eq. (6) (and, more generally, envariance of swaps of basis
states that have the same absolute values of Schmidt
coefficients).

To connect envariance under swaps with probabilities,
we remark that all of the states of the system described by
Eq. (6) can be exchanged this way leaving the overall
state unchanged. This can make no observable difference
to the state of the system S alone when it is perfectly
entangled [Eq. (6)] with some ‘‘environment’’: The joint
state j �  SEi is envariant under swaps. When all of the co-
efficients of swapped states are equal, the observer with
access to S alone cannot detect the effect of the swap.

Let us now make a rather general (and a bit pedantic)
assumption about the measuring process: When the states
are swapped, the corresponding probabilities get rela-
beled (i$ j). This leads us to conclude that the proba-
bilities for any two envariantly swappable j�ki are equal.
Moreover, when all of the orthonormal states with non-
zero coefficients are swappable, and there are a total N of
them, probability pk � p��k	 of each must be

pk � 1=N; (9a)

by normalization (we assume that states that do not
appear in Schmidt decomposition have zero probability).
Furthermore, probability of any subset with n mutually
exclusive (orthonormal) fj�kig is

pk1_k2_���_kn � n=N: (9b)
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This case with equal absolute values of the coefficients
was straightforward. Consider now a general case. To
avoid cumbersome notation that may obscure key ideas,
we focus on the case with only two nonzero coefficients:

j SEi � �j0ij"0i � �j1ij"1i; (10a)

and assume that they can be written as

� � ei’0

�����������
m=M

p
; � � ei’1

��������������������������
�M
m	=M

p
: (10b)

When there are no m and M for which Eq. (10b) holds
exactly, we can still put upper and lower bounds on j�j
and j�j by taking a sequence of increasing M and m� �

m
 � 1 such that
���������������
m�=M

p
> j�j >

���������������
m
=M

p
and, by con-

tinuity, recover our conclusions in the M ! 1 limit.
The strategy now is to convert the entangled state of

Eqs. (10a) and (10b) with unequal coefficients into an
entangled state with equal coefficients, and then to apply
envariance-based reasoning that has led to Eqs. (9a) and
(9b). ‘‘Fine-graining’’ is a well-known trick, used on
similar occasions in the classical probability, but appli-
cable also in the quantum context [16,17]. To implement
it, we need two systems we shall designate by C and E
(rather than just a single environment) correlated with the
‘‘system of interest’’ S. There are a number of ways to
motivate this split of the original E into ‘‘the counter-
weight C’’ and ‘‘the new E’’: One can think of C (that will
justify envariant swapping) and of E (a ‘‘second order
environment’’ that allows one to disregard phases for
reasons discussed previously) as two parts of a single
‘‘original environment’’ of Eq. (10a). One can also adopt
a view closer to the spirit of quantum measurements and
regard C as ‘‘a counter,’’ playing a role of an apparatus. In
any case, we assume that, to begin with, C with the right
attributes (to be listed below) interacts with (premea-
sures) E so that the joint state has a form:

j SCEi� �ei’0
����
m

p
j0ijC0i� ei’1

���������������
M
m

p
j1ijC1i	je0i: (11)

Thus, states of the environment of Eq. (10a) can be
rewritten as products of a state of C (already entangled
with S) and of the more distant E, (i.e., jC0ije0i � j"0i,
jC1ije0i � j"1i). We now assume that jC0i and jC1i can be
expressed in a different orthonormal basis fjcjig:

jC0i �
Xm
k�1

jcki=
����
m

p
; jC1i �

XM
k�m�1

jcki=
���������������
M
m

p
: (12)

This requires the relevant subspaces of HC correlated
with S to have dimensions of at least m and M
m.

Envariance we now exploit is associated with the ex-
istence of counterswaps of E that undo swaps of the joint
state of the composite system SC. To exhibit it, we let C
interact with E (e.g., by employing C as a control to carry
out a C-SHIFT [3]) so that jckije0i ! jckijeki, where je0i is
the initial state of E and hekjeli � �kl. Thus,
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j�SCEi � ei’0
����
m

p
j0i

Xm
k�1

jckijeki����
m

p

� ei’1

���������������
M
m

p
j1i

XM
k�m�1

jckijeki���������������
M
m

p (13a)

obtains. j�SCEi is envariant under swaps of the states
js; cki of the composite SC system (where s stands for 0
or 1, as needed) that are present (i.e., appear with a non-
zero amplitude) in the �SCE above. This is made even
more apparent by carrying out the obvious cancellations:

j�SCEi� ei’0

Xm
k�1

j0; ckijeki� ei’1

XM
k�m�1

j1; ckijeki: (13b)

We conclude [having repeated checks patterned on the
obvious modifications of Eqs. (7a), (7b), and (8)] that
p0;k � p1;k � 1=M, and that, by virtue of Eq. (9b), proba-
bilities of j0i and j1i are

p0 �
m
M

� j�j2; p1 �
M
m
M

� j�j2: (14)

This is Born’s rule. We have derived it from the most
quantum of foundations — the incompatibility of the
knowledge about the whole and about the parts, mandated
by entanglement and embodied in envariance. Envariance
shows how Born’s rule arises in this purely quantum
setting, i.e., without appeals to ‘‘collapse,’’ ‘‘measure-
ment,’’ or any other such deus ex machina imposition of
symptoms of classicality. Generalization to more than
two states of S is straighforward.

To further clarify the implications of our derivation,
we now prove that envariance also yields the relative
frequencies interpretation of probabilities. Consider an
ensemble of N distinguishable SCE triplets, all in the
state given by Eq. (11). The state of the ensemble is then

j	N
SCEi � �N

‘�1j 
�‘	
SCEi: (15)

We now repeat steps, Eqs. (12)–(14), for each triplet, and
think of C as a counter, a detector in which states
jc1i � � � jcmi of Eq. (13b) record ‘‘0’’ in S, while
jcm�1i � � � jcMi record ‘‘1’’. Carrying out tensor product
and counting terms with n detections of ‘‘0’’ yields the
total:

"N �n	 �
�
N

n

�
mn�M
m	N
n: (16)

This immediately leads to the probability of n zeros
which, for large N , can be approximated by a Gaussian
with hni � j�j2N , establishing the desired link between
relative frequency of outcomes and Born’s rule:

pN �n	 �
�
N

n

�
j�j2nj�j2�N
n	

’
e
�1=2	�n
j�j2N 	=�

�����
N

p
j��j	�2�������������

2�N
p

j��j
: (17)

This strategy avoids circular use of a scalar product that
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invalidates [10,11] previous derivations based on Everett’s
‘‘many worlds’’ framework [18–20].

Note that steps (11)–(14) involving the counter(weight)
C do not need to be implemented — our conclusions are
based on the fact that they can be implemented. Our
derivation of probabilities is based on the nature of quan-
tum states of joint systems (i.e., entanglement), and on the
resulting envariance, rather than on details such as di-
mension of HC or even HE , providing that the obvious
condition [DimHE � DimHS that allows for entangle-
ment in, e.g.,  SE of Eq. (1)] is met.

The setting (involving entanglement between S and E)
that has led to Born’s rule is that of einselection and
decoherence. Of course, as we have attempted to validate
foundations of decoherence, we have not relied on it. But
the very fact that Born’s rule naturally obtains with the
help of environment —as do many other symptoms of
classicality [3–7]—adds credence to this view of the
emergence of the classical. This last remark requires
elaboration: One might have hoped to arrive at the proba-
bility interpretation without appealing to the environ-
ment. Indeed, there were many attempts in this vein
[17–22]. I do not see how approaches that do not obliterate
phases in some manner (as Refs. [2,21,22] do) can suc-
ceed in obtaining probabilities of j�ki in a pure state, e.g.,
j#Si �

P
N
k�1 �kj�ki. Equal probabilities for j�ki must

imply that swapping of the alternatives in the state of
the form j �##Si �

PN
k�1 j�je

i’k j�ki should not be detect-
able if the obvious consequence (that ‘‘all the potential
outcomes are equivalent’’) is to follow. But this is demon-
strably not the case. For instance, states j#i � j1i � j2i 

j3i and j#0i � j3i � j2i 
 j1i are distinguishable through
obvious interference measurements. Thus, any swapping
would change relative phases, which in an isolated system
are perfectly detectable. In brief, an observer given a
suitably large ensemble of identically prepared systems
will be eventually able to tell that they are in a pure state
j#i (or j#0i). By contrast, an observer presented with an
ensemble of entangled pairs SE would be similarly forced
to conclude that he is partially ignorant of the state of S,
and that its state is given by 	S of Eq. (2). This ignorance
arises not because of the inaccessibility of E, but as a
consequence of entanglement and envariance.

Envariance of entangled quantum states follows from
the nonlocality of joint states and from the locality of
systems, or, put a bit differently, from the coexistence of
perfect knowledge of the whole and complete ignorance
of the parts. This very quantum foundation provides the
basis for the derivation of Born’s rule. We note that, while
quantum theory and the presently available data (e.g.,
obtained in a course of tests of Bell’s inequalities) appear
to be consistent with envariance, its validity has not been
deliberately verified. Experiments on entangled systems
that demonstrate ‘‘undoing’’ of an envariant transforma-
tion applied on one end of an entangled pair with a
countertransformation, Eqs. (7a) and (7b), acting on the
other end would be fundamentally important.
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It may be surprising that the few-line derivation of
Born’s rule presented above has not been discovered be-
fore. I believe this is because the quantum properties
underlying the proof have been usually regarded as some-
thing that needs to be explained (rather than used as a
basis for an explanation). In any case, when envariance is
accepted as a basic ‘‘quantum fact of life,’’ effective
classicality can be understood in a more satisfactory
and fundamental way, and much of the ‘‘measurement
problem’’ [23] can be resolved in a quantum setting.
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