
1

Unified Parallel Software

User’s Guide and Reference Manual1

UPS VERSION=v-02-07-05
Date of this manual’s printing: October 3, 2007

http://public.lanl.gov/ups

ups-team@lanl.gov

Abstract

UPS (Unified Parallel Software) is a collection of software tools (libraries, scripts,
executables) that assist in parallel programming.

This consists of:

• libups.a
C/Fortran callable routines for message passing (utilities written on top of MPI)
and file IO (utilities written on top of HDF).

• libuserd-HDF.so
EnSight user-defined reader for vizualizing data files written with UPS File IO.

• ups libuserd query, ups libuserd prep.pl, ups libuserd script.pl
Executables/scripts to get information from data files and to simplify the use of
EnSight on those data files.

• ups io rm/ups io cp
Manipulate data files written with UPS File IO

These tools are portable to a wide variety of Unix platforms.
It is assumed that the reader has a general knowledge of the issues involved in writing

applications on distributed memory, parallel processing computers. A good introduction
to parallel programming can be found in “Designing and Building Parallel Programs”
[3] by Ian Foster of Argonne National Laboratory. It is helpful, though not necessary,
for the reader to be familiar with MPI[2] or PVM[4]. Good sources of information for
these are “Using MPI” [6] and “PVM: Parallel Virtual Machine; A Users’ Guide and
Tutorial for Networked Parallel Computing” [5]. The UPS web page lists a variety of
resources and references for parallel processing.

1LA-CC 03-041

CONTENTS 2

Contents

1 COPYRIGHT 4

2 Introduction 5

3 Getting Started 7
3.1 Writing a UPS Program . 7

3.1.1 Writing a UPS Program in C/C++ 8
3.1.2 Writing a UPS Program in Fortran 9
3.1.3 Writing a UPS Program in Fortran-77 10

3.2 Compiling/Running a UPS Program . 11
3.2.1 General Notes on Libraries . 11
3.2.2 Compiling/Running a UPS Program: Basic Example 12

4 Administration Details 13
4.1 Install Directory Structure . 13
4.2 Email Information . 14
4.3 Future Plans . 15

5 Use Details 16
5.1 Name Space Conventions . 16
5.2 Initialization/Termination . 17
5.3 Routine argument list ordering . 17
5.4 Opaque Object Handles . 17
5.5 Programming Language Issues . 17

5.5.1 Fortran Interface . 17
5.5.2 UPS DT INT8 vs UPS DT LONG 18
5.5.3 Passing Identical Arguments from Fortran 18

5.6 Communication Contexts . 18
5.7 Conflicts With Other Packages . 18
5.8 Error Reporting . 19
5.9 UPS Version Consistency . 20

6 Packages 22
6.1 General Package (AA) . 22
6.2 Communication Package (CM) . 23

6.2.1 Shared Memory Example . 23
6.3 Data Parallel Package (DP) . 27
6.4 Datatype Package (DT) . 28
6.5 Error Package (ER) . 29
6.6 Gather Scatter Package (GS) . 30
6.7 File IO Package (IO) . 32
6.8 Utility Package (UT) . 35

A Acknowledgements 37

LIST OF FIGURES 3

B UPS Constants 38

C Reference Manual 89
C.1 Organization of reference pages . 89
C.2 General . 91
C.3 Communication . 102
C.4 Data parallel . 126
C.5 Datatypes . 139
C.6 Error handling . 140
C.7 Gather/scatter . 146
C.8 File IO . 175
C.9 Utilities . 230
C.10 Reference Pages Index . 254

List of Figures

1 UPS Program in C/C++ . 8
2 UPS Program in Fortran . 9
3 UPS Program in Fortran-77 . 10
4 Compiling a UPS Program (Fortran: Basic Example) 12
5 Running a UPS Program: Basic Example) 12
6 Gather/scatter view of a domain and its decomposition into 3 processes. . . 30
7 Gather/scatter view of a single cell . 31

List of Tables

1 UPS Packages . 6
2 Brief Description of a Compile Line: Basic Example 12
3 Example Directory Structure . 13
4 Filename Descriptions . 14
5 Email Lists . 15
6 Name Space Conventions . 16

1 COPYRIGHT 4

1 COPYRIGHT

LA-CC 03-041
C-03,097

Copyright (c) 2003, The Regents of the University of California
All rights reserved.

Copyright (2003). The Regents of the University of California. This software was produced under U.S. Government contract W-7405-ENG-36 for Los Alamos National Laboratory (LANL), which is operated by the University of California for the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR THE UNIVERSITY MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is modified to produce derivative works, such modified software should be clearly marked, so as not to confuse it with the version available from LANL.

Additionally, redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the University of California, LANL, the U.S. Government, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2 INTRODUCTION 5

2 Introduction

UPS, an acronym for “Unified Parallel Software”, is a library of routines designed to help the
application developer create efficient, extensible, and robust large scale parallel programs
for physics simulations.

Some parallel programming models attempt to hide the parallelism from the application
writer, while others require that the application writer work at the lowest levels. UPS falls in
between: it is designed to expose the parallel environment in a natural way while abstracting
away some of the complexities.

Currently, UPS is built on MPI[2] (which provides process startup and a default mech-
anism for transferring data). Althought there are no plancs to do so, UPS could be ported
to a PVM[4] version as it also provides process control and data movement.

Although most of UPS is written in C, UPS has interfaces that allow it to be called
from C, C++, Fortran, and Fortran-77.

UPS is designed to be readily portable to an environment that has a message passing
interface (providing process control and data movement) and a C compiler.

The UPS project relies on the inclusion of software developed by team members as
well as other groups throughout the laboratory and from outside sources. For information
regarding how to contribute to the UPS project, see the UPS Developer’s Guide [1].

2 INTRODUCTION 6

As will be explained in detail (see section 6 page 22), UPS functionality is divided into
packages:

UPS Packages
Package Description

General (AA) Includes init/terminate routines.
description: section 6.1, page 22
reference: section C.2, page 91

Communication (CM) Process information,
Collective operations.
description: section 6.2, page 23
reference: section C.3, page 102

Data Parallel (DP) Operations on a distributed vector.
description: section 6.3, page 27
reference: section C.4, page 126

Data Type (DT) Datatype information.
description: section 6.4, page 28
reference: section C.5, page 139

Error (ER) Error handling.
description: section 6.5, page 29
reference: section C.6, page 140

Gather/Scatter (GS) Access to globally distributed data.
description: section 6.6, page 30
reference: section C.7, page 146

File IO (IO) File IO.
description: section 6.7, page 32
reference: section C.8, page 175

Utilities (UT) Other useful functions.
description: section 6.8, page 35
reference: section C.9, page 230

Table 1: UPS Packages

3 GETTING STARTED 7

3 Getting Started

In order to use UPS, three things must be accomplished:

1. Write a program that uses UPS.

2. Compile that program.

3. Run that program.

This section shows an example of how to use UPS. Covered will be specific programming
languages, architectures, and message passing interfaces.

3.1 Writing a UPS Program

The main differences when programming to UPS in different languages:

• Access to UPS constants (“include” versus “use”)

• Function names (eg “UPSF AA INIT” versus “UPS AA Init”)

• Function Arguments (eg “ierr” is included in Fortran argument list)

The following code examples illustrate these points.

3 GETTING STARTED 8

3.1.1 Writing a UPS Program in C/C++

The following example is written in C (the UPS C and C++ interfaces are the same). C++
Name mangling issues are taken care of in the prototype include file “ups.h”. Future plans
are to provide a specific C++ style interface.

Access to UPS constants and strong type checking for function calls is provided by
“include ups.h”. Function calls are of the form:

UPS_<PACKAGE>_<CAPITAL LETTER><lower case letters>
ierr = UPS_AA_Init(...);

The return value is the error code.

/* program my_ups_program */

#include <stdio.h>
#include <stdlib.h>

/* include the ups C/C++ include file */
#include "ups.h"

void main(int argc, char **argv)
{

int ierr[3], penum;

/* init UPS - note error flag is return value */
ierr[0] = UPS_AA_Init(argc, argv);

/* get the pe number - note error flag is return value */
ierr[1] = UPS_CM_Get_penum(&penum);

/* print hello */
printf("Hello from %d\n", penum);

/* terminate UPS - note error flag is return value */
ierr[2] = UPS_AA_Terminate();

/* check errors */
if (ierr[0] + ierr[1] + ierr[2] != UPS_OK) exit(-1);
exit(0);

}

Figure 1: UPS Program in C/C++

3 GETTING STARTED 9

3.1.2 Writing a UPS Program in Fortran

The following example is written in Fortran. Access to UPS constants and strong type
checking for function calls is provided by “use UPS”. Function calls are of the form:

UPSF_<PACKAGE>_<CAPITAL LETTERS>
call UPSF_AA_INIT(...,ierr,...);

The error code is a parameter.

! program my_ups_program
program my_ups_program

! use the fortran UPS module
use UPS

implicit none

integer(KIND=UPS_KIND_INT4) :: ierr(3), penum

! init UPS - note error flag is a parameter
call UPSF_AA_INIT(ierr(1))

! get the pe number - note error flag is a parameter
call UPSF_CM_GET_PENUM(penum, ierr(2))

! print hello
print*, ’Hello from ’,penum

! terminate UPS - note error flag is a parameter
call UPSF_AA_TERMINATE(ierr(3))

! check errors
if (ierr(1) + ierr(2) + ierr(3) /= UPS_OK) stop

end program my_ups_program

Figure 2: UPS Program in Fortran

3 GETTING STARTED 10

3.1.3 Writing a UPS Program in Fortran-77

The following example is written in Fortran-77. Access to UPS constants is provided by
“include upsf77.h”. The Fortran-77 version does not have strong type checking of function
calls. So, at compile time, you will not be warned for incorrect/missing arguments. Function
calls are of the form:

UPS_<PACKAGE>_<CAPITAL LETTERS>
call UPS_AA_INIT(...,ierr,...);

The error code is a parameter.

!234567 program my_ups_program
program my_ups_program

implicit none

! include the ups Fortran-77 include file
include ’upsf77.h’

integer ierr(3), penum

! init UPS - note error flag is a parameter
call UPS_AA_INIT(ierr(1))

! get the pe number - note error flag is a parameter
call UPS_CM_GET_PENUM(penum, ierr(2))

! print hello
print*, ’Hello from ’,penum

! terminate UPS - note error flag is a parameter
call UPS_AA_TERMINATE(ierr(3))

! check errors
if (ierr(1) + ierr(2) + ierr(3) .ne. UPS_OK) stop

end

Figure 3: UPS Program in Fortran-77

3 GETTING STARTED 11

3.2 Compiling/Running a UPS Program

The specifics of compiling and running on different systems will vary and depend on the
requirements of the user. The following is a brief overview on how to do simple compila-
tions/runs. Additional sources of information (eg system administrators) may need to be
consulted.

3.2.1 General Notes on Libraries

UPS typically layers upon several other libraries. Examples include a message passing
library (e.g. MPI), some system libraries, and some math libraries. On some systems these
libraries are automatically included, on others the library name is required, and on others
the path to the library is required. We discuss these situations and issues in this section.

1. Communication component

Procedures in the communication component are used to move data between parallel
processes. The default mechanism for this is a library adhering to the Message Passing
Interface definition[2]. This library is installed on most machines of intertest, and is
linked as -lmpi. Future versions of UPS may use other data movement capabilities
on certain machines, e.g. shmem, which may require linking other libraries.

Some architectures require additional libraries:

• mpi: -lmpi

• mpich: -lmpich

• Compaq with mpi: -lmpi -lelan

Note that several other UPS components use the same data movement library, e.g.
data parallel and gather/scatter.

2. IO component

The IO component layers on top of HDF. So, you will need to add in -lhdf5. HDF
comes with UPS and its library is in the same location as libups.a.

On the sun, I found you probably need -laio as well.

3. Miscellaneous Libraries

UPS tries to use the POSIX standard where possible. On some architectures, you
might need to include:

• POSIX libraries: -lrt, -lposix4, -lnsl, -lsocket, ...

• Math libraries: -lm

• Fortran libraries: -lfortran, -lftn, -lU77 ...

3 GETTING STARTED 12

3.2.2 Compiling/Running a UPS Program: Basic Example

The following example is a basic compile line. For specific architectures/languages, addi-
tional include paths/libraries will have to be added.

If, for example, the user wishes to use the C example, it might be possible to simply
replace the “f90” compiler and “.F” suffix with the “C” compiler and “.c” suffix.

f90 my_ups_program.F -o my_ups_program
-I /usr/projects/ups/latest/include/SGI64_mpi
-I /usr/projects/ups/latest/include/SGI64_mpi/Fortran_mods
-L /usr/projects/ups/latest/lib/SGI64_mpi
-lups -lhdf5 -lmpi

Figure 4: Compiling a UPS Program (Fortran: Basic Example)

The following table gives some explanation to the compile line. See Administration
Details (section 4 page 13) for more information.

Brief Description of Compile Line: Basic Example
Item Description

f90 and .F Fortran example
(change for appropriate language)

/usr/projects/ups Where ups is locally installed.
latest/ Points to latest version.

SGI64 mpi specifies build options directory.
-l[libraries] The libraries needed.

The order in which libraries are specified is important.

Table 2: Brief Description of a Compile Line: Basic Example

Running a UPS program will be the same as running a MPI program. Again, this will
vary from system to system. In general, to do a simple run on 4 processes, users will type
in something like:

mpirun -np 4 my_ups_program

Figure 5: Running a UPS Program: Basic Example)

4 ADMINISTRATION DETAILS 13

4 Administration Details

This section contains information that deals with the administrative side of UPS.
To see basic information about using UPS, see section 3 page 7. To see detailed infor-

mation about using UPS, see section 5 page 16.

4.1 Install Directory Structure

The following table shows a typical directory structure. The version numbers have changed
to protect the innocent.

Example Directory Structure
latest
v-01-01-01
v-01-02-00
v-01-02-01 bin SGI64 mpi –> ../SGI64 mpi/bin

other type dirs
doc doc UPS DeveloperGuide.ps

UserGuide.ps
Documentation for other products
(eg EnSight Reader: doc libuserd-HDF)

include SGI64 mpi –> ../SGI64 mpi/include
other type dirs

lib SGI64 mpi –> ../SGI64 mpi/lib
other type dirs

script ups aa statistics plot.pl
other scripts

SGI64 mpi include UPS.mod
UPS CONST MOD.mod
ups.h
upsf.h
upsf77.h
other include-like files

lib libups.a
other library files

bin h5ls
other bin files

SGIn32 mpi
other type dirs

other version directories

Table 3: Example Directory Structure

4 ADMINISTRATION DETAILS 14

Filename Descriptions
Filename Description
all changes.txt All changes made to all files since last release.

DeveloperGuide.ps Describes the infrastructure of the UPS code.
doc Directory containing the guides.

include Directory containing platform dependant include dirs.
latest Symbolic link pointing to latest version directory.

lib Directory containing platform dependant library dirs.
libups.a Contains the UPS routines to which users link.

script Directory containing useful scripts.
SGI64 mpi Directory containing files dependent upon platform,

message passing interface, bit addressing, ...
This names signifies it was compiled on an SGI with
64 bit addressing using MPI.

SGIn32 mpi Directory containing files dependent upon platform,
message passing interface, bit addressing, ...
This names signifies it was compiled on an SGI with
32 new bit addressing using MPI.

ups.h C/C++ include file.
Contains constants and prototypes.

UPS.mod Fortran use file.
Contains constants and interfaces.

ups aa statistics plot.pl Perl plotting script that take the output file
ups log.ps and uses gnuplot to create ups log.ps

UPS CONST MOD.mod Fortran use file (contained inside UPS.mod).
Contains constants only.

upsf.h Fortran include file.
Contains Fortran style constants.

upsf77.h Fortran-77 include file.
Contains Fortran-77 style constants.

UserGuide.ps This guide.
v-01-02-01 UPS version.

(one can also access the UPS VERSION variable).
rightmost numbers - minor changes.
center numbers - moderate changes.
leftmost numbers - major changes.

Table 4: Filename Descriptions

4.2 Email Information

Below is a list of important email address through which you can contact the UPS team
(and through which the UPS team can contact users as a whole).

4 ADMINISTRATION DETAILS 15

Email Lists
Item Description

ups-team@lanl.gov Sends mail to the UPS team.
Purpose: ask questions to team.
Purpose: submit bug reports.

ups-users@lanl.gov Sends mail to other users.
Purpose: UPS team announcements.
Purpose: User forum.
Also forwarded to ups-team@lan.gov.

Table 5: Email Lists

4.3 Future Plans

UPS is an ongoing project - reflecting the changing needs of the user community. If users
wish to have a certain functionality included in UPS, they can contact the UPS team at
ups-team@lanl.gov (see section 4.2 page 14).

Listed below are capabilities that could be added to UPS:

• Linear/Non-Linear Solvers

• Load Balancing Algorithms

• PVM Implementation

To see a brief overview of current capabilities, see section 2 page 5. A more detailed
overview can be seen in section 6 page 22.

5 USE DETAILS 16

5 Use Details

This section contains information that deals with some additional specifics of using UPS in
applications.

To see basic information about using UPS, see section 3 page 7. To see detailed infor-
mation about administrative issues, see section 4 page 13.

5.1 Name Space Conventions

UPS symbols (eg function names, constants, ...) follow specific naming rules in order for
users to avoid name space collisions.

Name Space Conventions
Item Format/Example
Constant2 UPS [W]

UPS ERROR GS SCATTER
C Routine UPS (2L)3 (L)[w]

UPS CM Get penum
Fortran Routine UPSF (2L)3 [W]

UPSF CM GET PENUM
Fortran-77 Routine UPS (2L)3 [W]

UPS CM GET PENUM
Internal UPS Routines4 upsp [w], upsi [w], or upspi [w]

upspi cm wait for flag
Internal UPS Variables4 upsp [w], upsi [w], upspi [w],

UPSP [W], UPSI [W], or UPSPI [W]
upsp cm

key
expression meaning
[] at least one occurrence
() single occurrence
(l) lower case letter
(L) upper case letter
(2l) 2 lower case letters
(2L) 2 upper case letters
[w] lower case letters, underscores, and/or numbers
[W] upper case letters, underscores, and/or numbers
[wW] lower/upper case letters, underscores, and/or numbers

Table 6: Name Space Conventions

2Constants include datatypes, error codes, operations,... (see section B page 38 for a listing)
3Often, the “ (2L) ” will denote a package (eg communication - CM)
4Routines and variables only used by UPS

5 USE DETAILS 17

5.2 Initialization/Termination

See Getting Started (section 3 page 7) for an example using the init/terminate functions
(UPS AA Init [page 92] and UPS AA Terminate [page 100]).

Many UPS functions require that the underlying communication protocol (currently
MPI) be initialized. Upon initialization, UPS detects if this protocol has already been
initialized by the user. If it has not, then UPS initializes the protocol. UPS AA Terminate
will only terminate the underlying communication protocol if UPS initialized it.

UPS does not interfere with the users ability to issue commands to the underlying
communication protocol themselves. See Communication Contexts (section 5.6 page 18)
for an additional information regarding this issue.

5.3 Routine argument list ordering

UPS functions have their arguments in the following order:

1. Input data followed by its qualifiers.

2. Output data followed by its qualifiers.

3. Qualifiers that apply to both input and output data.

4. Error code (for Fortran - return value for C)

5.4 Opaque Object Handles

Many functions in UPS include an argument that the user should think of as a tag, or
handle, to an object that further defines what the argument is. These handles, often
integers, identify “opaque” objects, objects whose size, shape, and content are not visible
or meaningful to the user. The user then uses this handle for further operations.

Examples of opaque objects in UPS are the routines UPS GS Setup (section C.7 page
165) and UPS IO Info create (section C.8 page 214).

5.5 Programming Language Issues

5.5.1 Fortran Interface

The goal of the Fortran interface is to provide strong type checking.
Due to the function interface capability of Fortran, the argument lists of some UPS

Fortran routines are different than the Fortran77 routines. Most of these changes come
from the optional mask argument (since UPS can detect these in Fortran).

In fact, due to “optional arguments”, some routines have been combined into one inter-
face (see UPS DP Combiner and UPS DP Combinerm - section C.4 pages 126 and 127).

It was decided that since many codes do not use up the entire allocated array, spec-
ification of count is required. Also, since it is impossible to distinguish between a two
dimensional array and a set of elements of the datatype UPS DT 2<datatype>, we made
the specification of the datatype required.

5 USE DETAILS 18

5.5.2 UPS DT INT8 vs UPS DT LONG

Often an 8 byte integer is referred to as a long. In fact, when given something of the type
UPS DT INT8, we often process as a C long variable. When compiling under 64 bit ad-
dressing, we equate the constants UPS DT INT8 and UPS DT LONG. Unfortunately, when
compiling under n32 bit addressing, the C long is the same size as an int (UPS DT INT).

We (correctly) no longer equate the constants UPS DT LONG and UPS DT INT8. So,
if you are using Fortran, use the Fortran constants (C users must use the C constants). If
you are using standard integers or 64 bit addressing, this will not affect you.

5.5.3 Passing Identical Arguments from Fortran

Some routines (eg UPSF CM REDUCE) behave differently when the same argument is
used for both input and output. However, in Fortran just passing the same argument for
the input and output buffers does not guarantee that the arguments passed down to UPS
point to the same memory location. Some Fortran compilers (eg Fujitsu Fortran compiler
on linux) create a copy of the arguments and send those to UPS (thus making UPS see
them as different buffers). Passing in the first element of an argument (eg x(1)) when going
through the UPS Fortran interface might help ”fool” the compiler.

5.6 Communication Contexts

Having different communicator contexts is important for the following reasons:

• compartmentalize tasks

It is often desirable to have certain subsets of processes be in charge of different tasks
(I/O, different physics packages, ...)

• Message Insulation

This allows for 2 messages with the same process destination and tag to be distin-
guished.

UPS uses the message insulation feature to allow it to coexist with the underlying
message passing protocol. For example, users do not have to worry about MPI messages
sent by UPS conflicting with their own MPI messages.

UPS CM Set context (section C.3 page 118) allows the user to change the process view
of UPS. So, unlike MPI functions, the UPS process context is not an explicit argument to
function calls.

Users are responsible for the formation of the communication context (MPI users might
use MPI COMM SPLIT). The handle for that context is then passed on to
UPS CM Set context.

5.7 Conflicts With Other Packages

UPS has taken not to interfere with the user’s ability to use any product outside of UPS.
For example, UPS insulates itself from outside use of MPI and HDF.

If a conflict does arise, send email to ups-team@lanl.gov and we will resolve it.

5 USE DETAILS 19

5.8 Error Reporting

The way in which UPS returns internal errors can be modified by setting options and/or
environment variables. For more information, see UPS AA Opt set() (section C.2 page 98),
the ER section of the options one can set UPS AA OPT TYPE enum (section B page 51),
and constants dealing with file output UPS ER OUTPUT enum (section B page 65).

• Output

– Location
By default, UPS error output is sent to stderr. This can be overridden by a
function call or environment variable (see previous paragraph) to send error
output to the file ups err.txt or to not print any error output. The environment
variable overrides the function call. One can take an exec with error printing
turned off and turn it back on without having to recompile.

– Buffer
Users can turn error message printing off and, via a function call, still get the
error message buffer. That way, one can decide what to do with any UPS error
messages.

• Format

– Grouping UPS Error Messages
Error messages start with ”UPS Error” and have the process id / error level.
This way, output can be grep’ed to get UPS error messages and then sort’ed to
get them organized by process number.

– Location of Error
The error message has LINE and FILE and cascade upwards to that a
stack trace is produced.

– Cause of Error
The condition causing the error is stringized and placed in the error message. A
text message is also added to the error message. The hope is that if one sees
something like ”message size ¡ 0” and ”invalid message size”, one can infer that
the error has to do with the message size argument passed to UPS.

– Error Interlacing
The error message is printed on one line and the output buffer is fflush’ed before
and after the fprintf. This is done to reduce the risk of error messages being
interlaced with one another.

• Return Value

All UPS functions return an error code. So, users can turn off error message printing
but still get an error code. To see a list of error codes, see UPS AA Error enum
(section B page 45).

5 USE DETAILS 20

5.9 UPS Version Consistency

It is important to maintain UPS version consistency at all stages of the build. The same
version of UPS that is used to build user libraries should then be used to build user execs.

There are various ways to get the UPS version number (which is tied to UPS source via
a CVS tag):

• UPS Installation Directory

UPS will be installed in a directory with the name:

v-##-##-##

The version number will be the digits in that name.

• Constant UPS VERSION in Header Files

The UPS header file (ups.h, upsf.h, upsf77.h) have the constant UPS VERSION
defined as the version number.

• Function Call Return Value

One can make the following call to get the version number:

int version_ups;
UPS_AA_Opt_get(UPS_AA_OPT_VERSION_CHECK, &version_ups);

By calling the set function with the current UPS VERSION, UPS tests the version
consistency and returns an error if there is a mismatch. If users are concerned about
UPS version consistency, they should make one of the following calls in their code:

C:

int ierr, version_ups=UPS_VERSION;
ierr = UPS_AA_Opt_set(UPS_AA_OPT_VERSION_CHECK, &version_ups);
assert(ierr == UPS_OK);

Fortran:

use UPS
integer(KIND=UPS_KIND_INT4) :: ierr
call UPSF_AA_OPT_SET(UPS_AA_OPT_VERSION_CHECK, UPS_VERSION, ierr)
if(ierr .ne. UPS_OK) stop

F77:

5 USE DETAILS 21

include ’upsf77.h’
integer*4 ierr
call UPS_AA_OPT_SET(UPS_AA_OPT_VERSION_CHECK, UPS_VERSION, ierr)
if(ierr .ne. UPS_OK) stop

• Library Function

A no-op function is compiled in to libups.a. It takes no arguments and returns no
values. Its name is of the form:

ups_version_#####

This allows users to ’nm libups.a | grep -i ups version’ to get the version num-
ber of the library.

Inside a C routine that includes ups.h, one can make the following call:

UPS_VERSION_CHECK();

An error will occur at link time if there is a version mismatch.

6 PACKAGES 22

6 Packages

The following is a more in depth explanation of the different packages in UPS. See the
reference pages (section C page 89) for routine descriptions.

6.1 General Package (AA)

The general component of UPS contains a small number of routines that are applicable to
all other components. These include:

• Initialization and Termination

UPS AA Init (section C.2 page 92) and UPS AA Terminate (section C.2 page 100)
initialize and terminate UPS respectively.

UPS AA Init initializes everything UPS functions need in order to operate
(eg UPS AA Init will call MPI Init if needed and not already done so by the user).

UPS AA Terminate frees resources used by UPS. This includes buffer spaces and per-
haps other products (eg MPI Finalize will be called if UPS AA Init initialized MPI)

• Statistics Information

Statistics about how UPS is used will be sent to an outpu file upon UPS termination.
See UPS AA Statistics (section C.2 page 99) for more information.

The AA reference section (section C.2, page 91) describes each function.

6 PACKAGES 23

6.2 Communication Package (CM)

Applications written for parallel computing environments typically require the exchange
of data among the parallel processes. Users will recognize many similarities between the
functions in the UPS package and the functions in MPI [2] and PVM [4].

The functions in the CM package can be split into the following categories.

• Collective

All processes participate in these operations. These include barriers, broadcasts, re-
ductions, ...

• Process Information

Information like communicator context, number of processes on the host, pe number
with respect to the host, number of hosts, total number of processes, global process
number, ... Setting the communicator context is also possible.

• Shared Memory

Routines for allocating chunks of memory shared among processes.

The CM reference section (section C.3, page 102) describes each function.

6.2.1 Shared Memory Example

The following code is found in the examples directory: shared memory.c

// This program is an example of using shared memory.
// Each set of processes from a shared memory area compute
// a local sum. Then, the shared memory area masters compute
// a global sum and then send that global answer back to
// the local processes.
// - Get shared memory info (eg penum_sm = penum wrt sm)
// - Allocate shared memory area (sm_area)
// - All: sm_area[penum_sm] = penum_all
// - SM Masters: sm_area[numpes_sm] = Sum(sm_area[1..numpes_sm])
// - SM Masters: sm_area[numpes_sm+1] = Total sum (using MPI)
#include <stdio.h>
#include "ups.h"
#include "mpi.h"
#define GIGB ((double)1024.0*(double)1024.0*(double)1024.0)
#if defined(_UPS_USE_PROCMON)
#include "procmon_info.h"
#endif
int main(int argc, char **argv)
{

// IDs
int

6 PACKAGES 24

idnum, // rank of the shared memory area the pe belongs to
numids, // number of shared memory areas
numpes_all, // number of pes total
numpes_sm, // number of pes in this pes shared memory area
penum_all, // pe number (rank) wrt the global context
penum_sm; // pe number (rank) wrt this pes shared memory area

// Other
int

i, // loop variable
ierr=0, // error return value
sum_all, // total sum of all shared memory areas
sum_correct, // the correct answer
sum_sm; // sum of this pes shared memory area

long long
sm_size; // the desired/actual size in bytes of the sm area

volatile int
*sm_area; // shared memory area - volatile

// sm_area[penum_sm] = penum_all
// sm_area[numpes_sm] = sum_sm
// sm_area[numpes_sm+1] = sum_all

UPS_CM_P_group_enum
p_group; // process group connected by shared memory

// UPS_CM_P_GROUP_BOX - usually
// UPS_CM_P_GROUP_SELF - if no shared memory

MPI_Comm
context_mstr_sm, // master pes of each sm area (penum_sm == 0)
context_sm; // pes within this pe’s sm area

// process info
double

m_size, // Gbytes of machine memory (-1 if unknown)
m_free; // Gbytes of free machine memory (-1 if unknown)

#if defined(_UPS_USE_PROCMON)
PROCMON_INFO_struct

pinfo; // process info (especially machine memory)
#endif

ierr += UPS_AA_Init(argc, argv);
// get p_group connected by sm (usually UPS_CM_P_GROUP_BOX)
ierr += UPS_CM_Sm_get_item(UPS_AA_MEM_ITEM_P_GROUP, NULL, &p_group);
// get contexts: pes within shared memory area, sm masters
ierr += UPS_CM_P_group_item(NULL, p_group,

UPS_CM_P_GROUP_ITEM_ALL_CNTXT,
&context_sm);

ierr += UPS_CM_P_group_item(NULL, p_group,
UPS_CM_P_GROUP_ITEM_MSTR_CNTXT,
&context_mstr_sm);

6 PACKAGES 25

// rank and size with respect to current context
ierr += UPS_CM_Get_penum(&penum_all);
ierr += UPS_CM_Get_numpes(&numpes_all);
// rank and size with respect to this pe’s shared memory area
ierr += UPS_CM_P_group_item(NULL, p_group,

UPS_CM_P_GROUP_ITEM_PENUM,
&penum_sm);

ierr += UPS_CM_P_group_item(NULL, p_group,
UPS_CM_P_GROUP_ITEM_NUMPES,
&numpes_sm);

// shared memory area id and number of shared memory areas
ierr += UPS_CM_P_group_item(NULL, p_group,

UPS_CM_P_GROUP_ITEM_IDNUM,
&idnum);

ierr += UPS_CM_P_group_item(NULL, p_group,
UPS_CM_P_GROUP_ITEM_NUMIDS,
&numids);

// get machine memory size if using PROCMON
m_size = -1.0;
m_free = -1.0;

#if defined(_UPS_USE_PROCMON)
procmon_info_init(&pinfo);
while(procmon_info_get(0, &pinfo) == PROCMON_WARNING){};
m_size = pinfo.m_size/GIGB;
m_free = pinfo.m_free/GIGB;

#endif
// PE’s within shared memory area do work
// get shared memory area (enough for 1 int per pe)
// master pe’s 0 must know requested size
// all pes connected to a sm area must call UPS_CM_Sm_malloc
sm_size = (long)((numpes_sm+2)*sizeof(int));
ierr += UPS_CM_Sm_malloc(&sm_size, (volatile void **)(&sm_area));
// modify sm area and wait for p_group processes to finish
sm_area[penum_sm] = penum_all;
ierr += UPS_CM_Set_context(&context_sm);
ierr += UPS_CM_Barrier();
// master pes work to get sum_all
if (penum_sm == 0)

{
ierr += UPS_CM_Set_context(&context_mstr_sm);
// master pe reduce sum to sum_sm
sum_sm = 0;
for(i = 0; i < numpes_sm; i++)

sum_sm += sm_area[i];
sm_area[numpes_sm] = sum_sm;

6 PACKAGES 26

// master pes reduce sum_sm to sum_total and place in sm area
ierr += UPS_CM_Allreduce(&sum_sm,&sum_all,1,UPS_DT_INT,UPS_AA_SUM);
sm_area[numpes_sm+1] = sum_all;
ierr += UPS_CM_Set_context(&context_sm);

}
// sm area waits for answer
ierr += UPS_CM_Barrier();
// print out answer
sum_correct = (numpes_all*(numpes_all-1))/2;
if(penum_all == 0)

{
printf("%6d: %s\n", numpes_all, "Numpes");
printf("%6d: %s\n", numids, "Number of Shared Memory Areas");
printf("(%5s/%5s) (%5s/%5s) (%8s/%5s) (%9s/%9s): %10s %10s %10s\n",

"penum", "total", "idnum", "total", "penum_sm", "total",
"m_free:GB", "m_size:GB",
"sm_sum", "total_sum", "correct");

}
printf("(%5d/%5d) (%5d/%5d) (%8d/%5d) (%9.2e/%9.2e): %10d %10d %10d\n",

penum_all, numpes_all, idnum, numids, penum_sm, numpes_sm,
m_free, m_size,
sm_area[numpes_sm], sm_area[numpes_sm+1], sum_correct);

// free sm_area
ierr += UPS_CM_Sm_free((volatile void **)(&sm_area));
// check for any errors
if (ierr != UPS_OK)

UPS_AA_Abort();
UPS_AA_Terminate();
return(ierr);

}

6 PACKAGES 27

6.3 Data Parallel Package (DP)

Data parallel functions provide each process a global view of vectors which are distributed
across multiple independent processes. Hence data parallel calls may be viewed as serial
processes.

Some of the operations that can be done on vectors are:

• Vector Reductions

Like max, min, sum, ...

• Dot Products, Vector Norms

• Miscellaneous

Like sorting and global numbering.

The DP reference section (section C.4, page 126) describes each function.

6 PACKAGES 28

6.4 Datatype Package (DT)

Functions that deal with datatype information are kept here. An example is UPS DT Sizeof
(which returns the size of a UPS datatype).

To see a list of valid datatypes, see section B page 63.

• I Don’t see my datatype???

Many times all that is important is to match up the size of the datatype. For ex-
ample, when using the IO package to write an array of C++ booleans, choose the
UPS DT CHAR datatype (one can verify sizes via sizeof() and UPS DT Sizeof()
functions). Likewise one can use UPS DT INT4 when dealing with Fortran logicals.

The DT reference section (section C.5, page 139) describes each function.

6 PACKAGES 29

6.5 Error Package (ER)

This package contains routines that allow users to better deal with error conditions. For
example, users may set an alarm to go off (and trigger the program to terminate) after a
certain time has passed unless the alarm is turned off before then.

For information about how UPS deals with internal errors, see Error Reporting (section
5.8, page 19)

The ER reference section (section C.6, page 140) describes each function.

6 PACKAGES 30

6.6 Gather Scatter Package (GS)

Gather/Scatter functions (while similar to Data Parallel functions - see section 6.3, page 27),
are so widely used to warrant their own package area. These routines deal with the accessing
(gather) and storing (scatter) of data distributed across processes. The GS packages has
routines in the following categories:

• Gather Scatter Specific

gather/scatter calls have an init routine (UPS GS Setup - see section C.7 page 165).
This routine sets up communication patterns and buffers for future calls to
gather/scatter.

• Collate and Distribute

Similar to gather/scatter, these functions operate on a dataset where the io pe sends
and receives data from all other processes.

The following is an example of how users might apply the gather/scatter component.

P3

P2

P1

c7 c8 c9

c4 c5 c6

c1 c2 c3

n13 n14 n15 n16

n9 n10 n11 n12

n5 n6 n7 n8

n1 n2 n3 n4

Figure 6: Gather/scatter view of a domain and its decomposition into 3 processes.

This figure illustrates a domain decomposition and cell connectivity scheme common to
applications that could benefit from using the UPS gather/scatter component. The domain,
consisting of nine cells with sixteen node vertices, has been divided into three partitions.

6 PACKAGES 31

on process

off process

c5

n10 n11

n6 n7

Figure 7: Gather/scatter view of a single cell

This figure, with its closeup view of cell c5, illustrates the communication requirements of
the gather/scatter model.

The domain consists of nine cells with sixteen associated vertices, or nodes. The nodes
are decomposed into three partitions as follows:

Partition 1 owns nodes n1-n8 and cell centers c1-c3
Partition 2 owns nodes n9-n12 and cell centers c4-c6
Partition 3 owns nodes n13-n16 and cell centers c7-c9

So, if process P2 wishes to get the values for all the cell centers (both on process and
off process) it can make a single gather call. Later on, the communication reverses and
processes scatter information back to the cell centers.

The GS reference section (section C.7, page 146) describes each function.

6 PACKAGES 32

6.7 File IO Package (IO)

UPS offers IO functionality based on Hierarchical Data Format
(HDF http://hdf.ncsa.uiuc.edu/HDF5). A file written with HDF has a structure similar
to a Unix directory structure (eg HDF datasets/groups are similar to Unix files/directories
respectively). UPS provides a simpler (but less robust) interface to file IO.

The basic file objects are:

• groups - like Unix directories

• datasets - like Unix files (arrays)

UPS has simplified the calls one would have to make to HDF in order to write datasets
distributed across processes.

Please see UPS IO Dataset read (section C.8 page 183) for example/discussion.

• attributes - simple datasets attached to groups or datasets

These can be used to describe the object to which they are attached.

See the following for examples on using the io package:

• UPS IO File open (section C.8 page 198)

This contains discussions on file/group creation and using UPS IO Info create to get
information about members of a group.

• UPS IO Dataset read (section C.8 page 183)

This contains discussions on dataset writing/reading and using UPS IO Info create
to describe the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)

This contains discussions on attribute writing/reading and using UPS IO Info create
to get information about an objects attributes.

Some other topics:

• Self Description

Using the file objects mentioned above, one can use the IO package functions to create
self-descriptive/structured data files. This is the real strength of using HDF.

One can examine HDF files files with the command line tools h5ls and h5dump which
are installed in the UPS bin directory.

• Sequential File Access

UPS can provide sequential-like file access. Essentially we choose the names of datasets
so you do not have to. When finished writing a dataset, a name is created with an
internal count as part of the name. This count is then incremented in preparation of
the next write. The same is done for reading.

6 PACKAGES 33

Note, we encourage users to instead provide their own names/structure to the file so
that the file is more self descriptive.

Please see UPS IO Dataset read (section C.8 page 183) for example/discussion of
writing/reading sequentially.

• UDM

In the near(?) future, the UPS IO package will layer on top of other packages (UDM
- Unified Data Model) which will give users access to greater functionality.

• Libraries

Note: The user must now link in libhdf5.a (which is located in the UPS lib directory).

• Metadata

Some metadata is also written to the file. This metadata is in the form of additional
groups, datasets, or attributes. However, the naming convention of this metadata is
standardized so that users can automate detection of certain object names.

The format for the names of this metadata is as follows:

– UPSP IO <rest of name> - UPS metadata

– UDM, udm - UDM metadata (if using UDM protocol)

It is important that the user does not create/modify file objects with names within
the above naming conventions or else you could make UPS confused.

• Character Strings as input and output

Null terminators are used by C users to signify the “end” of the string.

Now, the tricky null-termination question:

“When is there an additional null-terminator at the end of the string and when is
there not one ?”

The question is further complicated by Fortran users. UPS is designed so the the
difference between the functionality of the C interface and the Fortran interface is
minimal. In fact, in all but a few cases, the only difference between them is that the
error return value for Fortran in an argument whereas in C it is a function return
value.

So, I came up with the following rules:

– Return of “String Length”
Any time the length of a string is requested or set by the user (ie length of
object name or length of a string value) that length is without any additional
null terminator and will be the number of chars that will be copied into/from a
buffer.

6 PACKAGES 34

– Strings as Output
The user can always obtain the length of data to be obtained before obtaining the
data (ie get the length of an object name, make sure sufficient space is allocated,
then get the name itself). So, upon output, no artificial null-terminator will be
added. During the “allocation” phase, the user can allocate length+1 to create
their own null-terminated string.

– Strings as Input
There are 2 different cases here:

1. A “length” of the string has been supplied
An example would be a writing a string dataset. The user has specified the
size of the dataset and thus the size of the string. Exactly that length will
be used.

2. A “length” of the string has not been supplied
An example would be the name of a group for group open. Such strings
must be null-terminated in order for UPS to know the length. Fortran users
can send in a string concatenated with the null terminator:

’my_group’//ACHAR(0)

The IO reference section (section C.8, page 175) describes each function and has exquisite
examples.

6 PACKAGES 35

6.8 Utility Package (UT)

This component contains some utility functions that some may find useful. These routines
do not necessarily deal with parallel programming.

The UT reference section (section C.9, page 230) describes each function.

REFERENCES 36

References

[1] R. Barrett and M. McKay Jr. UPS Developer’s Guide, 1999.
See http://ccn-8.lanl.gov (Projects to Tools to UPS).

[2] Message Passing Interface Forum. MPI: A message-passing interface standard. Inter-
national Journal of Supercomputer Applications, 8, 1994.

[3] Ian Foster. Designing and Building Parallel Programs. Addison Wesley; also available
online at www.mcs.anl.gov/dbpp/, 1996.

[4] G. A. Geist, A. L. Beguelin, J. J. Dongarra, R. J. Manchek, and V. S. Sunderam. PVM
3.0 user’s guide and reference manual. Technical Report ORNL/TM-12187, Oak Ridge
National Laboratory, Oak Ridge, Tennessee, 1993.

[5] G. A. Geist, A. L. Beguelin, J. J. Dongarra, R. J. Manchek, and V. S. Sunderam.
PVM: Parallel Virtual Machine; A Users’ Guide and Tutorial for Networked Parallel
Computing. MIT, 1994.

[6] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI. MIT Press, 1996.

A ACKNOWLEDGEMENTS 37

A Acknowledgements

The UPS effort relies on far more than the work of just the core team.
Ken Koch, an ASCI project leader at LANL and the godfather of UPS, continues to

provide invaluable advice and guidance.
Dave Shirley of Abba Technologies contracted with Sandia National Laboratories, sup-

plies advice regarding shared memory usage on Blue Mountain as well as a library for per-
forming many of the basic communication functions in shared memory. We are expecting
further assistance and guidance from him as UPS is ported to other platforms, specifically
ASCI Red and ASCI Blue Pacific.

John Thorp of LANL participated in the initial design of UPS, a design that has held
up well as new functionality has been added.

Hal Meyer of Cray/SGI Albuquerque has provided advice regarding I/O, and we intend
to incorporate his I/O library into a subsequent version of UPS.

Sunlung Suen of LANL is involved in our crossbox communication algorithms on Blue
Mountain, and we intend to include his library in a subsequent version of UPS.

Robert Ferrell of Cambridge Power Computing Associates has provided advice regarding
the UPS gather/scatter capabilities.

Joe McGrath of SGI has patiently worked with UPS, and has tirelessly provided feedback
and bug reports.

Bob Robey of LANL has worked closely with us in the development of the gather/scatter
component.

And finally, our management, specifically Don Shirk and Pat Soran, have provided us
the resources and encouragement necessary for this undertaking.

B UPS CONSTANTS 38

B UPS Constants

UPS makes use of predefined integer variables in various circumstances. The actual values
of the variables will change from release to release, so it is advisable that users use the name
of the variable instead of the value.

The values are defined in the include files ups.h (C), UPS.mod (fortran-90), and upsf77.h
(fortran77),

Below is a listing of upsf77.h:

! --
! This file is automatically generated from:
! master_ups.h
! by:
! ./sync_f_include.pl
!
! If you wish to make permanent changes, edit
! that perl script.
!
! --
!
! --------------------------------
! LaTeX readable table of contents
! --------------------------------
!
!

page 39 : UPS AA Code location enum
!

page 43 : UPS AA ENVIRONMENT VARIABLES enum
!

page 45 : UPS AA Error enum
!

page 49 : UPS AA ID START enum
!

page 49 : UPS AA MAIN LANG enum
!

page 49 : UPS AA Mem item enum
!

page 51 : UPS AA Mem type enum
!

page 51 : UPS AA OPT TYPE enum
!

page 56 : UPS AA Operation enum
!

page 57 : UPS AA RUN MODE enum
!

page 58 : UPS AA Statistics enum
!

page 58 : UPS AA Tags enum
!

page 59 : UPS AA Version enum
!

page 59 : UPS CM More stuff enum
!

page 60 : UPS CM P group enum
!

page 61 : UPS CM P group item enum
!

page 63 : UPS CM Protocol context compare enum
!

page 63 : UPS DT Boolean Constants enum
!

page 63 : UPS DT Datatype enum
!

page 65 : UPS ER OUTPUT enum
!

page 65 : UPS GS Index type enum
!

page 65 : UPS GS Item enum

B UPS CONSTANTS 39

!

page 69 : UPS GS Setup study type enum
!

page 69 : UPS GS Setup type enum
!

page 70 : UPS GS Special index enum
!

page 70 : UPS IO ACCESS PES enum
!

page 72 : UPS IO FILE OBJECT TYPE enum
!

page 73 : UPS IO FILTER TYPE enum
!

page 74 : UPS IO INFO ITEM enum
!

page 79 : UPS IO INFO TYPE enum
!

page 79 : UPS IO LOC ITEM enum
!

page 82 : UPS IO OPEN METHOD enum
!

page 82 : UPS IO PROTOCOL enum
!

page 83 : UPS MS INFO ITEM enum
!

page 85 : UPS MS NODEID SCHEME enum
!

page 85 : UPS UT Alloc enum
!

page 85 : UPS UT CHECKSUM TYPE enum
!

page 86 : UPS UT Convert enum
!

page 87 : UPS UT Loc structure op enum
!

page 87 : UPS UT Loc type enum
!

page 87 : UPS UT Name or value enum
!
!

!
!--
! Block from c enum: [UPS_AA_Code_location_enum]
!--
! ---
! Code location enumerations:
! UPS_<PACKAGE>_LOC_<ROUTINE_NAME>: C interface
! UPS_<PACKAGE>_LOCF_<ROUTINE_NAME>: F77 interface
! UPS_<PACKAGE>_LOCI_<ROUTINE_NAME>: Internal routine
! UPS_<PACKAGE>_LOCP_<ROUTINE_NAME>: Private routine
! UPS_<PACKAGE>_LOCPI_<ROUTINE_NAME>: Private Internal routine
!
! NOTE: Fortran interface calls
! Fortran-77 interface which calls
! C interface which calls
! Internal routine (if it exists)
!
! In general, our Fortran and Fortran-77 are flat interfaces
! (do nothing but call the next interface). However, some
! routines (eg fortran77 UPS_CM_ALLREDUCE) must do substantial
! work and are therefore listed below (eg UPS_CM_LOCF_ALLREDUCE)
! ---
!
!

B UPS CONSTANTS 40

! ---
! Other slots for tool/user - will not be used by UPS library
! ---
! must start with 0 so NUM_TIMINGS ok

parameter (UPS_AA_LOC_OTHER_0 = 0)
parameter (UPS_AA_LOC_OTHER_1 = 1)
parameter (UPS_AA_LOC_OTHER_2 = 2)
parameter (UPS_AA_LOC_OTHER_3 = 3)
parameter (UPS_AA_LOC_OTHER_4 = 4)
parameter (UPS_AA_LOC_OTHER_5 = 5)
parameter (UPS_AA_LOC_OTHER_6 = 6)
parameter (UPS_AA_LOC_OTHER_7 = 7)
parameter (UPS_AA_LOC_OTHER_8 = 8)
parameter (UPS_AA_LOC_OTHER_9 = 9)

! --
! AA
! --

parameter (UPS_AA_LOC_ABORT = 10)
parameter (UPS_AA_LOC_INIT = 11)
parameter (UPS_AA_LOC_IO_PE_GET = 12)
parameter (UPS_AA_LOC_IO_PE_SET = 13)
parameter (UPS_AA_LOC_OPT_GET = 14)
parameter (UPS_AA_LOC_OPT_SET = 15)
parameter (UPS_AA_LOC_STATISTICS = 16)
parameter (UPS_AA_LOC_TERMINATE = 17)

! --
! CM
! --

parameter (UPS_CM_LOCF_ALLREDUCE = 18)
parameter (UPS_CM_LOCP_INIT = 19)
parameter (UPS_CM_LOCP_TERMINATE = 20)

!
parameter (UPS_CM_LOC_ALLGATHER = 21)
parameter (UPS_CM_LOC_ALLREDUCE = 22)
parameter (UPS_CM_LOC_BARRIER = 23)
parameter (UPS_CM_LOC_BARRIER_IDLE = 24)
parameter (UPS_CM_LOC_BCAST = 25)
parameter (UPS_CM_LOC_CONTEXT_FREE = 26)
parameter (UPS_CM_LOC_GET_CONTEXT = 27)
parameter (UPS_CM_LOC_GET_NUMPES = 28)
parameter (UPS_CM_LOC_GET_PENUM = 29)
parameter (UPS_CM_LOC_P_GROUP_ITEM = 30)
parameter (UPS_CM_LOC_REDUCE = 31)
parameter (UPS_CM_LOC_SALLTOALL = 32)
parameter (UPS_CM_LOC_SET_CONTEXT = 33)
parameter (UPS_CM_LOC_SM_FREE = 34)
parameter (UPS_CM_LOC_SM_GET_ITEM = 35)
parameter (UPS_CM_LOC_SM_MALLOC = 36)
parameter (UPS_CM_LOC_SM_SET_ITEM = 37)

! --
! DP

B UPS CONSTANTS 41

! --
parameter (UPS_DP_LOCP_INIT = 38)
parameter (UPS_DP_LOCP_TERMINATE = 39)

!
parameter (UPS_DP_LOC_COMBINER = 40)
parameter (UPS_DP_LOC_COMBINERM = 41)
parameter (UPS_DP_LOC_COUNT_MASK = 42)
parameter (UPS_DP_LOC_DOT_PRODUCT = 43)
parameter (UPS_DP_LOC_DOT_PRODUCTM = 44)
parameter (UPS_DP_LOC_NUMBER_MASK = 45)
parameter (UPS_DP_LOC_SORT = 46)
parameter (UPS_DP_LOC_VECTOR_NORM = 47)
parameter (UPS_DP_LOC_VECTOR_NORMM = 48)

! --
! DT
! --

parameter (UPS_DT_LOCP_INIT = 49)
parameter (UPS_DT_LOCP_TERMINATE = 50)

!
parameter (UPS_DT_LOC_SIZEOF = 51)

! --
! ER
! --

parameter (UPS_ER_LOCP_INIT = 52)
parameter (UPS_ER_LOCP_TERMINATE = 53)

!
parameter (UPS_ER_LOC_GET_WAIT_TIME = 54)
parameter (UPS_ER_LOC_PERROR = 55)
parameter (UPS_ER_LOC_SET_ALARM = 56)
parameter (UPS_ER_LOC_SET_WAIT_TIME = 57)
parameter (UPS_ER_LOC_UNSET_ALARM = 58)

! --
! GS
! --

parameter (UPS_GS_LOCP_INIT = 59)
parameter (UPS_GS_LOCP_TERMINATE = 60)

!
parameter (UPS_GS_LOC_COLLATE = 61)
parameter (UPS_GS_LOC_DISTRIBUTE = 62)
parameter (UPS_GS_LOC_FREE = 63)
parameter (UPS_GS_LOC_GATHER = 64)
parameter (UPS_GS_LOC_GATHER_LIST = 65)
parameter (UPS_GS_LOC_GATHER_MULTI = 66)
parameter (UPS_GS_LOCP_GATHER_SCATTER = 67)
parameter (UPS_GS_LOC_GET_ITEM = 68)
parameter (UPS_GS_LOC_SCATTER = 69)
parameter (UPS_GS_LOC_SCATTER_LIST = 70)
parameter (UPS_GS_LOC_SCATTER_MULTI = 71)
parameter (UPS_GS_LOCP_SETUP_GENERIC = 72)
parameter (UPS_GS_LOCP_SETUP_COMPRESSION = 73)
parameter (UPS_GS_LOC_SETUP = 74)

B UPS CONSTANTS 42

parameter (UPS_GS_LOC_SETUP_S_GLOBAL = 75)
parameter (UPS_GS_LOC_SETUP_S_LOCAL = 76)
parameter (UPS_GS_LOC_SETUP_STUDY = 77)

! --
! IO
! --
!

parameter (UPS_IO_LOCP_INIT = 78)
parameter (UPS_IO_LOCP_TERMINATE = 79)

!
parameter (UPS_IO_LOC_ATTR_READ = 80)
parameter (UPS_IO_LOC_ATTR_WRITE = 81)
parameter (UPS_IO_LOC_ATTR_WRITE_S = 82)
parameter (UPS_IO_LOC_DATASET_READ = 83)
parameter (UPS_IO_LOC_DATASET_WRITE = 84)
parameter (UPS_IO_LOC_DS_R_S = 85)
parameter (UPS_IO_LOC_DS_W_S = 86)
parameter (UPS_IO_LOC_FILE_CLOSE = 87)
parameter (UPS_IO_LOC_FILE_OPEN = 88)
parameter (UPS_IO_LOC_FILE_TYPE = 89)
parameter (UPS_IO_LOC_FILTER_GET = 90)
parameter (UPS_IO_LOC_FILTER_SET = 91)
parameter (UPS_IO_LOC_GROUP_CLOSE = 92)
parameter (UPS_IO_LOC_GROUP_OPEN = 93)
parameter (UPS_IO_LOC_INFO_COUNT = 94)
parameter (UPS_IO_LOC_INFO_CREATE = 95)
parameter (UPS_IO_LOC_INFO_CREATE_SELF = 96)
parameter (UPS_IO_LOC_INFO_FREE = 97)
parameter (UPS_IO_LOC_INFO_ITEM_GET = 98)
parameter (UPS_IO_LOC_INFO_ITEM_SET = 99)
parameter (UPS_IO_LOC_LOC_ITEM_GET = 100)
parameter (UPS_IO_LOC_LOC_ITEM_SET = 101)
parameter (UPS_IO_LOC_RM = 102)

! --
! UT
! --

parameter (UPS_UT_LOCP_INIT = 103)
parameter (UPS_UT_LOCP_MEM_ALLOC = 104)
parameter (UPS_UT_LOCP_MEM_FREE = 105)
parameter (UPS_UT_LOCP_TERMINATE = 106)

!
parameter (UPS_UT_LOC_BINARY_OP = 107)
parameter (UPS_UT_LOC_BINARY_OPM = 108)
parameter (UPS_UT_LOC_CHECKSUM_GET = 109)
parameter (UPS_UT_LOC_CONVERT = 110)
parameter (UPS_UT_LOC_DT_CHANGE = 111)
parameter (UPS_UT_LOC_GET_NAME_OR_VALUE = 112)
parameter (UPS_UT_LOC_LOC_STRUCT_ALLOC = 113)
parameter (UPS_UT_LOC_LOC_STRUCTURE = 114)
parameter (UPS_UT_LOC_MEM_GET_ITEM = 115)
parameter (UPS_UT_LOC_REDUCE_OP = 116)

B UPS CONSTANTS 43

parameter (UPS_UT_LOC_REDUCE_OPM = 117)
parameter (UPS_UT_LOC_SLEEP = 118)
parameter (UPS_UT_LOC_SORT_COMPRESS = 119)
parameter (UPS_UT_LOC_SQUARE_ROOT = 120)
parameter (UPS_UT_LOC_TIME_WALL_GET = 121)
parameter (UPS_UT_LOC_TIME_WALL_INTERVAL = 122)

! obsolete - will go away
parameter (UPS_CM_LOC_FREE_BUFFER = 123)
parameter (UPS_CM_LOC_GET_NUMHOSTS = 124)
parameter (UPS_CM_LOC_INITSEND = 125)
parameter (UPS_CM_LOC_MSGINFO = 126)
parameter (UPS_CM_LOC_PACK = 127)
parameter (UPS_CM_LOC_PBCAST = 128)
parameter (UPS_CM_LOC_PRECV = 129)
parameter (UPS_CM_LOC_PROBE = 130)
parameter (UPS_CM_LOC_PSEND = 131)
parameter (UPS_CM_LOC_RECV = 132)
parameter (UPS_CM_LOC_SEND = 133)
parameter (UPS_CM_LOC_UNPACK = 134)

! -------------------
! number of locations
! -------------------

parameter (UPS_NUM_CODE_LOCATIONS = 135)
!
!

!
!--
! Block from c enum: [UPS_AA_ENVIRONMENT_VARIABLES_enum]
!--
! ---
! This is a partial list of environmental variables that can be set
! to affect how UPS runs. It is "partial" because other environmental
! variables are also listed in other enums here. Search on "environment"
! To find them.
! Remember to propogate environment variables to all processes.
!
! Unless otherwise noted:
! - Environment variables supersede function calls made by the user.
! This allows one to change behavior without needing to recompile
! code.
! - These variables are read during UPS_AA_Init() and are not reread.
! So, modifying them during a run has no affect.
! - The enum value for the variable has no meaning.
! ---
!
!
! ------------------
! ER Alarm Variables
! ------------------

B UPS CONSTANTS 44

! value: time (secs) to wait when
! * UPS_ER_Set_alarm() has been called before
! * triggering a dump of type
! * UPS_ER_ALARM_DUMPCORE.

parameter (UPS_ER_MAX_WAIT_TIME = 0)
! value: what flavor of core to dump when
! * UPS_ER_Set_alarm() has been called and
! * UPS_ER_MAX_WAIT_TIME time has passed.
! * purpose: The following are the possible
! * signals sent to kill the processes:
! * 0: SIGKILL (default)
! * core file will not be created
! * 1: SIGABRT
! * core file will be created

parameter (UPS_ER_ALARM_DUMPCORE = 1)
! --
! UT (and CM_sm) Memory Management Variables
! --
! value: nothing or !0: memory management off
! * otherwise: memory management on
! * purpose:
! * Default is that memory management is on
! * when UPS built in debug mode, and off when
! * UPS build in optimized mode.
! * Memory management does things like memory
! * overwrite and memory lead checking for UPS
! * internal variables.

parameter (UPS_MEM_NO_MANAGEMENT = 2)
! value: number of "blocks" of memory
! * allocated for guard bytes before and
! * after the requested space for UPS
! * internal variables.
! * purpose: When using memory management,
! * additional memory is allocated before
! * and after the memory block which is
! * checked for memory overwrites.
! * By default, this value is 1 and the
! * size of a block is the size needed to
! * align memory.

parameter (UPS_MEM_NUM_GUARD_BLOCKS = 3)
! ----------------
! TMPDIR variables
! ----------------
! value: directory name to place temporary shared
! * memory files (if needed).
! * purpose: When using UPS shared memory calls
! * (UPS_CM_Sm_<blah>), some architectures create
! * temporary files associated with the shared memory
! * area. By default, these files are placed in
! * a directory prefered/required by the underlying
! * shared memory protocol (eg in /tmp or in the

B UPS CONSTANTS 45

! * current working directory). You may change
! * this directory with this environment variable.
! * Normally, no temp files should remain after
! * execution is finished. However, if errors
! * preclude cleanup, users might see ".nfs" files or
! * files beginning with "ups_cm_sm_" in the tmp
! * directory.
! * The order of preference for the location of
! * these files is:
! * 1: UPS_TMPDIR_SM
! * 2: UPS_TMPDIR
! * 3: TMPDIR

parameter (UPS_TMPDIR_SM = 4)
! value: directory name to place temp files (if needed)

parameter (UPS_TMPDIR = 5)
!
!

!
!--
! Block from c enum: [UPS_AA_Error_enum]
!--
! -----------
! error codes
! -----------
!
!
! ---------------------------
! OK
! ---------------------------

parameter (UPS_OK = 0)
! ---------------------------
! aa
! ---------------------------
!

parameter (UPS_ERROR_AA_GENERAL = -999)
! --------------
! Generic Errors
! --------------

parameter (UPS_ERROR_AA_BAD_PARAMETER = -998)
parameter (UPS_ERROR_AA_HANG = -997)
parameter (UPS_ERROR_AA_MEMORY_NOT_FREED = -996)
parameter (UPS_ERROR_AA_NO_MEMORY = -995)
parameter (UPS_ERROR_AA_NOT_IMPLEMENTED = -994)
parameter (UPS_ERROR_AA_INVALID_DATATYPE = -993)
parameter (UPS_ERROR_AA_INVALID_OPERATION = -992)
parameter (UPS_ERROR_AA_INVALID_TAG = -991)

! ------------------
! aa: routine errors
! ------------------

B UPS CONSTANTS 46

parameter (UPS_ERROR_AA_ABORT = -990)
parameter (UPS_ERROR_AA_INIT = -989)
parameter (UPS_ERROR_AA_IO_PE_GET = -988)
parameter (UPS_ERROR_AA_IO_PE_SET = -987)
parameter (UPS_ERROR_AA_OPT_GET = -986)
parameter (UPS_ERROR_AA_OPT_SET = -985)
parameter (UPS_ERROR_AA_STATISTICS = -984)
parameter (UPS_ERROR_AA_TERMINATE = -983)

! ---------------------------
! cm
! ---------------------------

parameter (UPS_ERROR_CM_GENERAL = -1999)
! ---------------------
! cm: Basic environment
! ---------------------

parameter (UPS_ERROR_CM_ABORT = -1998)
parameter (UPS_ERROR_CM_CORE = -1997)
parameter (UPS_ERROR_CM_INIT = -1996)
parameter (UPS_ERROR_CM_TERMINATE = -1995)

! ----------------------
! cm: Process management
! ----------------------

parameter (UPS_ERROR_CM_CONTEXT_FREE = -1994)
parameter (UPS_ERROR_CM_GET_CONTEXT = -1993)
parameter (UPS_ERROR_CM_GET_NUMPES = -1992)
parameter (UPS_ERROR_CM_GET_PENUM = -1991)

! Used by upspi_cm_global_penum.
parameter (UPS_ERROR_CM_GLOBAL_PENUM = -1990)
parameter (UPS_ERROR_CM_MSGINFO_FILL = -1989)
parameter (UPS_ERROR_CM_P_GROUP_ITEM = -1988)
parameter (UPS_ERROR_CM_SET_CONTEXT = -1987)

! --------------
! cm: Collective
! --------------

parameter (UPS_ERROR_CM_ALLGATHER = -1986)
parameter (UPS_ERROR_CM_ALLREDUCE = -1985)
parameter (UPS_ERROR_CM_BARRIER = -1984)
parameter (UPS_ERROR_CM_BARRIER_IDLE = -1983)
parameter (UPS_ERROR_CM_BCAST = -1982)
parameter (UPS_ERROR_CM_REDUCE = -1981)
parameter (UPS_ERROR_CM_SALLTOALL = -1980)
parameter (UPS_ERROR_CM_SM_FREE = -1979)
parameter (UPS_ERROR_CM_SM_GET_ITEM = -1978)
parameter (UPS_ERROR_CM_SM_MALLOC = -1977)

!
parameter (UPS_ERROR_CM_SET_HOST_INFO = -1976)

! ---------------------------
! dp
! ---------------------------

parameter (UPS_ERROR_DP_GENERAL = -2999)
parameter (UPS_ERROR_DP_INIT = -2998)

B UPS CONSTANTS 47

parameter (UPS_ERROR_DP_COMBINER = -2997)
parameter (UPS_ERROR_DP_COMBINERM = -2996)
parameter (UPS_ERROR_DP_COUNT_MASK = -2995)
parameter (UPS_ERROR_DP_DOT_PRODUCT = -2994)
parameter (UPS_ERROR_DP_DOT_PRODUCTM = -2993)
parameter (UPS_ERROR_DP_NUMBER_MASK = -2992)
parameter (UPS_ERROR_DP_SORT = -2991)
parameter (UPS_ERROR_DP_TERMINATE = -2990)
parameter (UPS_ERROR_DP_VECTOR_NORM = -2989)
parameter (UPS_ERROR_DP_VECTOR_NORMM = -2988)

! ---------------------------
! dt
! ---------------------------

parameter (UPS_ERROR_DT_GENERAL = -3999)
parameter (UPS_ERROR_DT_INIT = -3998)
parameter (UPS_ERROR_DT_SIZEOF = -3997)
parameter (UPS_ERROR_DT_TERMINATE = -3996)

! ---------------------------
! er
! ---------------------------

parameter (UPS_ERROR_ER_GENERAL = -4999)
parameter (UPS_ERROR_ER_GET_WAIT_TIME = -4998)
parameter (UPS_ERROR_ER_INIT = -4997)
parameter (UPS_ERROR_ER_PERROR = -4996)
parameter (UPS_ERROR_ER_SET_ALARM = -4995)
parameter (UPS_ERROR_ER_SET_WAIT_TIME = -4994)
parameter (UPS_ERROR_ER_TERMINATE = -4993)
parameter (UPS_ERROR_ER_UNSET_ALARM = -4992)

! ---------------------------
! gs
! ---------------------------

parameter (UPS_ERROR_GS_GENERAL = -5999)
parameter (UPS_ERROR_GS_SETUP = -5998)
parameter (UPS_ERROR_GS_INIT = -5997)
parameter (UPS_ERROR_GS_GATHER = -5996)
parameter (UPS_ERROR_GS_GATHER_LIST = -5995)
parameter (UPS_ERROR_GS_GATHER_MULTI = -5994)
parameter (UPS_ERROR_GS_UNKNOWN_ID = -5993)
parameter (UPS_ERROR_GS_SCATTER = -5992)
parameter (UPS_ERROR_GS_SCATTER_LIST = -5991)
parameter (UPS_ERROR_GS_SCATTER_MULTI = -5990)
parameter (UPS_ERROR_GS_COLLATE = -5989)
parameter (UPS_ERROR_GS_DISTRIBUTE = -5988)
parameter (UPS_ERROR_GS_FREE = -5987)
parameter (UPS_ERROR_GS_GET_ITEM = -5986)
parameter (UPS_ERROR_GS_SETUP_STUDY = -5985)
parameter (UPS_ERROR_GS_SETUP_S_GLOBAL = -5984)
parameter (UPS_ERROR_GS_SETUP_S_LOCAL = -5983)
parameter (UPS_ERROR_GS_TERMINATE = -5982)

! ---------------------------
! io

B UPS CONSTANTS 48

! ---------------------------
parameter (UPS_ERROR_IO_GENERAL = -6999)
parameter (UPS_ERROR_IO_CORE = -6998)
parameter (UPS_ERROR_IO_ATTR_READ = -6997)
parameter (UPS_ERROR_IO_ATTR_WRITE = -6996)
parameter (UPS_ERROR_IO_ATTR_WRITE_S = -6995)
parameter (UPS_ERROR_IO_DATASET_READ = -6994)
parameter (UPS_ERROR_IO_DATASET_WRITE = -6993)
parameter (UPS_ERROR_IO_DS_R_S = -6992)
parameter (UPS_ERROR_IO_DS_W_S = -6991)
parameter (UPS_ERROR_IO_FILTER_GET = -6990)
parameter (UPS_ERROR_IO_FILTER_SET = -6989)
parameter (UPS_ERROR_IO_FILE_CLOSE = -6988)
parameter (UPS_ERROR_IO_FILE_OPEN = -6987)
parameter (UPS_ERROR_IO_FILE_TYPE = -6986)
parameter (UPS_ERROR_IO_GROUP_CLOSE = -6985)
parameter (UPS_ERROR_IO_GROUP_OPEN = -6984)
parameter (UPS_ERROR_IO_INFO_COUNT = -6983)
parameter (UPS_ERROR_IO_INFO_CREATE = -6982)
parameter (UPS_ERROR_IO_INFO_CREATE_SELF = -6981)
parameter (UPS_ERROR_IO_INFO_FREE = -6980)
parameter (UPS_ERROR_IO_INFO_ITEM_GET = -6979)
parameter (UPS_ERROR_IO_INFO_ITEM_SET = -6978)
parameter (UPS_ERROR_IO_INIT = -6977)
parameter (UPS_ERROR_IO_LOC_ITEM_GET = -6976)
parameter (UPS_ERROR_IO_LOC_ITEM_SET = -6975)
parameter (UPS_ERROR_IO_RM = -6974)
parameter (UPS_ERROR_IO_TERMINATE = -6973)

! ---------------------------
! ut
! ---------------------------

parameter (UPS_ERROR_UT_GENERAL = -8999)
parameter (UPS_ERROR_UT_INIT = -8998)
parameter (UPS_ERROR_UT_CHECKSUM_GET = -8997)
parameter (UPS_ERROR_UT_CONVERT = -8996)
parameter (UPS_ERROR_UT_BINARY_OP = -8995)
parameter (UPS_ERROR_UT_BINARY_OPM = -8994)
parameter (UPS_ERROR_UT_DT_CHANGE = -8993)
parameter (UPS_ERROR_UT_GET_NAME_OR_VALUE = -8992)
parameter (UPS_ERROR_UT_LOC_STRUCT_ALLOC = -8991)
parameter (UPS_ERROR_UT_LOC_STRUCTURE = -8990)
parameter (UPS_ERROR_UT_MEM_ALLOC = -8989)
parameter (UPS_ERROR_UT_MEM_GET_ITEM = -8988)
parameter (UPS_ERROR_UT_MEM_FREE = -8987)
parameter (UPS_ERROR_UT_REDUCE_OP = -8986)
parameter (UPS_ERROR_UT_REDUCE_OPM = -8985)
parameter (UPS_ERROR_UT_SORT_COMPRESS = -8984)
parameter (UPS_ERROR_UT_SLEEP = -8983)
parameter (UPS_ERROR_UT_SQUARE_ROOT = -8982)
parameter (UPS_ERROR_UT_TERMINATE = -8981)
parameter (UPS_ERROR_UT_TIME_WALL_GET = -8980)

B UPS CONSTANTS 49

parameter (UPS_ERROR_UT_TIME_WALL_INTERVAL = -8979)
!
!

!
!--
! Block from c enum: [UPS_AA_ID_START_enum]
!--
! ---
! Where ids start for different things.
! Start at different locations in hopes of helping users detect errors.
! ---
!
!
! 0 = special id, use 1 (user creates indexed array)

parameter (UPS_GS_INFO_ID_START = 1)
parameter (UPS_IO_LOC_ID_START = 100000)
parameter (UPS_IO_INFO_ID_START = 200000)
parameter (UPS_MS_INFO_ID_START = 300000)

!
!

!
!--
! Block from c enum: [UPS_AA_MAIN_LANG_enum]
!--
! The language of the main program
!
!
! Use the default inferred from the
! * interface called (eg using the C interface
! * initialization routine UPS_AA_Init implies
! * having a C main program).

parameter (UPS_AA_MAIN_LANG_UNSET = 0)
! Main program is C

parameter (UPS_AA_MAIN_LANG_C = 1)
! Main program is Fortran

parameter (UPS_AA_MAIN_LANG_F = 2)
!
!

!
!--
! Block from c enum: [UPS_AA_Mem_item_enum]
!--
! ---
! Define elements of info about the UPS memory routines.
! The datatype/value of the "address" argument will be the

B UPS CONSTANTS 50

! the address used in the UPS memory routines.
! The datatype of the "item" argument is given in the item description.
! The get/set routines of UPS_CM_Sm_get_item, UPS_CM_Sm_set_item, and
! UPS_UT_Mem_get_item can be used with some of these arguments.
! The UT routines deal with normal memory and the Sm routines deal with
! shared memory.
! ---
!
!
! Purpose: check memory (eg overwrite guard bytes)
! * Datatype: item not used
! * Use: UT get Sm get
! * If the address supplied is NULL, all memory
! * areas allocated by UPS are checked.

parameter (UPS_AA_MEM_ITEM_CHECK = 0)
! Purpose: The number of memory info structs in use.
! * Datatype: UPS_DT_INT8
! * Use: UT get Sm get

parameter (UPS_AA_MEM_ITEM_NUM = 1)
! Purpose: The number of bytes used
! * per guard byte area.
! * Datatype: UPS_DT_INT8
! * Use: UT get Sm get
! * There will be a guard byte area
! * before and a guard byte area after
! * memory blocks.

parameter (UPS_AA_MEM_ITEM_NUM_GUARD_BYTES = 2)
! Purpose: The process group connected to a
! * sm area.
! * Datatype: int (UPS_CM_P_group_enum)
! * Use: Sm get/set.
! * If the address given is NULL, this will
! * be the default p_group.
! * If shared memory is allowed, the value will
! * usually be UPS_CM_P_GROUP_BOX (it might be
! * larger like UPS_CM_P_GROUP_ALL).
! * If shared memory is not allowed, the value will
! * be UPS_CM_P_GROUP_SELF.
! * If the address is given, you can get (not set)
! * the p_group for the sm area in question.
! * This can be set as an environment variable.

parameter (UPS_AA_MEM_ITEM_P_GROUP = 3)
! Purpose: The the size of a page.
! * Datatype: UPS_DT_INT8
! * Use: UT get Sm get

parameter (UPS_AA_MEM_ITEM_PAGESIZE = 4)
! Purpose: The size in bytes of the memory area
! * Datatype: UPS_DT_INT8
! * Use: UT get Sm get
! * This size does not include guard bytes

parameter (UPS_AA_MEM_ITEM_SIZE = 5)

B UPS CONSTANTS 51

! Purpose: The total size in bytes of the memory
! * areas.
! * Datatype: UPS_DT_INT8
! * Use: UT get Sm get
! * For UPS_CM_Sm_get_item, only master pe’s
! * will have non-0 values. If no shared memory
! * is actually used (there is no ability for
! * shared memory or the proup is
! * UPS_CM_P_GROUP_SELF) this value will be 0
! * for all processes.

parameter (UPS_AA_MEM_ITEM_TOTAL = 6)
!
!

!
!--
! Block from c enum: [UPS_AA_Mem_type_enum]
!--
! ------------------
! The type of memory
! ------------------
!
!
! -----
! types
! -----
! normal memory - UPSP_UT_MEM_MALLOC

parameter (UPS_AA_MEM_NORMAL = 0)
! shared memory - UPS_CM_Sm_malloc

parameter (UPS_AA_MEM_SHARED = 1)
! ---
! all
! ---
! all types of memory (above)

parameter (UPS_AA_MEM_ALL = 2)
!
!

!
!--
! Block from c enum: [UPS_AA_OPT_TYPE_enum]
!--
! --
! option parameters (optimizations, settings, ...whatnot...)
! Get/Set with UPS_AA_Opt_get/UPS_AA_Opt_set
! opt_start/opt_stop are used internally for determining package
! --
!
!

B UPS CONSTANTS 52

! internal use only
parameter (UPS_AA_OPT_START = 1000)

! Purpose: Set error message output file.
! * Datatype: int4(UPS_ER_OUTPUT_enum)
! * Get: yes
! * Set: yes
! * By default, UPS error messages are sent
! * to stderr. One can change this by setting
! * the type to something else.
! * Calling UPS_AA_Opt_set with this option
! * must be called by all pes with the same
! * value.
! * See UPS_ER_OUTPUT_enum for values.
!

parameter (UPS_AA_OPT_ERROUTPUT_TYPE = 1001)
! Purpose: set type of run
! * Datatype: int4(UPS_AA_RUN_MODE_enum)
! * Get: yes
! * Set: yes
! * This is used for setting UPS to run
! * in sequential or parallel mode.
! * See UPS_AA_RUN_MODE_enum for more information.
! * This can only be set before calling
! * UPS_AA_Init() as it dictates what happens
! * during UPS initialization.

parameter (UPS_AA_OPT_RUN_MODE = 1002)
! Purpose: determine if UPS had been initialized
! * Datatype: int4
! * Get: yes
! * Set: no
! * If there is a chance other packages are using
! * UPS, each package should check to see if UPS
! * has already been initialized. This way, they
! * terminate UPS only if they initialized UPS.

parameter (UPS_AA_OPT_INITIALIZED = 1003)
! Purpose: set language type main program
! * Datatype: int4(UPS_AA_MAIN_LANG_enum)
! * Get: yes
! * Set: yes
! * The language of the main program is normally
! * inferred from interface UPS_AA_Init is called
! * from (eg calling the C interface infers a C
! * main).
! * However, it is possible to initialize UPS with
! * the UPS Fortran interface using a C main.
! * You must set additional options (setting argv
! * and argc) if you do this (see the options
! * below).

parameter (UPS_AA_OPT_MAIN_LANG = 1004)
! Purpose: set argc for C main + F interface
! * Datatype: int4

B UPS CONSTANTS 53

! * Get: yes
! * Set: yes
! * When calling the Fortran UPS interface to
! * UPS_AA_INIT and using a C main, you must
! * set argc.
! * When getting this value, you will get
! * whatever it was set to which is NOT
! * necessarily the correct value.

parameter (UPS_AA_OPT_MAIN_LANG_ARGC = 1005)
! Purpose: set argc for C main + F interface
! * Datatype: array of char strings (char**)
! * Get: yes
! * Set: yes
! * When calling the Fortran UPS interface to
! * UPS_AA_INIT and using a C main, you must
! * set argv.
! * When getting this value, you will get
! * whatever it was set to which is NOT
! * necessarily the correct value.

parameter (UPS_AA_OPT_MAIN_LANG_ARGV = 1006)
! Purpose: To check for UPS version mismatches
! * Datatype: int4
! * Get: yes
! * Set: yes
! * When getting the value, it will return an
! * integer value UPS version number.
! * When setting the value, UPS will print an
! * error message and return an error value if
! * there is a version mismatch.

parameter (UPS_AA_OPT_VERSION_CHECK = 1007)
! internal use only

parameter (UPS_AA_OPT_STOP = 1008)
! internal use only

parameter (UPS_CM_OPT_START = 2000)
! Purpose: determine if underlying protocol
! * for this package has been initialized.
! * Datatype: int4
! * Get: yes
! * Set: no
! * Note, this returns if the underlying
! * protocol for the particular
! * UPS_AA_OPT_RUN_MODE has been initialized
! * at all (not just if UPS has
! * initialized it).

parameter (UPS_CM_OPT_PROTOCOL_INIT = 2001)
! internal use only

parameter (UPS_CM_OPT_STOP = 2002)
! internal use only

parameter (UPS_DP_OPT_START = 5000)
! Purpose: set the number of samples for sorting
! * Datatype: int8

B UPS CONSTANTS 54

! * Get: yes
! * Set: yes
! * You may also set this with an environment
! * variable.

parameter (UPS_DP_OPT_NUM_SAMPLES = 5001)
! internal use only

parameter (UPS_DP_OPT_STOP = 5002)
! internal use only

parameter (UPS_ER_OPT_START = 3000)
! Purpose: Get the current UPS error message buffer
! * Datatype: char array
! * Get: yes
! * Set: no
! * The number of characters is obtained by
! * UPS_ER_OPT_ERMESS_LEN and does not contain any
! * null termination character.

parameter (UPS_ER_OPT_ERRMESS = 3001)
! Purpose: number of chars in UPS_ERR_OPT_ERMESS
! * Datatype: int8
! * Get: yes
! * Set: yes
! * This length is without a null terminator.
! * Setting this value to 0 will empty the error
! * message buffer.

parameter (UPS_ER_OPT_ERRMESS_LEN = 3002)
! internal use only

parameter (UPS_ER_OPT_STOP = 3003)
! internal use only

parameter (UPS_GS_OPT_START = 4000)
! Purpose: sets whether or not to try compression
! * Datatype: int4 (UPS_DT_TRUE=1/UPS_DT_FALSE=0)
! * Get: yes
! * Set: yes
! * If true, will try to use compression.
! * (a duplicated index is sent once and coppied
! * on the receiving side)
! * All processes must have the same value for this.
! * You may also set this as an enviroment
! * variable.

parameter (UPS_GS_OPT_COMPRESSION = 4001)
! Purpose: num of indices for compression scan
! * Datatype: int8
! * Get: yes
! * Set: yes
! * This sets the number of indices to look for
! * when doing compression. The different
! * values are:
! * <0: scan whole array (costly)
! * 0: do not do compression
! * >0: look ahead this number of indices
! * All processes must have the same value for this.

B UPS CONSTANTS 55

! * You may also set this as an enviroment
! * variable.

parameter (UPS_GS_OPT_COMP_LOOKAHEAD = 4002)
! Purpose: sets minimum compression ratio
! * Datatype: real8
! * Get: yes
! * Set: yes
! * Ratio = 100*Comp_Size/UnComp_Size (rounded to int)
! * Values will then ranbe from 0 - 100.
! * The lower the value, the more compressed.
! * The ratio for a particular GS setup must be less
! * than this value in order to use compression.
! * <0: Use compression for any ratio
! * 0: do not do compression
! * >0: use this ratio value
! * All processes must have the same value for this.
! * You may also set this as an enviroment
! * variable.

parameter (UPS_GS_OPT_COMP_RATIO = 4003)
! Purpose: num of indices for compression scan
! * Datatype: int4 (UPS_DT_TRUE=1/UPS_DT_FALSE=0)
! * Get: yes
! * Set: yes
! * If true, will try to use ordering of send/recvs
! * (eg start off-box communication before on-box)
! * All processes must have the same value for this.
! * You may also set this as an enviroment
! * variable.

parameter (UPS_GS_OPT_COMM_ORDERING = 4004)
! internal use only

parameter (UPS_GS_OPT_STOP = 4005)
! internal use only

parameter (UPS_IO_OPT_START = 0)
! Purpose: get/set the info for IO
! * Datatype: protocol info (eg with mpi, MPI_Info)
! * Get: yes
! * Set: yes
! * The user may pass in, for example, an MPI_Info
! * variable for fine-tuning performance.

parameter (UPS_IO_OPT_INFO = 1)
! Purpose: underlying IO protocol
! * Datatype: int4(UPS_IO_PROTOCOL_enum)
! * Get: yes
! * Set: yes
! * Datafiles written with one protocol are
! * incompatible with other protocols.
! * Be careful when changing this value to ensure
! * a consistent protocol for the file.
! * You may also set this as an enviroment
! * variable.
! * See UPS_IO_PROTOCOL_enum below.

B UPS CONSTANTS 56

parameter (UPS_IO_OPT_PROTOCOL = 2)
! Purpose: dataset name prefix for sequential
! * reads/writes
! * Datatype: char array
! * Get: yes
! * Set: yes
! * The dataset name consists of:
! * <prefix><0 based dataset number>
! * and is used if no dataset name is given.
! * The number of characters is obtained by
! * UPS_IO_OPT_PREFIX_LENGTH.

parameter (UPS_IO_OPT_DS_PREFIX = 3)
! Purpose: number of chars in
! * UPS_IO_OPT_DS_PREFIX
! * Datatype: int8
! * Get: yes
! * Set: no
! * The length of the prefix of the default
! * dataset name.
! * This length is without a null
! * terminator.

parameter (UPS_IO_OPT_DS_PREFIX_LENGTH = 4)
! Purpose: specifies pes that write to file
! * Datatype: int(UPS_IO_ACCESS_PES_enum)
! * Get: yes
! * Set: yes
! * You may also set this as an enviroment
! * variable.
! * See UPS_IO_ACCESS_PES_enum below.

parameter (UPS_IO_OPT_ACCESS_WRITE = 5)
! Purpose: use loc id given by the user
! * Datatype: int(UPS_DT_Boolean_Constants_enum)
! * Get: yes
! * Set: yes
! * UPS_DT_FALSE(default):
! * let UPS set the value obtained from
! * IO file/group open calls.
! * UPS_DT_TRUE:
! * UPS will use the value supplied to
! * IO file/group open calls.
! * This value must be non-negative.
! * One must be careful not to mix ids set
! * by the user and ones set by UPS.

parameter (UPS_IO_OPT_LOC_ID_USERS = 6)
! internal use only

parameter (UPS_IO_OPT_STOP = 7)
!
!

!

B UPS CONSTANTS 57

!--
! Block from c enum: [UPS_AA_Operation_enum]
!--
! ---
! define types of operations.
! Can be used in packages like cm, gs, and dp
! Start from 1000 so that they do not overlap
! the datatypes. Might find possible user
! errors where they swap operation and
! datatype arguments in a function call
! ---
!
!

parameter (UPS_AA_BAND = 1000)
parameter (UPS_AA_BOR = 1001)
parameter (UPS_AA_LAND = 1002)
parameter (UPS_AA_LOR = 1003)
parameter (UPS_AA_MAX = 1004)
parameter (UPS_AA_MAXLOC = 1005)
parameter (UPS_AA_MIN = 1006)
parameter (UPS_AA_MINLOC = 1007)
parameter (UPS_AA_PROD = 1008)
parameter (UPS_AA_DOT_PROD = 1009)
parameter (UPS_AA_PUT = 1010)
parameter (UPS_AA_SUM = 1011)
parameter (UPS_AA_SUB = 1012)

! --
! internal operations not intended for general use
! --
! internal op used for gs package

parameter (UPS_AA_GS_LIST = 1013)
!
!

!
!--
! Block from c enum: [UPS_AA_RUN_MODE_enum]
!--
! ---
! Different types of run modes
! Use UPS_AA_Opt_get/UPS_AA_Opt_set with UPS_AA_OPT_RUN_MODE.
! These may only be set before calling UPS_AA_Init()
! You may set the following as environmental variables as well:
! (in mutually exclusive groups)
! - setenv UPS_AA_RUN_MODE_PARALLEL
! setenv UPS_AA_RUN_MODE_SERIAL
! Remember that all environment variables must be propagated to
! all the processes.
! ---
!

B UPS CONSTANTS 58

!
! Default (must equal 0 to match init)
! * This option causes the underlying
! * communication protocol (eg MPI) to
! * be called regardless of the number of
! * processors being used.

parameter (UPS_AA_RUN_MODE_PARALLEL = 0)
! This option causes serial code (single
! * process) to be called instead of the
! * underlying communication protocol (eg MPI).
! * UPS has the same functionality when running
! * serial as it does running parallel with
! * one process.
! * This option was added mainly for running
! * with the HDF-EnSight reader which uses
! * UPS IO routines but cannot run under mpirun.
! * There are other tools that also have this
! * restriction.

parameter (UPS_AA_RUN_MODE_SERIAL = 1)
!
!

!
!--
! Block from c enum: [UPS_AA_Statistics_enum]
!--
! ---
! Statistics flags
! Use UPS_AA_Statistics()
! You may set the following as environmental variables as well:
! (in mutually exclusive groups)
! - setenv UPS_STATISTICS_OFF
! setenv UPS_STATISTICS_ON
! Remember that all environment variables must be propagated to
! all the processes.
! ---
!
!
! (must equal 0 to match init)
! * Disable statistics.

parameter (UPS_STATISTICS_OFF = 0)
! Default
! * Enable statistics.
! * The file ups_log.txt will be produced on the
! * io_pe (default pe 0)

parameter (UPS_STATISTICS_ON = 1)
!
!

!

B UPS CONSTANTS 59

!--
! Block from c enum: [UPS_AA_Tags_enum]
!--
! ---
! Tags used for communication (for example, mpi message tags)
! ---
!
!
! Generic message tags
! must be negative or might get confused with valid values

parameter (UPS_CM_ANY_TAG = -300)
parameter (UPS_CM_ANY_SOURCE = -200)
parameter (UPS_CM_PROC_NULL = -100)

! UPS Reserves message tags in this range
parameter (UPS_AA_TAG_RESERVE_START = 100000)

!
parameter (UPS_CM_SALLTOALL_TAG = 100001)
parameter (UPS_CM_TAG = 100002)
parameter (UPS_CM_BCAST_TAG = 100003)
parameter (UPS_CM_BCAST_FC_TAG = 100004)
parameter (UPS_CM_REDUCE_TAG = 100005)
parameter (UPS_CM_REDUCE_FC_TAG = 100006)
parameter (UPS_CM_BARRIER_IDLE_TAG = 100007)

! GS message tags
parameter (UPS_GS_TAG = 100008)

! IO message tags
parameter (UPS_IO_TAG = 100009)

! UPS Reserves message tags in this range
parameter (UPS_AA_TAG_RESERVE_STOP = 100010)

!
!

!
!--
! Block from c enum: [UPS_AA_Version_enum]
!--
! ---
! Version (do not include leading 0 if it exists)
! ---
!
!

parameter (UPS_VERSION = 20705)
!
!

!
!--
! Block from c enum: [UPS_CM_More_stuff_enum]
!--

B UPS CONSTANTS 60

! obsolete - will go away
! ---
! Some more basic communication parameters.
! ---
!
!

parameter (UPS_CM_MSG_FOUND = 1)
parameter (UPS_CM_RECV_BUFFER = 2)
parameter (UPS_CM_SEND_BUFFER = 3)

!
!

!
!--
! Block from c enum: [UPS_CM_P_group_enum]
!--
! --
!
! Process groups categories.
!
! Different architectures/installation settings will
! have different values for the process groups.
! For portability, every architecture should have all
! the same possibilities with invalid process groups
! defaulted to UPS_CM_P_GROUP_ALL (0).
!
! Currently, processes grouped in terms of NUMA layers
! in order from least specific to most specific.
!
! See UPS_CM_P_group_item_enum below for a list of
! items associated with process groups.
!
! Terms used in variable definitions:
! size: total number of processes
! rank: id {0 through (size - 1)}
!
!
! Example of Layers of Process Groups
! 2 machine groups, 4 boxes, 16 processes
! +--+
! | ALL |
! | +-------------------------+ +--------------------------+ |
! | | MACHINE_GROUP 0 | | MACHINE_GROUP 1 | |
! | | +---------+ +---------+ | | +---------+ +---------+ | |
! | | | BOX 0 | | BOX 1 | | | | BOX 2 | | BOX 3 | | |
! | | |.........| |.........| | | |.........| |.........| | |
! | | |SELF SELF| |SELF SELF| | | |SELF SELF| |SELF SELF| | |
! | | |SELF SELF| |SELF SELF| | | |SELF SELF| |SELF SELF| | |
! | | +---------+ +---------+ | | +---------+ +---------+ | |
! | +-------------------------+ +--------------------------+ |

B UPS CONSTANTS 61

! +--+
!
! --
!
!
! Must start with 0 so the total count (below) is correct
! All processes
! idnum = 0 numids = 1
! penum = rank numpes = size

parameter (UPS_CM_P_GROUP_ALL = 0)
!
! set to UPS_CM_P_GROUP_ALL (0)

parameter (UPS_CM_P_GROUP_MACHINE_GROUP = 0)
!
! usually gethostname()

parameter (UPS_CM_P_GROUP_BOX = 1)
!
! each pe is grouped by itself.
! idnum = rank numids = size
! penum = 0 numpes = 1

parameter (UPS_CM_P_GROUP_SELF = 2)
! not an process group
! Number of different process groups

parameter (UPS_CM_P_GROUP_COUNT = 3)
!
!

!
!--
! Block from c enum: [UPS_CM_P_group_item_enum]
!--
! --
! Process Group items returned from UPS_CM_P_group_item()
! All items are with respect to UPS_CM_P_group_enum
!
! Example of idnum, numids, numpes, penum,
! MSTR_CNTXT, and ALL_CNTXT
! wrt process group UPS_CM_P_GROUP_BOX
! 3 boxes, 7 processes
! +--+
! | numids = 3 (3 boxes - total of 7 processes) |
! | MSTR_CNTXT = 1 context with 3 processes |
! | (1 master [penum=0] per group) |
! | |
! | +----------------+ +----------------+ +----------------+ |
! | | idnum = 0 | | idnum = 1 | | idnum = 2 | |
! | | numpes = 3 | | numpes = 2 | | numpes = 1 | |
! | | ALL_CNTXT A | | ALL_CNTXT B | | ALL_CNTXT C | |
! | |................| |................| |................| |
! | | penum = 0 | | penum = 0 | | penum = 0 | |

B UPS CONSTANTS 62

! | | penum = 1 | | penum = 1 | | | |
! | | penum = 2 | | | | | |
! | +----------------+ +----------------+ +----------------+ |
! +--+
!
! --
!
!
! --
! Start with 0 so UPS_CM_P_GROUP_ITEM_COUNT is correct
! --
! ---
! Integer values containing this process’s info
! ---
! process’s group id

parameter (UPS_CM_P_GROUP_ITEM_IDNUM = 0)
! number of groups in current p group

parameter (UPS_CM_P_GROUP_ITEM_NUMIDS = 1)
! numpes wrt process group

parameter (UPS_CM_P_GROUP_ITEM_NUMPES = 2)
! penum wrt process group

parameter (UPS_CM_P_GROUP_ITEM_PENUM = 3)
! ---
! Integer array containing info for each pe in the context.
! The size is the number of processes in the context.
! info[i] = information about the i-th process
! of the current context
! ---
! process group idnums for pes in context

parameter (UPS_CM_P_GROUP_ITEM_IDNUMS = 4)
! process group penums for pes in context

parameter (UPS_CM_P_GROUP_ITEM_PENUMS = 5)
! global penums for pes in context
! (ie penums wrt global context
! {like MPI_COMM_WORLD})

parameter (UPS_CM_P_GROUP_ITEM_G_PENUMS = 6)
! ---
! UPS_CM_Context contexts
! Contexts returned are of the same type as those of the underlying
! communication protocol.
! For example, if MPI is the communication protocol, the following
! are true:
! 1) UPS will have used MPI_Comm_split() in order to make the
! contexts being passed back via UPS_CM_P_group_item.
! 2) These contexts can be passed into UPS or MPI calls with the
! special reminder that UPS_CM_Set_context cannot take
! MPI_COMM_NULL as an argument. This is most common when
! a non-master pe requests UPS_CM_P_GROUP_ITEM_MSTR_CNTXT.
! In this case, the context returned is MPI_COMM_NULL
! ---
! pe’s assembled by process group

B UPS CONSTANTS 63

parameter (UPS_CM_P_GROUP_ITEM_ALL_CNTXT = 7)
! penum=0 pe’s in the process group

parameter (UPS_CM_P_GROUP_ITEM_MSTR_CNTXT = 8)
!
! number of items in UPS_CM_P_group_item_enum

parameter (UPS_CM_P_GROUP_ITEM_COUNT = 9)
!
!

!
!--
! Block from c enum: [UPS_CM_Protocol_context_compare_enum]
!--
! ------------------------------
! Comparison of protocol context
! ------------------------------
!
!
! identical

parameter (UPS_PROTOCOL_CONTEXT_IDENT = 0)
! ranks preserved

parameter (UPS_PROTOCOL_CONTEXT_CONGRUENT = 1)
! ranks not preserved

parameter (UPS_PROTOCOL_CONTEXT_SIMILAR = 2)
! otherwise

parameter (UPS_PROTOCOL_CONTEXT_UNEQUAL = 3)
!
!

!
!--
! Block from c enum: [UPS_DT_Boolean_Constants_enum]
!--
! ---------------------
! define true and false
! ---------------------
!
!

parameter (UPS_DT_TRUE = 1)
parameter (UPS_DT_FALSE = 0)

!
!

!
!--
! Block from c enum: [UPS_DT_Datatype_enum]
!--
! ---------------------------------

B UPS CONSTANTS 64

! all the datatypes ups understands
! ---------------------------------
!
!

parameter (UPS_DT_DOUBLE = 1)
parameter (UPS_DT_REAL8 = 1)

!
parameter (UPS_DT_FLOAT = 2)
parameter (UPS_DT_REAL4 = 2)

!
! Fortran logicals are often of type UPS_DT_INT

parameter (UPS_DT_INT = 3)
parameter (UPS_DT_INT4 = 3)

!
! C++ bools are often of type UPS_DT_CHAR

parameter (UPS_DT_CHAR = 4)
parameter (UPS_DT_CHARACTER = 4)
parameter (UPS_DT_BYTE = 4)

!
parameter (UPS_DT_LONG = 5)

! C long long == Fortran int8 == C long
parameter (UPS_DT_LONG_LONG = 5)
parameter (UPS_DT_INT8 = 5)

!
parameter (UPS_DT_VOID = 6)

!
parameter (UPS_DT_SHORT = 7)

!
parameter (UPS_DT_DOUBLE_INT = 101)
parameter (UPS_DT_2REAL8 = 101)

!
parameter (UPS_DT_FLOAT_INT = 102)
parameter (UPS_DT_2REAL4 = 102)

!
parameter (UPS_DT_2INT = 103)
parameter (UPS_DT_2INT4 = 103)

!
parameter (UPS_DT_LONG_INT = 104)

! C long long == Fortran int8 == C long
parameter (UPS_DT_2INT8 = 104)

!
parameter (UPS_DT_SHORT_INT = 105)

! --
! special datatypes that can only be passed to certain functions
! --
! IO package routines accept null-terminated strings.
! A UPS_DT_STRING of length 1 will be treated as a UPS_DT_CHAR

parameter (UPS_DT_STRING = 106)
! pass to UPS_DT_Sizeof() for size of UPS_DT_TIME_TYPE

parameter (UPS_DT_TIME_TYPE_DT = 107)
! pass to UPS_DT_Sizeof() for size of protocol context variable

B UPS CONSTANTS 65

! (eg for the MPI protocol, the size of MPI_Comm)
parameter (UPS_DT_PROTOCOL_COMM = 108)

! pass to UPS_DT_Sizeof() for size of protocol request variable
! (eg for the MPI protocol, the size of MPI_Request)

parameter (UPS_DT_PROTOCOL_REQUEST = 109)
!
!

!
!--
! Block from c enum: [UPS_ER_OUTPUT_enum]
!--
! ---
! Specifies where UPS error output will be sent.
! Use UPS_AA_Opt_get/UPS_AA_Opt_set with UPS_AA_OPT_ERROUTPUT_TYPE.
! You may set the following as environmental variables as well:
! (in mutually exclusive groups)
! - setenv UPS_ER_OUTPUT_DEFAULT
! setenv UPS_ER_OUTPUT_NONE
! setenv UPS_ER_OUTPUT_FILE
! Remember that all environment variables must be propagated to
! all the processes.
! ---
!
!
! By default, UPS error output is sent to stderr

parameter (UPS_ER_OUTPUT_DEFAULT = 0)
! no UPS error output is done

parameter (UPS_ER_OUTPUT_NONE = 1)
! UPS error output is appended to ups_err.txt

parameter (UPS_ER_OUTPUT_FILE = 2)
!
!

!
!--
! Block from c enum: [UPS_GS_Index_type_enum]
!--
! ---
! gather-scatter first index referring to the
! local pe array or the global array
! ---
!
!

parameter (UPS_GS_LOCAL_INDEX = 0)
parameter (UPS_GS_GLOBAL_INDEX = 1)

!
!

B UPS CONSTANTS 66

!
!--
! Block from c enum: [UPS_GS_Item_enum]
!--
! ---
! Listing of items that can be obtained about a GS id via
! UPS_GS_Get_item()
! (eg items useful for the scatter_list and gather_list
! functions are found here)
! ---
!
!
! --
! (int4 array) A listing of the global indices that are accessed
! during a gather or scatter operation.
! Indices not accessed (eg skipped) will not be listed in this
! array.
! The array returned will have indices that are 0 based with 0
! corresponding to the first index owned by the calling process.
! The array length is given by UPS_GS_TOTAL_INDICES_ACCESSED.
! --

parameter (UPS_GS_INDICES_ACCESSED = 0)
! --
! (int4 array) The number of times an accessed index is actually
! accessed (eg there might be a communication pattern where 3
! values get scatter-sum’d to the same index.
! Only the indices owned by the process that are accessed will
! be in the array. This can be used in conjunction with
! UPS_GS_INDICES_ACCESSED to get values if the index that is
! accessed.
! The array length is given by UPS_GS_TOTAL_INDICES_ACCESSED.
! --

parameter (UPS_GS_NUM_INDICES_ACCESSED = 1)
! --
! (int4 array) Like UPS_GS_NUM_INDICES_ACCESSED, but indices not
! accessed (eg skips) will have a num of 0 instead of not being
! listed.
! The number of elements in this array go from index 0 through
! the last index accessed. This is NOT necessarily the same
! size as the original my_space_size supplied in UPS_GS_Setup.
! It will be smaller than my_space_size if the last accessed
! index comes before the last index owned.
! One might wish to pass in an array of size my_space_size that
! has been initialized to 0’s. That way, the indices at the end
! that are not overwritten will have the correct value of 0.
! --

parameter (UPS_GS_NUM_INDICES_ALL = 2)
! --
! (int4) The total number of indices the calling process owns
! that are accessed during a gather or scatter operation.
! This is used with items like UPS_GS_INDICES_ACCESSED and

B UPS CONSTANTS 67

! UPS_GS_NUM_INDICES_ACCESSED
! --

parameter (UPS_GS_TOTAL_INDICES_ACCESSED = 3)
! --
! (int4) The number of elements in the list buffer output
! for scatter_list or the list buffer input for gather_list.
! This is a sum of UPS_GS_NUM_INDICES_ACCESSED.
! --

parameter (UPS_GS_SUM_NUM_INDICES_ACCESSED = 4)
! --
! (int4) The value of the calling process’s first index with
! respect to the global array. Process 0’s first index will
! have a value of 0. This can be used in conjunction with
! UPS_GS_INDICES_ACCESSED to get values that are globally based
! instead of locally based.
! Depending upon which GS setup call was used, this value might
! not be known. In this case, the value is -1.
! --

parameter (UPS_GS_START_INDEX_WRT_GLOBAL = 5)
! --
! (int4) The number of indices owned.
! This corresponds to the my_space_size argument for
! UPS_GS_Setup and UPS_GS_Setup_s_global calls.
! Depending upon which GS setup call was used, this value might
! not be known. In this case, the value is -1.
! --

parameter (UPS_GS_NUM_INDICES_OWNED = 6)
! --
! (int4) The number of elements in the global indices array
! passed into the GS Setup calls (the count argument).
! --

parameter (UPS_GS_NUM_GLOBAL_INDICES = 7)
! --
! (int4 array) The size of this array can be obtained by
! UPS_GS_NUM_GLOBAL_INDICES.
! If given the global indices in the GS Setup call, this returns
! a 0 based element offset into the global array for the global
! indices supplied.
! If the global indices were not given (UPS_GS_Setup_s_local),
! then a value of -1 will be assigned to each element in the
! array.
! Note that negative indices might have been supplied to the
! GS setup call. So, values of -1 in the array returned does
! necessarily mean that global indices were not given in the
! GS setup call.
! --

parameter (UPS_GS_GLOBAL_INDICES = 8)
! --
! (int4) The original start index for process 0.
! This value can be obtained if given the my_start_index
! argument (eg calling UPS_GS_Setup or UPS_GS_Setup_s_global).

B UPS CONSTANTS 68

! As with UPS_GS_GLOBAL_INDICES, an artificial value of -1 will
! be set if my_start_index was not given (UPS_GS_Setup_s_local).
! Note that the items UPS_GS_GLOBAL_INDICES and
! UPS_GS_INDICES_ACCESSED still return 0 based arrays.
! --

parameter (UPS_GS_START_INDEX = 9)
! --
! (int4 array) The size of this array can be obtained by
! UPS_GS_NUM_GLOBAL_INDICES.
! Regardless of which GS setup call made, UPS_GS_INDEX_PE and
! UPS_GS_INDEX_VALUE can be obtained. The values of these
! correspond to the index_pe and index_value arguments to
! UPS_GS_Setup_s_local() call. See that function for more
! information.
! Each value of this array contains the process number that owns
! the corresponding index.
! Possible values:
! UPS_GS_INDEX_ZERO: scatter skips, gather zeros
! UPS_GS_INDEX_SKIP: scatter skips, gather skips
! 0 through numpes-1: process the index resides on
! --

parameter (UPS_GS_INDEX_PE = 10)
! --
! (int array) The size of this array can be obtained by
! UPS_GS_NUM_GLOBAL_INDICES.
! Regardless of which GS setup call made, UPS_GS_INDEX_PE and
! UPS_GS_INDEX_VALUE can be obtained. The values of these
! correspond to the index_pe and index_value arguments to
! UPS_GS_Setup_s_local() call. See that function for more
! information.
! Each value of this array contains the 0 based index into the
! local array of the process that owns the corresponding index.
! If the corresponding index_pe is a special index (less than 0),
! the corresponding index_value is not used.
! Possible values:
! UPS_GS_INDEX_ZERO: scatter skips, gather zeros
! UPS_GS_INDEX_SKIP: scatter skips, gather skips
! >=0: 0 based index into local array
! --

parameter (UPS_GS_INDEX_VALUE = 11)
! --
! (real8) The effectiveness of trying compression
! Values will range from 0 (no compression) to 1 (best
! compression
! --

parameter (UPS_GS_COMP_EFFECT = 12)
! --
! The following are not implemented...but could be if requested.
! --
! not implemented

parameter (UPS_GS_MEANING_OF_LIFE = 13)

B UPS CONSTANTS 69

!
!

!
!--
! Block from c enum: [UPS_GS_Setup_study_type_enum]
!--
! --
! Some communication patterns should be handled differently than
! others.
! This routine allows the user to tell UPS to look for certain
! things when doing the setup routine.
! --
!
!
! Index compression:
! It wastes time to send repeated indices during
! a gather operation. The repeated index should be sent once and
! copied on the receiving end. If the communication pattern has many
! repeated indices, spending extra time in the GS-setup routine to
! detect repeated indices will pay off if enough GS-gather or
! GS-scatter calls are performed.
! Default: UPS_GS_INDEX_COMPRESSION_ON

parameter (UPS_GS_INDEX_COMPRESSION_OFF = 0)
parameter (UPS_GS_INDEX_COMPRESSION_ON = 1)

! send/recv ordering:
! Order send/recvs so that all off-box sends are started first and
! all off-box recvs are completed and processed last.
! If off, sends and recvs are with penum ordering
! Default: UPS_GS_COMM_ORDERING_ON

parameter (UPS_GS_COMM_ORDERING_OFF = 2)
parameter (UPS_GS_COMM_ORDERING_ON = 3)

!
!

!
!--
! Block from c enum: [UPS_GS_Setup_type_enum]
!--
! ---
! Used internally to define which method to
! use for setting up a gs trace (depending
! on what data is supplied).
! ---
!
!
! indices positioned linearly

parameter (UPS_GS_SETUP_DENSE_METHOD = 0)
! indices positioned from input array and defined by global value

B UPS CONSTANTS 70

parameter (UPS_GS_SETUP_S_GLOBAL_METHOD = 1)
! indices positioned from input array and defined by pe/local value

parameter (UPS_GS_SETUP_S_LOCAL_METHOD = 2)
!
!

!
!--
! Block from c enum: [UPS_GS_Special_index_enum]
!--
! ---
! negative consecutive constants used for "mask like" behavior in the
! gather/scatter calls. For example, if an index has the value of:
! first index of process 0 + UPS_GS_INDEX_ZERO
! then the gather call will zero the output for that index and the scatter
! call will not contribute that element
! ---
!
!
! --------------
! skip the index
! --------------

parameter (UPS_GS_INDEX_SKIP = -1)
! ---------------------------
! scatter skips, gather zeros
! ---------------------------

parameter (UPS_GS_INDEX_ZERO = -2)
! ---
! any index at or below this marker will be skipped
! ---

parameter (UPS_GS_INDEX_FINAL = -3)
!
!

!
!--
! Block from c enum: [UPS_IO_ACCESS_PES_enum]
!--
! ---
! How the file is being accessed.
!
! NOTE: currently, for reading UPS_IO_ACCESS_ALL_PE is assumed.
! The discussion below deals with writing datasets.
! File access changes for reading can be added if
! requested.
!
! Use UPS_AA_Opt_get/UPS_AA_Opt_set with UPS_IO_OPT_ACCESS_WRITE
! The value cannot be changed for a file while it is opened.
! In other words, make the call to UPS_AA_Opt_set before the call

B UPS CONSTANTS 71

! to UPS_IO_File_open and do not change it until after
! the call to UPS_IO_File_close.
! You may set the following as environmental variables as well:
! (in mutually exclusive groups)
! - setenv UPS_IO_ACCESS_IO_PE
! setenv UPS_IO_ACCESS_ALL_PE
! setenv UPS_IO_ACCESS_AGGREGATION
! setenv UPS_IO_ACCESS_LINEAR
! Remember that all environment variables must be propagated to
! all the processes.
!
! Performance:
! In general, processes will either "own" a contiguous chunk
! of the global dataset (eg each process owns a block of rows
! of a 2d dataset) or a non-contiguous chunk of the global
! dataset (eg a process might own a 50X50X50 box of a global
! 1000X1000X1000 dataset).
!
! Contiguous Case Performance:
! Since there will likely be little contention between the
! processes, the speed of writing will be (from fastest to
! slowest):
! UPS_IO_ACCESS_ALL_PE
! UPS_IO_ACCESS_LINEAR (not implemented)
! UPS_IO_ACCESS_AGGREGATION
! UPS_IO_ACCESS_IO_PE
!
! Non-Contiguous Case Performance:
! There is a lot of contention between the processes since
! their data is distributed cyclically in the dataset.
! The speed of writing will be (from fastest to slowest):
! UPS_IO_ACCESS_LINEAR (not implemented)
! UPS_IO_ACCESS_AGGREGATION
! UPS_IO_ACCESS_IO_PE
! UPS_IO_ACCESS_ALL_PE
!
! Current UPS_IO_PROTOCOL_HDF (default protocol) Performance:
! When all processes have data to write to a dataset,
! HDF can use "collective IO". In this case, regardless
! of contiguous or non-contiguous data, the speed of
! writing will be (from fastest to slowest).
! UPS_IO_ACCESS_LINEAR (not implemented)
! UPS_IO_ACCESS_ALL_PE
! UPS_IO_ACCESS_AGGREGATION
! UPS_IO_ACCESS_IO_PE
!
! See below for a description of the different types of file
! access.
! ---
!
!

B UPS CONSTANTS 72

! (default) write access to file limited to
! * the io_pe.
! * See UPS_AA_Io_pe_set to set the io_pe.
! * All pes must still call collective IO
! * routines, but only the io pe accesses the
! * file.
! * Communication is done to collect the data
! * to the io pe for writing.

parameter (UPS_IO_ACCESS_IO_PE = 0)
! all pes access the file.
! * Every process writes their own chunk of the
! * global dataset.

parameter (UPS_IO_ACCESS_ALL_PE = 1)
! all pes may access the file.
! * Data written to file is first aggregated
! * to "master processes" then written.
! * This allows datasets to maintain their
! * expected form (dimensions/where data is)
! * while increasing the performance by only
! * writing blocks of contiguous data.

parameter (UPS_IO_ACCESS_AGGREGATION = 2)
! all pes access the file.
! * NOT IMPLEMENTED
! * All processes write their portion of the
! * global dataset in linear contiguous chunks.
! * The advantage to this is the writes are
! * fast. However, the datasets must then be
! * read with UPS since their shape and the
! * location of values has been altered.

parameter (UPS_IO_ACCESS_LINEAR = 3)
!
!

!
!--
! Block from c enum: [UPS_IO_FILE_OBJECT_TYPE_enum]
!--
! -------------------------------
! types of io objects in the file
! -------------------------------
!
!
! an attribute attached to an object

parameter (UPS_IO_FILE_OBJECT_ATTRIBUTE = 0)
! a dataset (ie unix file)

parameter (UPS_IO_FILE_OBJECT_DATASET = 1)
! a group (ie unix directory)

parameter (UPS_IO_FILE_OBJECT_GROUP = 2)
!
!

B UPS CONSTANTS 73

!
!--
! Block from c enum: [UPS_IO_FILTER_TYPE_enum]
!--
! --
! types of values for UPS_IO_Filter_get and UPS_IO_Filter_set
! Currently, filters are only applicable to the following calls:
! UPS_IO_Info_count
! UPS_IO_Info_create
! --
!
!
! ------------
! INFO filters
! ------------
! Purpose: get or set the filter applied to
! * UPS_IO_Info_count/UPS_IO_Info_create calls.
! * Datatype: char array
! * Get: yes
! * Set: yes
! * The filter to apply that will modify the
! * number of matches to UPS_IO_Info_count and
! * UPS_IO_Info_create calls when listing members
! * or attributes.
! *
! * A filter of 0 length signifies that no filter
! * will be applied.
! *
! * Currently, the only filters available are the
! * following:
! * - object_name
! * This will do a match for object_name in the
! * members in the list.
! * This effectively limits the number of
! * matches to 1 (if found) or 0 (if not found).
! * - * /object_name
! * This will also match object_name
! * recursively through any subgroups.
! * There are no space between * and /.
! * Not valid for UPS_IO_INFO_LIST_ATTRIBUTES.
! * - * /
! * This will do a recursive listing of all
! * members.
! * There are no space between * and /.
! * Not valid for UPS_IO_INFO_LIST_ATTRIBUTES.

parameter (UPS_IO_FILTER_INFO = 0)
! Purpose: get the number of chars (not
! * null-terminated) of the info filter.
! * Datatype: int8
! * Get: yes
! * Set: no

B UPS CONSTANTS 74

parameter (UPS_IO_FILTER_INFO_LENGTH = 1)
!
!

!
!--
! Block from c enum: [UPS_IO_INFO_ITEM_enum]
!--
! --
! Values for UPS_IO_Info_item_(get|set) for an info_id
! * info_ids are obtained from UPS_IO_Info_create
! * Form:
! * Purpose: simple description
! * Datatype: datatype of item
! * Get: UPS_IO_Info_create options you can UPS_IO_Info_item_get
! * Set: UPS_IO_Info_create options you can UPS_IO_Info_item_get
! * Reading: The effect when reading (eg dataset read)
! * Writing: The effect when writing (eg dataset write)
! * More description
! *
! * NOTE: When the arguments to a function include the info_id and
! * conflicting arguments (eg an info_id might have the value of
! * UPS_IO_INFO_NAME and the function UPS_IO_Dataset_write requires
! * the info_id and the "name" argument, the argument overrides the
! * value implied with the info_id.
! * NOTE: When dealing with attributes, the entire attribute is used
! * as the "dataset section". For example, NITEMS and NITEMS_TOTAL
! * will be the total number of items in the entire attribute
! * regardless of which pe wrote the attribute.
! --
!
!
! --------------------------------
! Dataset Distribution Information
! --------------------------------
! --
! Example of a dataset section:
! (row, column) pairs
!
! .(0,0) (0,1).
! [begin] .(1,0) (1,1).
! .(2,0) (2,1).
! [end] .(3,0) (3,1).
! .(4,0) (4,1).
!
! DIMS: [local num rows, local num columns] = [3,2]
! DIMS_TOTAL: [total num rows, total num columns = [5,2]
! NDIMS: 1 row and 1 column = 2
! STARTS: [starting row, starting column] = [1,0]
! NITEMS: num items in dataset section = 3 * 2

B UPS CONSTANTS 75

! NITEMS_TOTAL: num items in dataset = 5 * 2
! --
! Purpose: each dimension count of dataset section
! * Datatype: int8 array size UPS_IO_INFO_NDIMS
! * Get: UPS_IO_INFO_DATA_DIST
! * UPS_IO_INFO_LIST_MEMBERS
! * Set: UPS_IO_INFO_DATA_DIST
! * UPS_IO_INFO_LIST_MEMBERS
! * Reading: The default sets this value to
! * read in what this pe number wrote
! * out. If this is not possible (eg
! * the number of pes that read does
! * not equal the number of pes that
! * wrote, the value is set to read
! * the entire dataset.
! * The user may change the value
! * of this array if they wish to read
! * in a different dataset section.
! * For example, to read in the whole
! * dataset, set dims to dims_total and the
! * starts array to 0s.
! * Writing: Dimensions of dataset section to
! * write.
! * The first element of this array is local
! * rows and the second (if it exists) is local
! * columns.
! * In memory, data is a 1d array going along
! * columns first.
! * For example, a 5 row, 2 column dataset would
! * lay in memory contiguously like:
! * r0c0,r0c1,r1c0,r1c1,r2c0,r2c1,r3c0,r3c1,...

parameter (UPS_IO_INFO_DIMS = 0)
! Purpose: each dimenstion count of dataset
! * Datatype: int8 array size UPS_IO_INFO_NDIMS
! * Get: UPS_IO_INFO_DATA_DIST
! * UPS_IO_INFO_LIST_MEMBERS
! * Set:
! * Reading: This value is used for
! * user inquiry purpose only and must
! * not be modified.
! * Writing: This value must not be changed.
! * It is derived from all the
! * processes dims settings.
! * This value is for the whole dataset.
! * See UPS_IO_INFO_DIMS above.

parameter (UPS_IO_INFO_DIMS_TOTAL = 1)
! Purpose: number of dimensions (local=global)
! * Datatype: int4
! * Get: UPS_IO_INFO_DATA_DIST
! * UPS_IO_INFO_LIST_MEMBERS
! * Set: UPS_IO_INFO_DATA_DIST

B UPS CONSTANTS 76

! * UPS_IO_INFO_LIST_MEMBERS
! * Reading: This value is used for
! * user inquiry purpose only and must
! * not be modified.
! * Writing: This value must be set.
! * This must either be in the set
! * [1,UPSP_IO_MAX_DIMS] (currently set to 10).

parameter (UPS_IO_INFO_NDIMS = 2)
! Purpose: number of items in dataset section
! * Datatype: int8
! * Get: UPS_IO_INFO_DATA_DIST
! * UPS_IO_INFO_LIST_MEMBERS
! * Set:
! * Reading: This value is used for
! * user inquiry purpose only and must
! * not be modified.
! * Writing: This value is used for
! * user inquiry purpose only and must
! * not be modified.
! * number of items in a dims dimensioned section

parameter (UPS_IO_INFO_NITEMS = 3)
! Purpose: number of items in dataset
! * Datatype: int8
! * Get: UPS_IO_INFO_DATA_DIST
! * UPS_IO_INFO_LIST_MEMBERS
! * Set:
! * Reading: This value is used for
! * user inquiry purpose only and must
! * not be modified.
! * Writing: This value is used for
! * user inquiry purpose only and must
! * not be modified.
! * size of dims_total dimensioned section

parameter (UPS_IO_INFO_NITEMS_TOTAL = 4)
! Purpose: Which (row,column) the data starts
! * Datatype: int8 array size UPS_IO_INFO_NDIMS
! * Get: UPS_IO_INFO_DATA_DIST
! * UPS_IO_INFO_LIST_MEMBERS
! * Set: UPS_IO_INFO_DATA_DIST
! * UPS_IO_INFO_LIST_MEMBERS
! * Reading: The default sets this value to
! * read in what this pe number wrote
! * out. If this is not possible (eg
! * the number of pes that read does
! * not equal the number of pes that
! * wrote, the value is set to read
! * the entire dataset.
! * The user may change the value
! * of this array if they wish to read
! * in a different dataset section.
! * For example, to read in the whole

B UPS CONSTANTS 77

! * dataset, set dims to dims_total and the
! * starts array to 0s.
! * Writing: This value is defaulted to less
! * than 0 which indicates each process
! * is writing a consecutive contiguous
! * chunk.
! * However, they user may set the starts
! * array if they wish to override the
! * default behavior.

parameter (UPS_IO_INFO_STARTS = 5)
! Purpose: number of dimensions of process grid
! * Datatype: int8 array size UPS_IO_INFO_NDIMS
! * Get:
! * Set: UPS_IO_INFO_DATA_DIST
! * Reading: Not used
! * Writing: The user may define how the dataset
! * is partitioned via a process grid.
! * This array defines the number of
! * processes along each dimension of
! * the dataset.

parameter (UPS_IO_INFO_PGRID_DIMS = 11)
! Purpose: penum ordering in the process grid
! * Datatype: int8 array size Prod(PGRID_DIMS)
! * This might be larger than numpes
! * given UPS_IO_INFO_PGRID_DIMS.
! * Get:
! * Set: UPS_IO_INFO_DATA_DIST
! * Reading: Not used
! * Writing: The default ordering is the same
! * order as the data buffer. That
! * is, along the last dimension
! * first. The user may override
! * that default by setting this.

parameter (UPS_IO_INFO_PGRID_ORDER = 12)
! ----------------
! List Information
! ----------------
! Purpose: name of item
! * Datatype: char*
! * Get: UPS_IO_INFO_LIST_ATTRIBUTES
! * UPS_IO_INFO_LIST_MEMBERS
! * Set:
! * Reading: overridden with non-path part of name
! * Writing: overridden with non-path part of name
! * The name will be relative to the path supplied
! * to the info create call.
! * Note: the return string not null-terminated.

parameter (UPS_IO_INFO_NAME = 6)
! Purpose: length - no null-terminator
! * Datatype: int8
! * Get: UPS_IO_INFO_LIST_ATTRIBUTES

B UPS CONSTANTS 78

! * UPS_IO_INFO_LIST_MEMBERS
! * Set:
! * Reading: overridden
! * Writing: overridden

parameter (UPS_IO_INFO_NAME_LENGTH = 7)
! Purpose: full path to item
! * Datatype: char*
! * Get: UPS_IO_INFO_LIST_ATTRIBUTES
! * UPS_IO_INFO_LIST_MEMBERS
! * UPS_IO_INFO_DATA_DIST
! * Set:
! * Reading: overridden
! * Writing: overridden
! * For attributes, the path is the path to which
! * the object is attached.
! * Note: the return string not null-terminated.

parameter (UPS_IO_INFO_PATH = 14)
! Purpose: length - no null-terminator
! * Datatype: int8
! * Get: UPS_IO_INFO_LIST_ATTRIBUTES
! * UPS_IO_INFO_LIST_MEMBERS
! * UPS_IO_INFO_DATA_DIST
! * Set:
! * Reading: overridden
! * Writing: overridden

parameter (UPS_IO_INFO_PATH_LENGTH = 15)
! Purpose: object type of item
! * Datatype: UPS_IO_FILE_OBJECT_TYPE_enum
! * Get: UPS_IO_INFO_LIST_ATTRIBUTES
! * UPS_IO_INFO_LIST_MEMBERS
! * Set:
! * Reading: overridden
! * Writing: overridden

parameter (UPS_IO_INFO_OBJECT_TYPE = 8)
! -------------------
! General Information
! -------------------
! Purpose: datatype (dataset|attribute)
! * Datatype: UPS_DT_Datatype_enum
! * Get: UPS_IO_INFO_DATA_DIST
! * UPS_IO_INFO_LIST_ATTRIBUTES
! * UPS_IO_INFO_LIST_MEMBERS
! * Set:
! * Reading: overridden
! * Writing: overridden

parameter (UPS_IO_INFO_DATATYPE = 9)
! Purpose: size datatype (dataset|attribute)
! * Datatype: int8
! * Get: UPS_IO_INFO_DATA_DIST
! * UPS_IO_INFO_LIST_ATTRIBUTES
! * UPS_IO_INFO_LIST_MEMBERS

B UPS CONSTANTS 79

! * Set:
! * Reading: overridden
! * Writing: overridden
! * (if obj is dataset|attribute)
! * When the datatype is UPS_DT_STRING, the
! * size returned will be the same as
! * UPS_DT_CHAR. Use UPS_IO_INFO_NITEMS to
! * obtain the number of chars in the string
! * (no additional null-terminator added).
! -------
! special
! -------

parameter (UPS_IO_INFO_DATATYPE_SIZE = 10)
! Purpose: set info_id to read entire dataset
! * Datatype: (na) not used
! * Get:
! * Set: UPS_IO_INFO_DATA_DIST
! * UPS_IO_INFO_LIST_MEMBERS
! * Reading: To read the entire dataset, get
! * an info_id then set this option.
! * By default, each process reads in
! * only what it wrote out.
! * Writing: This value must not be set as it
! * will overwrite DIMS with
! * DIMS_TOTAL and set STARTS to 0.

parameter (UPS_IO_INFO_DATA_TOTAL = 13)
!
!

!
!--
! Block from c enum: [UPS_IO_INFO_TYPE_enum]
!--
! -----------------
! types of info_ids
! -----------------
!
!
! distribution of data for a dataset

parameter (UPS_IO_INFO_DATA_DIST = 0)
! attributes of the object

parameter (UPS_IO_INFO_LIST_ATTRIBUTES = 1)
! members of the object (must be a group)

parameter (UPS_IO_INFO_LIST_MEMBERS = 2)
!
!

!
!--

B UPS CONSTANTS 80

! Block from c enum: [UPS_IO_LOC_ITEM_enum]
!--
! --
! * Values for UPS_IO_Loc_item_(get|set) for a loc_id
! * loc_ids are obtained from UPS_IO_File_open and UPS_IO_Group_open
! * Form:
! * Purpose: simple description
! * Datatype: datatype of item
! * Get: (yes/no)
! * Set: (yes/no)
! * More description
! * --
!
!
! Purpose: the full path of the loc id
! * Datatype: char array size UPS_IO_LOC_PATH_LENGTH
! * Get: yes
! * Set: no
! * This is the path internal to the file.
! * A file id has a length of 0.
! * See UPS_IO_LOC_FILE_NAME

parameter (UPS_IO_LOC_PATH = 0)
! Purpose: the length of UPS_IO_LOC_PATH
! * Datatype: int8
! * Get: yes
! * Set: no
! * A file id has a length of 0.

parameter (UPS_IO_LOC_PATH_LENGTH = 1)
! Purpose: the full path of the loc id
! * Datatype: char array size
! * UPS_IO_LOC_FILE_NAME_LENGTH
! * Get: yes
! * Set: no
! * This is the path to the file itself.
! * See UPS_IO_LOC_PATH

parameter (UPS_IO_LOC_FILE_NAME = 2)
! Purpose: length of UPS_IO_LOC_FILE_NAME
! * Datatype: int8
! * Get: yes
! * Set: no

parameter (UPS_IO_LOC_FILE_NAME_LENGTH = 3)
! Purpose: the file_id containing this loc_id
! * Datatype: int4
! * Get: yes
! * Set: no

parameter (UPS_IO_LOC_FILE_ID = 4)
! Purpose: name of sequential dataset to read
! * Datatype: char array size
! * UPS_IO_LOC_DS_NEXT_R_LENGTH
! * Get: yes
! * Set: no

B UPS CONSTANTS 81

! * The next sequential read will use this
! * dataset name.

parameter (UPS_IO_LOC_DS_NEXT_R = 5)
! Purpose: length of UPS_IO_LOC_DS_NEXT_R
! * Datatype: int8
! * Get: yes
! * Set: no

parameter (UPS_IO_LOC_DS_NEXT_R_LENGTH = 6)
! Purpose: name of sequential dataset to write
! * Datatype: char array size
! * UPS_IO_LOC_DS_NEXT_W_LENGTH
! * Get: yes
! * Set: no
! * The next sequential write will use this
! * dataset name.

parameter (UPS_IO_LOC_DS_NEXT_W = 7)
! Purpose: length of UPS_IO_LOC_DS_NEXT_W
! * Datatype: int8
! * Get: yes
! * Set: no

parameter (UPS_IO_LOC_DS_NEXT_W_LENGTH = 8)
! Purpose: number of sequential dataset to read
! * Datatype: int8
! * Get: yes
! * Set: yes
! * After a read, this number will be automatically
! * incremented by one.

parameter (UPS_IO_LOC_DS_NUM_R = 9)
! Purpose: number of sequential dataset to write
! * Datatype: int8
! * Get: yes
! * Set: yes
! * After a read, this number will be automatically
! * incremented by one.

parameter (UPS_IO_LOC_DS_NUM_W = 10)
! Purpose: get the protocol flavor of a loc_id
! * Datatype: int4
! * Get: yes
! * Set: no
! * For example, if using the protocol
! * UPS_IO_PROTOCOL_HDF, you can get the HDF
! * handle of the loc id for use in your own
! * HDF calls.

parameter (UPS_IO_LOC_ID_PROTOCOL = 11)
! Purpose: get the protocol flavor of the file
! * Datatype: int4 (UPS_IO_PROTOCOL_enum)
! * Get: yes
! * Set: no
! * Get the underlying protocol that will be
! * used to read from or write to the file.
! * Note that this protocol will be the same for

B UPS CONSTANTS 82

! * the file id and all its children group ids.
parameter (UPS_IO_FILE_PROTOCOL = 12)

! Purpose: get the open method for the file
! * Datatype: int4 (UPS_IO_OPEN_METHOD_enum)
! * Get: yes
! * Set: no
! * Get how the file associated with the
! * location id was opened.

parameter (UPS_IO_FILE_OPEN_METHOD = 13)
!
!

!
!--
! Block from c enum: [UPS_IO_OPEN_METHOD_enum]
!--
! ------------
! open methods
! ------------
!
!
! Create new one
! * Files: overwrite anything there
! * Groups: open or create if needed

parameter (UPS_IO_OPEN_CREATE = 0)
! Open existing one for read only
! * Files|Groups: error if not already there
! * Files: read only access
! * Groups: read/write access -
! * same as UPS_IO_OPEN_READ_WRITE

parameter (UPS_IO_OPEN_READ = 1)
! Open existing one for read and write
! * Files|Groups: error if not already there
! * Files: read only access
! * Groups: read/write access -
! * same as UPS_IO_OPEN_READ

parameter (UPS_IO_OPEN_READ_WRITE = 2)
!
!

!
!--
! Block from c enum: [UPS_IO_PROTOCOL_enum]
!--
! ---
! Underlying IO protocol options
! Use UPS_AA_Opt_get/UPS_AA_Opt_set with UPS_IO_OPT_PROTOCOL
! You may set the following as environmental variables as well:
! (in mutually exclusive groups)

B UPS CONSTANTS 83

! - setenv UPS_IO_PROTOCOL_HDF
! setenv UPS_IO_PROTOCOL_UDM
! Remember that all environment variables must be propagated to
! all the processes.
! ---
!
!
! (default) IO calls go to HDF

parameter (UPS_IO_PROTOCOL_HDF = 0)
! IO calls go to MPI - not implemented

parameter (UPS_IO_PROTOCOL_MPI = 1)
! IO calls go to UDM - not implemented

parameter (UPS_IO_PROTOCOL_UDM = 2)
! IO calls go to Libsheaf - not implemented

parameter (UPS_IO_PROTOCOL_LIBSHEAF = 3)
! personally typed by me - not implemented
! as I only type at about 20 words/minute

parameter (UPS_IO_PROTOCOL_TYPEWRITER = 4)
! Unknown - cannot be fathomed by UPS

parameter (UPS_IO_PROTOCOL_UNKNOWN = 5)
!
!

!
!--
! Block from c enum: [UPS_MS_INFO_ITEM_enum]
!--
! --
! Values for UPS_MS_Info_(get|set) for an info_id
! * info_ids are obtained from UPS_MS_Info_create
! * Form:
! * Purpose: simple description
! * Datatype: datatype of item
! * Get: If you can get this item
! * Set: If you can set this item
! * More description
! *
! --
!
!
! --------------------------------
! Dataset Distribution Information
! --------------------------------
! Purpose: name of the file
! * Datatype: char* array size
! * UPS_MS_INFO_FILE_NAME_L
! * Get: yes
! * Set: yes
! * The name of the io file.

parameter (UPS_MS_INFO_FILE_NAME = 0)

B UPS CONSTANTS 84

! Purpose: length - no null-terminator
! * Datatype: int8
! * Get: yes
! * Set: no

parameter (UPS_MS_INFO_FILE_NAME_L = 1)
! Purpose: full path to top level group
! * Datatype: char* array size
! * UPS_MS_INFO_MESH_LOC_L
! * Get: yes
! * Set: yes
! * This will be "." (default) if writing to the
! * root group.

parameter (UPS_MS_INFO_MESH_LOC = 2)
! Purpose: length - no null-terminator
! * Datatype: int8
! * Get: yes
! * Set: no

parameter (UPS_MS_INFO_MESH_LOC_L = 3)
! Purpose: description line 1
! * Datatype: char* array size
! * UPS_MS_INFO_MESH_DESC_1
! * Get: yes
! * Set: yes
! * Brief description - line 1

parameter (UPS_MS_INFO_MESH_DESC1 = 4)
! Purpose: length - no null-terminator
! * Datatype: int8
! * Get: yes
! * Set: no

parameter (UPS_MS_INFO_MESH_DESC1_L = 5)
! Purpose: description line 2
! * Datatype: char* array size
! * UPS_MS_INFO_MESH_DESC_2
! * Get: yes
! * Set: yes
! * Brief description - line 2

parameter (UPS_MS_INFO_MESH_DESC2 = 6)
! Purpose: length - no null-terminator
! * Datatype: int8
! * Get: yes
! * Set: no

parameter (UPS_MS_INFO_MESH_DESC2_L = 7)
! Purpose: The type of node id scheme
! * Datatype: UPS_MS_NODEID_SCHEME_enum
! * Get: yes
! * Set: yes

parameter (UPS_MS_INFO_NODEID_SCHEME = 8)
! Purpose: current solution time
! * Datatype: real8
! * Get: yes
! * Set: yes

B UPS CONSTANTS 85

parameter (UPS_MS_INFO_SOLUTION_TIME = 9)
!
!

!
!--
! Block from c enum: [UPS_MS_NODEID_SCHEME_enum]
!--
! ------------------------
! types of node id schemes
! ------------------------
!
!

parameter (UPS_MS_NODEID_UNKNOWN = 0)
parameter (UPS_MS_NODEID_OFF = 1)
parameter (UPS_MS_NODEID_GIVEN = 2)
parameter (UPS_MS_NODEID_ASSIGN = 3)
parameter (UPS_MS_NODEID_IGNORE = 4)

!
!

!
!--
! Block from c enum: [UPS_UT_Alloc_enum]
!--
! --------------------------
! types of memory allocation
! --------------------------
!
!

parameter (UPS_UT_ALLOC_CALLOC = 0)
parameter (UPS_UT_ALLOC_MALLOC = 1)
parameter (UPS_UT_ALLOC_REALLOC = 2)

!
!

!
!--
! Block from c enum: [UPS_UT_CHECKSUM_TYPE_enum]
!--
! ------------------
! types of checksums
! ------------------
!
!
! Cyclic Redundancy Check

parameter (UPS_UT_CHECKSUM_CRC = 0)
!
!

B UPS CONSTANTS 86

!
!--
! Block from c enum: [UPS_UT_Convert_enum]
!--
! ---
! possible conversion in the UPS_UT_Convert routine
! ---
!
!
! --------------------
! First one...not used
! --------------------

parameter (UPS_UT_CONVERT_ENUM_FIRST = 0)
! --
! ups value to communication protocol (eg mpi) value
! --

parameter (UPS_UT_TO_PROTOCOL_COMM = 1)
parameter (UPS_UT_TO_PROTOCOL_COMM_COMPARE = 2)
parameter (UPS_UT_TO_PROTOCOL_DATATYPE = 3)
parameter (UPS_UT_TO_PROTOCOL_OP = 4)
parameter (UPS_UT_TO_PROTOCOL_PROCESS_ID = 5)
parameter (UPS_UT_TO_PROTOCOL_TAG_ID = 6)

! --
! communication protocol (eg mpi) value to ups value
! --

parameter (UPS_UT_TO_UPS_COMM = 7)
parameter (UPS_UT_TO_UPS_COMM_COMPARE = 8)
parameter (UPS_UT_TO_UPS_DATATYPE = 9)
parameter (UPS_UT_TO_UPS_OP = 10)
parameter (UPS_UT_TO_UPS_PROCESS_ID = 11)
parameter (UPS_UT_TO_UPS_TAG_ID = 12)

! ---
! ups to ups location datatype (eg for UPS_AA_MAXLOC operation)
! ---

parameter (UPS_UT_UPS_LOC_RED_DATATYPE = 13)
! -----------------------
! HDF conversion routines
! -----------------------

parameter (UPS_UT_HDF_DATATYPE_FROM = 14)
parameter (UPS_UT_HDF_DATATYPE_TO = 15)

! -----------------------
! UDM conversion routines
! -----------------------

parameter (UPS_UT_UDM_DATATYPE_FROM = 16)
parameter (UPS_UT_UDM_DATATYPE_TO = 17)
parameter (UPS_UT_UDM_INFOENUM_FROM = 18)
parameter (UPS_UT_UDM_INFOENUM_TO = 19)
parameter (UPS_UT_UDM_ITEMENUM_FROM = 20)
parameter (UPS_UT_UDM_ITEMENUM_TO = 21)
parameter (UPS_UT_UDM_ITEM_VALUE_FROM = 22)
parameter (UPS_UT_UDM_ITEM_VALUE_TO = 23)

B UPS CONSTANTS 87

parameter (UPS_UT_UDM_OBJTYPE_FROM = 24)
parameter (UPS_UT_UDM_OBJTYPE_TO = 25)
parameter (UPS_UT_UDM_OPEN_METHOD_FROM = 26)
parameter (UPS_UT_UDM_OPEN_METHOD_TO = 27)

! -------------------
! Last one...not used
! -------------------

parameter (UPS_UT_CONVERT_ENUM_LAST = 28)
!
!

!
!--
! Block from c enum: [UPS_UT_Loc_structure_op_enum]
!--
! ---
! wind arrays onto loc structure or unwind struct onto arrays
! ---
!
!

parameter (UPS_UT_WIND_STRUCT = 1)
parameter (UPS_UT_UNWIND_STRUCT = 2)

!
!

!
!--
! Block from c enum: [UPS_UT_Loc_type_enum]
!--
! ---
! when winding/unwinding, is the loc a scalar or a vector
! ---
!
!

parameter (UPS_UT_SCALAR_LOC = 1)
parameter (UPS_UT_VECTOR_LOC = 2)
parameter (UPS_UT_VALUE_LOC = 3)

!
!

!
!--
! Block from c enum: [UPS_UT_Name_or_value_enum]
!--
! ------------------------
! if getting name or value
! ------------------------
!

B UPS CONSTANTS 88

!
! name_or_value: int*
! value_or_name: char** (NULL if not found)

parameter (UPS_UT_GET_NAME = 0)
! name_or_value: char*
! value_or_name: int* (0 if not found)

parameter (UPS_UT_GET_VALUE = 1)
! name_or_value: not_used
! value_or_name: int* (number of items in list)

parameter (UPS_UT_GET_COUNT = 2)

C REFERENCE MANUAL 89

C Reference Manual

This reference manual contains a listing of all of the user callable routines. They are listed
alphabetically (which means they grouped by component).

See table UPS Packages (section 2 page 6).

General (section C.2, page 91)

Communication (section C.3, page 102)

Data parallel (section C.4, page 126)

Datatype (section C.5, page 139)

Error handling (section C.6, page 140)

Gather/scatter (section C.7, page 146)

Utilities (section C.9, page 230)

C.1 Organization of reference pages

Reference pages are organized as follows:

• Name

The name of the function is listed.

• Purpose

A brief description of its functionality.

• Usage

An example of a call for the supported programming languages.

• Arguments

A description of each argument.

– Argument Name
Name of the argument.

– Intent
in, out, or inout (both).

– Variable Type
Given the programming language, define the variable type.

∗ (na)
Argument does not exist in this language.

C REFERENCE MANUAL 90

∗ (optional)
Argument is optional in this language. Additionally, a colon followed by
a word may appear here. That word specifies how the optional variable is
handled. ’(optional:UPS DP COMBINERM)’ would mean that if the variable
is supplied, a call to the masked function is called under the hood.

∗ {[dim spec][:count spec[:datatype spec]]}
The dim spec specifies the allowable array dimensions. ’{0}’ means only
a scalar value is allowed. ’{0-2,7,9}’ means Scalar, 1d, 2d, 7d, and 9d
arrays are allowed. Contact ups-team@lanl.gov if you require additional
dimensions.
If the dim spec contains a variable, that means the shape must match the
listed variable.
The count spec describes the count of the variable. For example,
’{1:setup}’ means that 1d arrays are accepted and the count was defined
during a setup call.
The datatype spec describes the datatype of the variable. For example,
’{1:setup:setup}’ means that 1d arrays are accepted and the count and
datatype were defined during a setup call. ’{1::setup}’ means that only
the datatype was specified during a setup call.

∗ user choice|UPS KIND [variable type]
For user choice, the user is allowed to give different variable types.
For example, a type of:
’UPS KIND REAL8 {0-2}’
would mean the user could supply a
· REAL(KIND=UPS KIND REAL8)

· REAL(KIND=UPS KIND REAL8), DIMENSION(:)

· REAL(KIND=UPS KIND REAL8), DIMENSION(:,:)

– Description
A description of the variable

• Return Values

Most routines will return UPS OK if successful.

• Discussion

If necessary, a more detailed description of the routine.

• Examples

If necessary, some examples of use.

• See Also

Other relevant routines.

C REFERENCE MANUAL 91

C.2 General

See the packages section (section 6.1, page 22 for a general description of this package.
This section contains an alphabetical listing of the general routines available in UPS.

These routines may be called in conjunction with any UPS component.

UPS AA Abort()

Package

aa

Purpose

UPS AA Abort terminates all processes in the UPS communication environment. When an error
condition occurs and an abnormal termination is needed, users should call this routine (as opposed
to normal termination of UPS AA Terminate).

Usage

C ierr = UPS AA Abort ();
Fortran call UPSF AA ABORT (ierr)
Fortran77 call UPS AA ABORT (ierr)

Arguments

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

A call to UPS AA Abort by any process causes UPS to attempt to terminate all processes. The
user should be aware that successful termination of all processes is not always possible by UPS,
especially when those processes are loosely coupled, such as a network of workstations. It is the
user’s responsibility to ensure that the processes have in fact completely terminated.

SeeAlso

UPS AA Init (page 92)
UPS AA Terminate (page 100)

C REFERENCE MANUAL 92

UPS AA Init()

Package

aa

Purpose

UPS AA Init sets up and initializes the UPS environment.

Usage

C ierr = UPS AA Init (argc, argv);
Fortran call UPSF AA INIT (ierr)
Fortran77 call UPS AA INIT (ierr)

Arguments

argc Intent: in
C type: int
Fortran type: (na)
Fortran77 type: (na)
The number of character strings in argv.
This value will be passed to underlying communication
layers if they need to be initialized (eg passed to
MPI Init).
The value set by the following call will override this
value:
UPS AA Opt set(UPS AA OPT MAIN LANG ARGC, &argc)

argv Intent: in
C type: char**
Fortran type: (na)
Fortran77 type: (na)
This value will be passed to underlying communication
layers if they need to be initialized (eg passed to
MPI Init).
The value set by the following call will override this
value:
UPS AA Opt set(UPS AA OPT MAIN LANG ARGV, &argv)

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

UPS AA Init initializes each of the UPS components. First, it performs the system tasks required

C REFERENCE MANUAL 93

to set up the data channels between all calling processes. Next, it sets up a variety of variables,
pointers, and parameters needed by the UPS runtime environment.

Examples

See Getting Started (section 3 page 7) for a basic example.
Most likely users will call the Fortran interface if initializing a Fortran program and the C

interface if initializing a C/C++ program. Using the C interface to initialize a Fortran program (or
vise versa) can be a problem due to a retriction of MPI requiring the correct language interface of
MPI Init to be called. One can get around this problem by doing the following:

• Call the corresponding language (Fortran or C) UPS AA Init call
By default, UPS assumes the language of the main program by the interface that is called for
UPS AA Init.

• Call MPI Init manually before calling UPS AA Init
(and call MPI Finalize after UPS AA Terminate).

• C main OR Fortran main calling Fortran interface example
This example shows code fragments of a C and a Fortran main program calling a Fortran
initialization routine.

– C main snippet

#include "ups.h"
int main(int argc, char **argv) {
...
// my_fortran_init assumes a Fortran program so must set
// options defining main language and command line args.
// Set language and command line args before initializing
// UPS.
UPS_AA_MAIN_LANG_enum main_lang = UPS_AA_MAIN_LANG_C;
UPS_AA_Opt_set(UPS_AA_MAIN_LANG, &main_lang);
UPS_AA_Opt_set(UPS_AA_OPT_MAIN_LANG_ARGC, &argc);
UPS_AA_Opt_set(UPS_AA_OPT_MAIN_LANG_ARGV, &argv);
// Call fortran routine that initializes UPS.
my_fortran_init_();
...

}

– Fortran main snippet

program prog()
USE UPS
...
! Nothing special needed since my_fortran_init assumes
! a Fortran program.
! Call Fortran routine that initializes UPS.
call my_fortran_init()
...

end program prog

– Fortran initialization routine my fortran init

C REFERENCE MANUAL 94

subroutine my_fortran_init()
USE UPS
...
! If called from C main, necessary options have already
! been set so can just call UPSF_AA_INIT
integer(KIND=UPS_KIND_INT4) :: ierr
call UPSF_AA_INIT(ierr)
...

end subroutine my_fortran_init

• C main OR Fortran main calling C interface example
This example is a little more complex because in order to maintain separation of Fortran and
C internally in UPS, you must call the Fortran UPS initialization interface in my c init when
the main program is fortran.

– C main snippet

int main(int argc, char **argv) {
...
// my_c_init assumes a C program so you do not need
// to do anything special besides pass argc and argv
// to my_c_init_.
// If you want, you could call UPS_AA_Opt_set as in the
// above C main to set the language/arguments.
// In this case, the arguments argc/argv passed to
// my_c_init_ will be ignored.
// Call c routine that initializes UPS.
my_c_init_(argc, argv);
...

}

– Fortran main snippet

program prog()
USE UPS
...
! my_c_init assumes a C program so need to set the language
! to Fortran (command line arguments not used so pass any
! values). Set this before initializing UPS.
integer(KIND=UPS_KIND_INT4) :: ierr, main_lang
main_lang = UPS_AA_MAIN_LANG_F
call UPSF_AA_OPT_SET(UPS_AA_MAIN_LANG, main_lang, ierr)
! call C routine that initializes UPS.
call my_c_init(0,0)

end program prog

– C initialization routine my c init

#include "ups.h"
void my_c_init_(int argc, char **argv) {

C REFERENCE MANUAL 95

...
// Tricky part - a Fortran main must still call UPS Fortran
// initialization (in order to keep Fortran and C separated
// internally in UPS)
int ierr;
UPS_AA_MAIN_LANG_enum main_lang;
UPS_AA_Opt_get(UPS_AA_MAIN_LANG, &main_lang);
// default is C
if(main_lang == UPS_AA_MAIN_LANG_UNSET ||

main_lang == UPS_AA_MAIN_LANG_C) {
UPS_AA_Init(argc, argv);

}
else {
UPS_AA_INIT(ierr)

}
...

}

SeeAlso

UPS AA Abort (page 91)
UPS AA Terminate (page 100)

UPS AA Io pe get()

Package

aa

Purpose

Get the current io pe. Various functions use the io pe for communication.

Usage

C ierr = UPS AA Io pe get (io pe);
Fortran call UPSF AA IO PE GET (io pe, ierr)
Fortran77 call UPS AA IO PE GET (io pe, ierr)

Arguments

io pe Intent: out
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The current io pe.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 96

ReturnV alues

Returns UPS OK if successful.

SeeAlso

UPS AA Io pe get (page 95)
UPS AA Io pe set (page 96)
UPS GS Collate (page 146)
UPS GS Distribute (page 147)
UPS IO File open (page 198)

UPS AA Io pe set()

Package

aa

Purpose

Set the current io pe. Various functions use the io pe for communication.

Usage

C ierr = UPS AA Io pe set (io pe);
Fortran call UPSF AA IO PE SET (io pe, ierr)
Fortran77 call UPS AA IO PE SET (io pe, ierr)

Arguments

io pe Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The current io pe.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

SeeAlso

UPS AA Io pe get (page 95)
UPS AA Io pe set (page 96)
UPS GS Collate (page 146)
UPS GS Distribute (page 147)
UPS IO File open (page 198)

C REFERENCE MANUAL 97

UPS AA Opt get()

Package

aa

Purpose

Get an optimization parameter.

Usage

C ierr = UPS AA Opt get (opt type, opt value);
Fortran call UPSF AA OPT GET (opt type, opt value, ierr)
Fortran77 call UPS AA OPT GET (opt type, opt value, ierr)

Arguments

opt type Intent: in
C type: UPS AA OPT TYPE enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The optimization type.
Please see UPS AA OPT TYPE enum
(section B page 51)
for a listing of the possible option types.

opt value Intent: out
C type: void*
Fortran type: user choice {0:opt type:opt type}
Fortran77 type: user choice {0:opt type:opt type}
The optimization value.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
error return value

ReturnV alues

Returns UPS OK if successful

Examples

See see UPS AA Opt get (section C.2 page 97) for more information.

SeeAlso

UPS AA Opt get (page 97)
UPS AA Opt set (page 98)

C REFERENCE MANUAL 98

UPS AA Opt set()

Package

aa

Purpose

Set an optimization parameter.

Usage

C ierr = UPS AA Opt set (opt type, opt value);
Fortran call UPSF AA OPT SET (opt type, opt value, ierr)
Fortran77 call UPS AA OPT SET (opt type, opt value, ierr)

Arguments

opt type Intent: in
C type: UPS AA OPT TYPE enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The optimization type.
Please see UPS AA OPT TYPE enum
(section B page 51)
for a listing of the possible option types.

opt value Intent: in
C type: const void*
Fortran type: user choice {0-1:opt type:opt type}
Fortran77 type: user choice {0-1:opt type:opt type}
The optimization value.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
error return value

ReturnV alues

Returns UPS OK if successful

Examples

See see UPS AA Opt get (section C.2 page 97) for more information.

SeeAlso

UPS AA Opt get (page 97)
UPS AA Opt set (page 98)

C REFERENCE MANUAL 99

UPS AA Statistics()

Package

aa

Purpose

UPS AA Statistics defines the level of statistics gathering will be applied to UPS. By default,
statistics is turned on, but may be turned on/off via this routine or may be turned off by setting
the UPS STATISTICS OFF environment variable.

The output file, ups log.txt, is written by process 0 upon a call to UPS AA Terminate.
This call only affects the calling process. Different settings are allowable for different processes.

Usage

C ierr = UPS AA Statistics (statistics flag);
Fortran call UPSF AA STATISTICS (statistics flag, ierr)
Fortran77 call UPS AA STATISTICS (statistics flag, ierr)

Arguments

statistics flag Intent: in
C type: UPS AA Statistics enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The level of statistics to be used.
See Statistics Flags
(section B page 58)
for the statistics options.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

Most UPS functions take enough time to complete so that having statistics turned on will not
degrade performance much. The statistics are meant to provide information on how the application
is using UPS. This routine (and its ability to turn off statistics) is provided if you do not wish to
know this information and/or the loss of some performance is an issue.

The UPS code location is parameterized by UPS AA Code location enum (section B page 39).
The name/value pairs for the locations are printed in the output text file as well.

Statistics about the terminate routines is not gathered because information must be processed
before packages are terminated. In general, the terminate routines merely free allocated memory
and therefore do not take up much time.

UPS provides a simple perl script to visualize this data. This script is located in:

C REFERENCE MANUAL 100

<UPS installation directory>/script/ups_aa_statistics_plot.pl.

To use the script, simply type:

ups_aa_statistics_plot.pl ups_log.txt

This will create ups log.ps (a postscript file containing graphs produced by gnuplot).
For a description or additional options, type in the name of the script:

ups_aa_statistics_plot.pl

Examples

Fortran:

call UPSF_AA_INIT(ierr)
if (ierr /= UPS_OK) then
write (*,*) ’**Error** UPS_AA_INIT failed’
stop

endif

! by default, statistics is on. Here, it is turned off.
call UPSF_AA_STATISTICS(UPS_STATISTICS_OFF, ierr)
if (ierr /= UPS_OK) then

write (*,*) ’**Error** UPS_AA_STATISTICS failed’
stop

endif

...code...

call UPSF_AA_TERMINATE(ierr)
if (ierr /= UPS_OK) then
write (*,*) ’**Error** UPS_AA_TERMINATE failed’
stop

endif

Notes

Please see UPS AA Statistics enum (section B page 58) for environment variables that affect
this call.

UPS AA Terminate()

Package

aa

Purpose

UPS AA Terminate shuts down everything under the control of UPS. For example, it terminates
the communication environment (if the comm environment was initialized by UPS) and frees the

C REFERENCE MANUAL 101

memory UPS may have allocated. This routine should be used for normal completion of a program
(as opposed to UPS AA Abort).

Usage

C ierr = UPS AA Terminate ();
Fortran call UPSF AA TERMINATE (ierr)
Fortran77 call UPS AA TERMINATE (ierr)

Arguments

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

A call to UPS AA Terminate takes the calling process out of the UPS environment. No further
interaction with UPS components is possible.

Examples

See Getting Started (section 3 page 7) for an example.

SeeAlso

UPS AA Abort (page 91)
UPS AA Init (page 92)

C REFERENCE MANUAL 102

C.3 Communication

See the packages section (section 6.2, page 23 for a general description of this package.
This section contains an alphabetical listing of the communication routines available in

UPS.

UPS CM Allgather()

Package

cm

Purpose

Perform functionality of MPI Allgather where count/datatype is the same.

Usage

C ierr = UPS CM Allgather (sendbuf, recvbuf, count,
datatype);

Fortran call UPSF CM ALLGATHER (sendbuf, recvbuf, count,
datatype, ierr)

Fortran77 call UPS CM ALLGATHER (sendbuf, recvbuf, count,
datatype, ierr)

Arguments

sendbuf Intent: in
C type: const void*
Fortran type: user choice {0-1}
Fortran77 type: user choice {0-1}
The starting address of the send buffer.

recvbuf Intent: out
C type: void*
Fortran type: user choice {0-1}
Fortran77 type: user choice {0-1}
The starting address of the recv buffer.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of elements to be gathered from each process.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

ierr Intent: out
C type: (na) int return value

C REFERENCE MANUAL 103

Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

UPS CM Allreduce()

Package

cm

Purpose

Performs functionality of MPI Allreduce.

Usage

C ierr = UPS CM Allreduce (x, y, count, datatype,
reduce op);

Fortran call UPSF CM ALLREDUCE (x, y, count, datatype,
reduce op, ierr)

Fortran77 call UPS CM ALLREDUCE (x, y, count, datatype,
reduce op, ierr)

Arguments

x Intent: in
C type: const void*
Fortran type: user choice {0-4}
Fortran77 type: user choice {0-4}
The starting address of the local values.

y Intent: out
C type: void*
Fortran type: user choice {x}
Fortran77 type: user choice {x}
The starting address of the result of the reduction.
Note that this cannot be the same memory location as x.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of local values. That is, the length of x
in terms of the input datatype.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The type of the local data.

C REFERENCE MANUAL 104

Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

reduce op Intent: in
C type: UPS AA Operation enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The operation to perform.
Please see UPS AA Operation enum
(section B page 56)
for a listing of the possible operations.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

SeeAlso

UPS CM Allreduce (page 103)
UPS CM Reduce (page 115)

UPS CM Barrier()

Package

cm

Purpose

Performs functionality of MPI Barrier.

Usage

C ierr = UPS CM Barrier ();
Fortran call UPSF CM BARRIER (ierr)
Fortran77 call UPS CM BARRIER (ierr)

Arguments

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 105

ReturnV alues

Returns UPS OK if successful.

SeeAlso

UPS CM Barrier (page 104)
UPS CM Barrier idle (page 105)

UPS CM Barrier idle()

Package

cm

Purpose

UPS CM Barrier idle performs a the same functionality as UPS CM Barrier.
However, on many systems UPS CM Barrier does a busy-wait and thus does not allow the

processor to do other tasks. UPS CM Barrier idle attempts to perform a non-busy-wait which
allows the processor to do other tasks (eg work on other threads). This is made possible by reducing
the polling frequency (and thus likely extending the time a process is in UPS CM Barrier idle).

Usage

C ierr = UPS CM Barrier idle ();
Fortran call UPSF CM BARRIER IDLE (ierr)
Fortran77 call UPS CM BARRIER IDLE (ierr)

Arguments

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

There may be significant time overhead when returning all processes from the ”idle” state back
to the ”normal” state.

DO NOT USE THIS CALL IF YOU NEED TO MINIMIZE TIME IN A BARRIER.
This UPS CM Barrier idle is meant to be used in mixed MPI/threaded code in which the MPI

parallelization is coarse grained and the extra non-busy-wait time spent in UPS CM Barrier idle is
outweighed by that processor being able to work on its threads.

NOTE:
Current implementation uses a sleep system call usleep. Empirical evidence on ASCI Blue-

mountain dictates us to sleep on the order of 1/10 of a second.
On ASCI Red), fine grained system sleep does not exist. In this case, UPS uses the sleep system

call - which has a minimum sleep time of 1 second.

SeeAlso

UPS CM Barrier (page 104)

C REFERENCE MANUAL 106

UPS CM Barrier idle (page 105)

UPS CM Bcast()

Package

cm

Purpose

Performs functionality of MPI Bcast. Data chunking has been added to allow large buffers in
which most MPI implementations would fail.

Usage

C ierr = UPS CM Bcast (buf, count, datatype,
root pe);

Fortran call UPSF CM BCAST (buf, count, datatype, root pe,
ierr)

Fortran77 call UPS CM BCAST (buf, count, datatype, root pe,
ierr)

Arguments

buf Intent: inout
C type: void*
Fortran type: user choice {0-1}
Fortran77 type: user choice {0-1}
On the root process, this input data is sent to all
other processes. On the receiving processes, the
data is placed here.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of local values. That is, the length of x
in terms of the input datatype.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

root pe Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The process sending the data.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}

C REFERENCE MANUAL 107

Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

UPS CM Bcast is designed to handle buffers of unlimited size. Such a feature is not always
possible given direct use of the underlying communication protocol. UPS avoids this limitation
by dividing the input buffer into segments which can be handled; this necessarily implies that the
latency of the underlying communication protocol will be incurred by a multiple of the number of
segments UPS forms.

UPS CM Context free()

Package

cm

Purpose

Free UPS data associated with the context set by UPS CM Set context.

Usage

C ierr = UPS CM Context free (context);
Fortran call UPSF CM CONTEXT FREE (context, ierr)
Fortran77 call UPS CM CONTEXT FREE (context, ierr)

Arguments

context Intent: in
C type: const void*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Actual C type: UPS DT PROTOCOL COMM*
Users can call UPS DT Sizeof (section C.5 page 139)
if they need to allocate space explicitly.
The process context, i.e. the identifier for the
relevant group of processes.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

This call only frees the additional data created by UPS for the context originally created by

C REFERENCE MANUAL 108

the user. In other words, the user must still call the ”free” call by whatever communication
protocol they are using (eg MPI Comm free) to free the context created and originally sent to
UPS CM Set context.

Upon UPS termination, this routine is automatically called for all contexts.
You may not free the context that is currently being used. Switch to a new context then free

the old ones.

SeeAlso

UPS CM Context free (page 107)
UPS CM Get context (page 108)
UPS CM Set context (page 118)

UPS CM Get context()

Package

cm

Purpose

UPS CM Get context returns the process context that is currently being used for communica-
tion.

Usage

C ierr = UPS CM Get context (context);
Fortran call UPSF CM GET CONTEXT (context, ierr)
Fortran77 call UPS CM GET CONTEXT (context, ierr)

Arguments

context Intent: out
C type: void*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Actual C type: UPS DT PROTOCOL COMM*
The current context being used.
For the C interface, you are sending in a pointer
to a protocol context (eg a pointer to a MPI Comm).
If allocating your own space, you need to ensure enough
space is present. You can call
UPS DT Sizeof (section C.5
page 139) with the argument
UPS DT PROTOCOL COMM.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 109

ReturnV alues

Returns UPS OK if successful.

Discussion

Note to MPI users. UPS operates within a duplicated version of the user input communica-
tor. That is, the user communicator is copied into a separate process context through the use of
MPI Comm dup. This allows UPS to operate on the same processes without interference between
the user application, UPS, and other linked libraries. However, when the user asks for the current
context via UPS CM Get context, the version the user supplied to UPS through UPS CM Set context
is returned.

Examples

In the following example, a process wishes to set the process context to a new one, but reset the
old one before returning.

Fortran:

call UPSF_CM_GET_CONTEXT(OLD_CONTEXT, ierr)
global_error = global_error + ierr
call UPSF_CM_SET_CONTEXT(NEW_CONTEXT, ierr)
global_error = global_error + ierr
! Do work
call UPSF_CM_SET_CONTEXT(OLD_CONTEXT, ierr)
global_error = global_error + ierr
call UPSF_CM_CONTEXT_FREE(NEW_CONTEXT, ierr)
return

Example for C users in allocating space for context:
C:

int sizeof_comm;
void *comm_current;
ierr += UPS_DT_sizeof(UPS_DT_PROTOCOL_COMM, &sizeof_comm);
comm_current = malloc(sizeof_comm);
ierr += UPS_CM_Get_context(comm_current);

SeeAlso

UPS CM Context free (page 107)
UPS CM Get context (page 108)
UPS CM Set context (page 118)
UPS CM P group item (page 111)
UPS DT Sizeof (page 139)

C REFERENCE MANUAL 110

UPS CM Get numpes()

Package

cm

Purpose

Performs functionality of MPI Comm size.

Usage

C ierr = UPS CM Get numpes (numpes);
Fortran call UPSF CM GET NUMPES (numpes, ierr)
Fortran77 call UPS CM GET NUMPES (numpes, ierr)

Arguments

numpes Intent: out
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of processes in the current communicator.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

SeeAlso

UPS CM P group item (page 111)
UPS CM Get numpes (page 110)
UPS CM Get penum (page 110)

UPS CM Get penum()

Package

cm

Purpose

Performs functionality of MPI Comm rank.

Usage

C ierr = UPS CM Get penum (penum);
Fortran call UPSF CM GET PENUM (penum, ierr)
Fortran77 call UPS CM GET PENUM (penum, ierr)

Arguments

C REFERENCE MANUAL 111

penum Intent: out
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The integer identifier of the calling process as
assigned in the input communicator.
This will be a number between 0 and number of processes -1 .

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

SeeAlso

UPS CM P group item (page 111)
UPS CM Get penum (page 110)
UPS CM Get numpes (page 110)

UPS CM P group item()

Package

cm

Purpose

UPS CM P group item is a generalization of the UPS CM Get <item> routines. This routine
returns labeling information given the context, process group, and the item desired.

See the examples below for the type of information you can get.

Usage

C ierr = UPS CM P group item (context, p group, p group item,
item);

Fortran call UPSF CM P GROUP ITEM (context, p group, p group item,
item, ierr)

Fortran77 call UPS CM P GROUP ITEM (context, p group, p group item,
item, ierr)

Arguments

context Intent: in
C type: const void*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Actual C type: UPS DT PROTOCOL COMM*
The context you are interested in.
This must be a context either supplied to
UPS CM Set context (section C.3 page 118)

C REFERENCE MANUAL 112

or the global context (eg MPI COMM WORLD).
To get the current context, one may use
UPS CM Get context (section C.3 page 108)
For the C interface, if NULL is passed as this argument,
the current context obtained from UPS CM Get context
will be used.

p group Intent: in
C type: UPS CM P group enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The process group you are interested in.
Please see UPS CM P group enum (section B page 60)
for a listing/explanation of different process groups.

p group item Intent: in
C type: UPS CM P group item enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The item wrt the context/process group to get.
Please see UPS CM P group item enum (section B page 61)
for a listing/explanation of different process groups
items.

item Intent: out
C type: void*
Fortran type: UPS KIND INT4 {0,1:p group item}
Fortran77 type: UPS KIND INT4 {0,1:p group item}
The value of p group item wrt the context/process group.
The C type depends upon p group item.
The size of this array will vary depending on the
value of p group item.
Please see UPS CM P group item enum (section B page 61)
for a listing/explanation of different process groups
items.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

Different architectures might have effectively different process groups. For example, on ASCI
Blue Mountain, there is the concept of machine groups (groups of 8 128-processor smp’s). On
ASCI Red Sandia, there is no such concept so UPS CM P GROUP MACHINE GROUP is set to

C REFERENCE MANUAL 113

UPS CM P GROUP ALL (effectively making 1 machine group).

Examples

Example calls:
(The current context can be obtained by calling UPS CM GET CONTEXT)

• process number (UPS CM Get penum(&penum))

UPS_CM_P_group_item(<current context>,
UPS_CM_P_GROUP_ALL,
UPS_CM_P_GROUP_ITEM_PENUM,
&penum)

• number of processes (UPS CM Get numpes(&numpes))

UPS_CM_P_group_item(<current context>,
UPS_CM_P_GROUP_ALL,
UPS_CM_P_GROUP_ITEM_NUMPES,
&numpes)

• getting the process number with respect to the box you are on (useful for computing box
”masters”)

UPS_CM_P_group_item(<current context>,
UPS_CM_P_GROUP_BOX,
UPS_CM_P_GROUP_ITEM_PENUM,
&boxpenum)

• getting the number of processes on the same box this process is on

UPS_CM_P_group_item(<current context>,
UPS_CM_P_GROUP_BOX,
UPS_CM_P_GROUP_ITEM_NUMPES,
&boxnumpes)

• getting the boxnum (for SGI, the box number)

UPS_CM_P_group_item(<current context>,
UPS_CM_P_GROUP_BOX,
UPS_CM_P_GROUP_ITEM_IDNUM,
&boxnum)

• getting the number of boxes

UPS_CM_P_group_item(<current context>,
UPS_CM_P_GROUP_BOX,
UPS_CM_P_GROUP_ITEM_NUMIDS,
&boxnum)

C REFERENCE MANUAL 114

• getting the context of all the box masters (boxpenum is 0) (if boxpenum is not 0, the context
will be whatever the NULL context for the underlying protocol is: MPI-¿MPI COMM NULL)

UPS_CM_P_group_item(<current context>,
UPS_CM_P_GROUP_BOX,
UPS_CM_P_GROUP_ITEM_MSTR_CNTXT,
&box_master_context)

• getting the context of the processes on the same box as this process

UPS_CM_P_group_item(<current context>,
UPS_CM_P_GROUP_BOX,
UPS_CM_P_GROUP_ITEM_ALL_CNTXT,
&box_context)

Suppose a process is sending info to another process (penum = penum to) under some context.
The sending process wishes to find the penum to with respect to the global context (which might
be different than the current context). Call this penum to global.

...
ierr = UPS_OK;
ierr += UPS_CM_Get_context(¤t_context);
ierr += UPS_CM_P_group_item(¤t_context,

UPS_CM_P_GROUP_ALL,
UPS_CM_P_GROUP_ITEM_G_PENUMS,
&(penums_global[0]));

if (ierr != UPS_OK)
{

exit(ierr);
}

penum_to_global = penums_global[penum_to];
...

Note, that since we are using the C interface and dealing with the current context, we could skip
the call to UPS CM Get context and go straight to:

ierr += UPS_CM_P_group_item(NULL,
UPS_CM_P_GROUP_ALL,
UPS_CM_P_GROUP_ITEM_G_PENUMS,
&(penums_global[0]));

When using the Fortran interface, you must supply an actual context.
Now suppose you wish to have 2 sets of communication groups. The first group consists of the

processes within a box. The second group consists of the master processes of each box. Those two
contexts can be gotten by:

...
ierr = UPS_OK;
ierr += UPS_CM_Get_context(¤t_context);

C REFERENCE MANUAL 115

ierr += UPS_CM_P_group_item(current_context,
UPS_CM_P_GROUP_BOX,
UPS_CM_P_GROUP_ITEM_ALL_CNTXT,
&processes_on_my_box_context);

ierr += UPS_CM_P_group_item(current_context,
UPS_CM_P_GROUP_BOX,
UPS_CM_P_GROUP_ITEM_MSTR_CNTXT,
&master_processes_on_each_box_context);

if (ierr != UPS_OK)
{

exit(ierr);
}

...

Note, if a process is not a master pe (penum=0 with respect to the box), its value of mas-
ter processes on each box context will be the null process of whatever underlying communication
UPS is using. For example, if this is MPI, the value will be MPI COMM NULL.

SeeAlso

UPS CM Get context (page 108)
UPS CM Get penum (page 110)
UPS CM Get numpes (page 110)

UPS CM Reduce()

Package

cm

Purpose

Performs the functionality of MPI Reduce. However, in the UPS flavor, the input and output
buffers may be the same. Also, buffer chunking is done to allow large buffers where most MPI
implementations would fail.

Usage

C ierr = UPS CM Reduce (x, y, count, datatype,
reduce op, root pe);

Fortran call UPSF CM REDUCE (x, y, count, datatype,
reduce op, root pe, ierr)

Fortran77 call UPS CM REDUCE (x, y, count, datatype,
reduce op, root pe, ierr)

Arguments

x Intent: inout
C type: void*
Fortran type: user choice {0-1}
Fortran77 type: user choice {0-1}
The starting address of the local values.

y Intent: inout

C REFERENCE MANUAL 116

C type: void*
Fortran type: user choice {0-1}
Fortran77 type: user choice {0-1}
The starting address of the result of the reduction.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of local values. That is, the length of x
and y in terms of the input datatype.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The type of the local data.
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

reduce op Intent: in
C type: UPS AA Operation enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The operation to perform.
Please see UPS AA Operation enum
(section B page 56)
for a listing of the possible operations.

root pe Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The process returning the result.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

If x and y are different, the contents of y after the reduction are undefined for all processes
except the root pe.

If x and y are the same, the contents of y after the reduction are unchanged for all processes

C REFERENCE MANUAL 117

except the root pe. Performance may differ from the above case since UPS may have to dynamically
allocate (and deallocate) intermediate storage buffers.

Please see the discussion about passing identical arguments from Fortran (section 5.5 page 17)
for further information.

SeeAlso

UPS CM Allreduce (page 103)
UPS CM Reduce (page 115)

UPS CM Salltoall()

Package

cm

Purpose

Performs functionality of MPI Alltoall except optimized for a count of the data is 1 and the data
is sparse (mostly 0’s).

Usage

C ierr = UPS CM Salltoall (sendbuf, recvbuf, datatype);
Fortran call UPSF CM SALLTOALL (sendbuf, recvbuf, datatype,

ierr)
Fortran77 call UPS CM SALLTOALL (sendbuf, recvbuf, datatype,

ierr)

Arguments

sendbuf Intent: in
C type: const void*
Fortran type: user choice {0-1:numpes}
Fortran77 type: user choice {0-1:numpes}
The data to be sent. Zeros are not sent.

recvbuf Intent: out
C type: void*
Fortran type: user choice {0-1:numpes}
Fortran77 type: user choice {0-1:numpes}
Index i contains data sent from process i.
This must be different than sendbuf.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The datatype of array in elements.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 118

ReturnV alues

Returns UPS OK if successful.

Discussion

There is no solid requirement for the degree of sparsity for which the use of this function would
always result in performance above that provided by a more general all-to-all broadcast. Such a
comparison involves implementation issues for both such functions, the locality of the processes that
would be sending and receiving messages, the message traffic currently on the system, and so forth.
We can say, however, that for execution on a machine with hundreds or thousands of processors,
with each processor sending data to a few nearests neighbors, performance can be significantly better
than that of a general all-to-all broadcast.

Consideration was given to building in a decision making capability regarding the degree of
sparsity, and using a general all-to-all broadcast when appropriate. However, this would require
global communication to determine the status of all participating processes, which would significantly
adversely affect performance.

UPS CM Set context()

Package

cm

Purpose

UPS CM Set context sets the context of all communication to the input process context.
All processes in the context must make this call.

Usage

C ierr = UPS CM Set context (context);
Fortran call UPSF CM SET CONTEXT (context, ierr)
Fortran77 call UPS CM SET CONTEXT (context, ierr)

Arguments

context Intent: in
C type: const void*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Actual C type: UPS DT PROTOCOL COMM*
The process context, i.e. the identifier for the
relevant group of processes. The user is responsible
for the formation of a valid process context within the
context of the underlying communication layer
(e.g. MPI Comm split).
If called with NULL, it will be set with the original
context UPS was initialized with (eg MPI COMM WORLD).

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 119

ReturnV alues

Returns UPS OK if successful.

Discussion

UPS CM Set context allows the user to work within a specified group of processes, i.e. a process
context. This removes the need for the user to pass in the process context for UPS CM functions.

UPS creates information about the context with this call. If this information has already been
collected, UPS does not do it again. This data may be freed with a call to UPS CM Context free.
This is not necessary as UPS will free its internal context data structures upon termination.

Note to MPI users.

1. UPS operates within a duplicated version of the user input communicator. That is, the user
communicator is copied into a separate process context through the use of MPI Comm dup.
This allows UPS to operate on the same processes without interference between the user
application, UPS, and other linked libraries. However, when the user asks for the current
communicator via UPS CM Get context, the user version of the communicator is returned.

Examples

See the example in UPS CM Get context (section C.3 page 108)

SeeAlso

UPS CM Context free (page 107)
UPS CM Get context (page 108)
UPS CM Set context (page 118)

UPS CM Sm free()

Package

cm

Purpose

Free a shared memory area obtained from UPS CM Sm malloc. See UPS CM Sm malloc (sec-
tion C.3 page 122) for more information.

Usage

C ierr = UPS CM Sm free (address);

Arguments

address Intent: inout
C type: volatile void**
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The address of the shared memory area obtained by
UPS CM Sm malloc to be free’d. This address
is set to NULL on return.

ierr Intent: out
C type: (na) int return value
Fortran type: (na) no equivalent routine

C REFERENCE MANUAL 120

Fortran77 type: (na) no equivalent routine
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

This function only frees the shared memory area of this process. If other processes still have the
shared memory mapped (eg have not called UPS CM Sm free), they will still be able to access the
shared memory area.

Any attempt by this process to access the shared memory area after this call should (if the OS
is any good) generate a sigbus error.

Examples

See shared memory.c (section 6.2.1 page 23) for a detailed example.

SeeAlso

UPS CM Sm free (page 119)
UPS CM Sm malloc (page 122)
UPS CM Sm get item (page 120)
UPS CM Sm set item (page 124)

UPS CM Sm get item()

Package

cm

Purpose

Get information about the shared memory routines.

Usage

C ierr = UPS CM Sm get item (item type, address, item);
Fortran call UPSF CM SM GET ITEM (item type, address, item,

ierr)
Fortran77 call UPS CM SM GET ITEM (item type, address, item,

ierr)

Arguments

item type Intent: in
C type: UPS AA Mem item enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The type of info requested.
Please see UPS AA Mem item enum (section B page 49)
for a listing/explanation of different items.

address Intent: inout
C type: volatile void*
Fortran type: UPS KIND ADDRESS {0}
Fortran77 type: UPS KIND ADDRESS {0}

C REFERENCE MANUAL 121

The address of the sm area gotten by
UPS CM SM malloc. For some item type values,
this argument is not used.

item Intent: out
C type: void*
Fortran type: user choice {0::item type}
Fortran77 type: user choice {0::item type}
The output value of the item type. See item type
above.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

The CM SM routines are just a combination of the POSIX shared memory routines (and some
book keeping).

• UPS CM Sm malloc combines shm open, mmap, close, and shm unlink

• UPS CM Sm free uses munmap

For shared memory process group that is UPS CM P GROUP SELF (eg no shared memory
possible), UPS CM Sm malloc and UPS CM Sm free simply use malloc() and free() respectively.
In this case, user requested size will not be increased to fulfill page size requirements.

When using shared memory, page thrashing becomes an issue. Page thrashing will occur when
2 process are trying to read/write data into the same page in memory. The operating system will
spend a lot of time telling the processes, ”Your page is invalid since someone changed information
on it - get a new one”. If possible, try to spread the data ”owned” by processes to separate memory
areas (unfortunately, this is system dependent). Then, when processes are modifying their data,
they do not cause page thrashing with other processes. The page size can be gotten by either the C
call getpagesize() or by

UPS_CM_Sm_get_item(UPS_CM_SM_ITEM_PAGESIZE, NULL, &pagesize)

Be aware as well that on many operating systems, shared memory is not physically assigned
until it is first used. The operating system will try to place memory close to the processor that uses
it. The result of this is that if you have the master pe initialize all the shared memory area, the OS
tries to place all of the memory close to the master pe. This is not what you want if all the processes
are going to be heavily modifying their area of the shared memory. In this case, you should have
each pe initialize their own area.

The code locations (section B page 58) UPS CM LOC SM MALLOC and
UPS CM LOC SM FREE make some data available to the user. When statistics are turned on (see
UPS AA Statistics), the following info fields are recorded at the end of each alloc/free call:

C REFERENCE MANUAL 122

1. Field ID 0: Total size (bytes) of shared mem allocated (+guard bytes)

2. Field ID 1: Total number of shared mem allocations active

3. Field ID 2: Size (bytes) of shared mem just alloc/freed (+guard bytes)

See UPS UT Mem get item for information about normal memory allocations and environment
variables that alter the behavior of the shared memory routines.

Examples

See shared memory.c (section 6.2.1 page 23) for a detailed example.

SeeAlso

UPS CM Sm free (page 119)
UPS CM Sm malloc (page 122)
UPS CM Sm get item (page 120)
UPS CM Sm set item (page 124)
UPS AA Statistics (page 99)

UPS CM Sm malloc()

Package

cm

Purpose

Get a shared memory area for current context and process group that can connect to a shared
memory area.

UPS CM Sm get item (section C.3 page 120) is used to get the value of the p group. An example
is also included in this routine.

See UPS CM P group enum (section B page 60) for information about p group’s. This value
will often be UPS CM P GROUP BOX for machines with shared memory (it will be
UPS CM P GROUP MACHINE GROUP for some Irix clusters) and will be
UPS CM P GROUP SELF for machines without shared memory.

If the p group is UPS CM P GROUP SELF, then normal malloc is used to get memory for the
process.

All pes in this p group must call this function together.

Usage

C ierr = UPS CM Sm malloc (size, address);

Arguments

size Intent: inout
C type: long long*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
On input, this is the desired size in bytes for
the shared memory area. Only relevant on the
master pe (penum=0 for the process group).

On output, the actual total size available for use
is returned. The total size allocated will be
increased from the requested size in order to fit
the requirement that the total memory length be an

C REFERENCE MANUAL 123

integral number of pages.
So, UPS increases size until:

–¿ total size = space for guard bytes + size

where total size is an integral number of pages.

See UPS UT Mem get item for information about guard
bytes (and how to change their size via environment
variables).

address Intent: out
C type: volatile void**
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The address of the address of the memory area.
The actual value of the address returned is
not necessarily the same virtual address among the
processes that have access to the shared memory
area. That is, while pointing to the same physical
address, each process may have a different value
for the virtual address.
If the value is NULL, allocation failed and an
error will be returned.

ierr Intent: out
C type: (na) int return value
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Examples

See shared memory.c (section 6.2.1 page 23) for a detailed example.

Notes

Please see the memory management variable and TMPDIR sections of
UPS AA ENVIRONMENT VARIABLES enum (section B page 43) for environment variables that
affect this call.

SeeAlso

UPS CM Sm free (page 119)
UPS CM Sm malloc (page 122)
UPS CM Sm get item (page 120)
UPS CM Sm set item (page 124)
UPS CM Get context (page 108)
UPS CM P group item (page 111)
UPS CM Set context (page 118)

C REFERENCE MANUAL 124

UPS UT Mem get item (page 242)

UPS CM Sm set item()

Package

cm

Purpose

Set information about the shared memory routines.

Usage

C ierr = UPS CM Sm set item (item type, address, item);
Fortran call UPSF CM SM SET ITEM (item type, address, item,

ierr)
Fortran77 call UPS CM SM SET ITEM (item type, address, item,

ierr)

Arguments

item type Intent: in
C type: UPS AA Mem item enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The type of info requested.
Please see UPS AA Mem item enum (section B page 49)
for a listing/explanation of different items.

address Intent: inout
C type: volatile void*
Fortran type: UPS KIND ADDRESS {0}
Fortran77 type: UPS KIND ADDRESS {0}
The address of the sm area gotten by
UPS CM SM malloc. For some item type values,
this argument is not used.

item Intent: out
C type: void*
Fortran type: user choice {0::item type}
Fortran77 type: user choice {0::item type}
The input value of the item type. See item type
above.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 125

ReturnV alues

Returns UPS OK if successful.

Discussion

Currently, the only value that can be set is UPS AA MEM ITEM P GROUP. This is the process
set that can access the same shared memory area. By default, this will be set:

• UPS CM P GROUP BOX - most systems with shared memory.

• UPS CM P GROUP SELF - systems without shared memory.

On certain systems, you might wish to change this to better fit your needs (or for testing purposes).
Note that some values are not supported and an error will be returned in the UPS CM Sm malloc()
call.

Examples

See shared memory.c (section 6.2.1 page 23) for a detailed example.

SeeAlso

UPS CM Sm free (page 119)
UPS CM Sm malloc (page 122)
UPS CM Sm get item (page 120)
UPS CM Sm set item (page 124)
UPS UT Mem get item (page 242)
UPS AA Statistics (page 99)

C REFERENCE MANUAL 126

C.4 Data parallel

See the packages section (section 6.3, page 27 for a general description of this package.
This section contains an alphabetical listing of the data parallel routines available in

UPS.

UPS DP Combiner()

Package

dp

Purpose

UPS DP Combiner performs the specified data parallel operation. (Options listed below.)

Usage

C ierr = UPS DP Combiner (in, count, datatype,
combiner op, out);

Fortran call UPSF DP COMBINER (in, count, datatype,
combiner op, out, MASK=mask,
ierr)

Fortran77 call UPS DP COMBINER (in, count, datatype,
combiner op, out, ierr)

Arguments

in Intent: in
C type: const void*
Fortran type: user choice {0-1}
Fortran77 type: user choice {0-1}
The input vector of data.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of elements in input array src

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The type of the local data.
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

combiner op Intent: in
C type: UPS AA Operation enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The operation to perform.
Please see UPS AA Operation enum

C REFERENCE MANUAL 127

(section B page 56)
for a listing of the possible operations.

out Intent: out
C type: void*
Fortran type: user choice {0}
Fortran77 type: user choice {0}
The output vector.

mask Intent: in
C type: (na) see UPS DP Combinerm
Fortran type: (optional:UPS DP COMBINERM) UPS KIND INT4 {in}
Fortran77 type: (na) see UPS DP Combinerm
true/false integer array specifying which elements
of the input vector are to be operated upon.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

UPS DP Combiner is a template with respect to the high level view of the data parallel op-
erations it will perform. First the operation is applied to the local data, then a global operation
completes the function.

Note, in the UPS AA MAXLOC or UPS AA MINLOC functions, the integer location returned is 0 based.
That is, if the first element is returned, the value will be 0.

SeeAlso

UPS DP Combiner (page 126)
UPS DP Combinerm (page 127)

UPS DP Combinerm()

Package

dp

Purpose

UPS DP Combinerm performs the specified data parallel operation. (Options listed below.)

C REFERENCE MANUAL 128

The mask is an array specifying which elements do not participate.

Usage

C ierr = UPS DP Combinerm (in, count, datatype,
combiner op, out, mask);

Fortran77 call UPS DP COMBINERM (in, count, datatype,
combiner op, out, mask, ierr)

Arguments

in Intent: in
C type: const void*
Fortran type: (na) see UPS DP Combiner
Fortran77 type: user choice {0-1}
The input vector of data.

count Intent: in
C type: int
Fortran type: (na) see UPS DP Combiner
Fortran77 type: UPS KIND INT4 {0}
The number of elements in input array src

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: (na) see UPS DP Combiner
Fortran77 type: UPS KIND INT4 {0}
The type of the local data.
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

combiner op Intent: in
C type: UPS AA Operation enum
Fortran type: (na) see UPS DP Combiner
Fortran77 type: UPS KIND INT4 {0}
The operation to perform.
Please see UPS AA Operation enum
(section B page 56)
for a listing of the possible operations.

out Intent: out
C type: void*
Fortran type: (na) see UPS DP Combiner
Fortran77 type: user choice {0}
The output vector.

mask Intent: in
C type: const int*
Fortran type: (na) see UPS DP Combiner
Fortran77 type: UPS KIND INT4 {in}
true/false integer array specifying which elements
of the input vector are to be operated upon.

C REFERENCE MANUAL 129

ierr Intent: out
C type: (na) int return value
Fortran type: (na) see UPS DP Combiner
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

UPS DP Combiner is a template with respect to the high level view of the data parallel op-
erations it will perform. First the operation is applied to the local data, then a global operation
completes the function.

Note, in the UPS AA MAXLOC or UPS AA MINLOC functions, the integer location returned is 0 based.
That is, if the first element is returned, the value will be 0. The location returned will be relative to
the entire array (masked and unmasked elements). A call to UPS DP Number mask can be made
to find the location with respect to only those participating elements.

SeeAlso

UPS DP Combiner (page 126)
UPS DP Combinerm (page 127)

UPS DP Count mask()

Package

dp

Purpose

UPS DP Count mask, for each participating element of the mask, adds the integer 1 to the
return value.

Usage

C ierr = UPS DP Count mask (mask, count, out);
Fortran call UPSF DP COUNT MASK (mask, count, out, ierr)
Fortran77 call UPS DP COUNT MASK (mask, count, out, ierr)

Arguments

mask Intent: in
C type: const int*
Fortran type: UPS KIND INT4 {0-1}
Fortran77 type: UPS KIND INT4 {0-1}
boolean (int) array specifying which elements are
to be operated on

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}

C REFERENCE MANUAL 130

number of elements in input array src

out Intent: out
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The output value.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

SeeAlso

UPS DP Number mask (page 133)

UPS DP Dot product()

Package

dp

Purpose

UPS DP Dot product returns the dot product xT y = (x, y) of the input vectors x and y.

Usage

C ierr = UPS DP Dot product (x, y, count, datatype,
x dot y);

Fortran call UPSF DP DOT PRODUCT (x, y, count, datatype, x dot y,
MASK=mask, ierr)

Fortran77 call UPS DP DOT PRODUCT (x, y, count, datatype, x dot y,
ierr)

Arguments

x Intent: in
C type: const void*
Fortran type: user choice {0-1}
Fortran77 type: user choice {0-1}
The input vector x.

y Intent: in
C type: const void*
Fortran type: user choice {x}
Fortran77 type: user choice {x}
The input vector y.

C REFERENCE MANUAL 131

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of elements in vectors of x and y.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The datatype of x and y.

x dot y Intent: out
C type: void*
Fortran type: user choice {0}
Fortran77 type: user choice {0}
The dot product of vector x and vector y.

mask Intent: in
C type: (na) see UPS DP Dot productm
Fortran type: (optional:UPS DP DOT PRODUCTM) UPS KIND INT4 {x}
Fortran77 type: (na) see UPS DP Dot productm
true/false integer array specifying which elements
of the input vector are to be operated upon.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

SeeAlso

UPS DP Dot productm (page 131)

UPS DP Dot productm()

Package

dp

Purpose

UPS DP Dot productm extends the capability of UPS DP Dot product by adding a masking

C REFERENCE MANUAL 132

capability.

Usage

C ierr = UPS DP Dot productm (x, y, count, datatype, x dot y,
mask);

Fortran77 call UPS DP DOT PRODUCTM (x, y, count, datatype, x dot y,
mask, ierr)

Arguments

x Intent: in
C type: const void*
Fortran type: (na) see UPS DP Dot product
Fortran77 type: user choice {0-1}
The input vector x.

y Intent: in
C type: const void*
Fortran type: (na) see UPS DP Dot product
Fortran77 type: user choice {x}
The input vector y.

count Intent: in
C type: int
Fortran type: (na) see UPS DP Dot product
Fortran77 type: UPS KIND INT4 {0}
The number of elements in vectors of x and y.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: (na) see UPS DP Dot product
Fortran77 type: UPS KIND INT4 {0}
The datatype of x and y.

x dot y Intent: out
C type: void*
Fortran type: (na) see UPS DP Dot product
Fortran77 type: user choice {0}
The dot product of vector x and vector y.

mask Intent: in
C type: const int*
Fortran type: (na) see UPS DP Dot product
Fortran77 type: UPS KIND INT4 {x}
true/false integer array specifying which elements are
to be operated on.

ierr Intent: out
C type: (na) int return value
Fortran type: (na) see UPS DP Dot product
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 133

ReturnV alues

Returns UPS OK if successful.

SeeAlso

UPS DP Dot product (page 130)

UPS DP Number mask()

Package

dp

Purpose

UPS DP Number mask assigns elements of array “out”, defined as participating by the mask,
an ascending counting number. Elements not participating will not be changed.

Usage

C ierr = UPS DP Number mask (mask, count, out, lower bound,
upper bound);

Fortran call UPSF DP NUMBER MASK (mask, count, out, lower bound,
upper bound, ierr)

Fortran77 call UPS DP NUMBER MASK (mask, count, out, lower bound,
upper bound, ierr)

Arguments

mask Intent: in
C type: const int*
Fortran type: UPS KIND INT4 {0-1}
Fortran77 type: UPS KIND INT4 {0-1}
Boolean (int) array specifying which elements are
to be operated on.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of elements in input array mask.

out Intent: out
C type: int*
Fortran type: UPS KIND INT4 {mask}
Fortran77 type: UPS KIND INT4 {mask}
The output vector output.

lower bound Intent: out
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The lowest enumeration for this process.

C REFERENCE MANUAL 134

upper bound Intent: out
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The largest enumeration for this process.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

SeeAlso

UPS DP Count mask (page 129)

UPS DP Sort()

Package

dp

Purpose

UPS DP Sort sorts the elements in the specified distributed array.

Usage

C ierr = UPS DP Sort (buf, count, datatype);
Fortran call UPSF DP SORT (buf, count, datatype, ierr)
Fortran77 call UPS DP SORT (buf, count, datatype, ierr)

Arguments

buf Intent: inout
C type: void*
Fortran type: user choice {0-1}
Fortran77 type: user choice {0-1}
On input, the unsorted data.
On output, the sorted data.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of elements in input array buf.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}

C REFERENCE MANUAL 135

Fortran77 type: UPS KIND INT4 {0}
The datatype of the input vector elements in buf.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

• Process
This sort creates bins by taking a sample of data from each pe. Each pe sends its data to
the respective bin on the respective pe. Those pe’s sort their local data. Then the data is
redistributed to the original counts on each pe.

• Pre-Sorting
The original data is sorted as well in this process. So, there is no point in sorting the local
data yourself before sending it to UPS DP Sort.

• Sorting Val-Loc Datatypes
The Val-Loc datatypes may also be sorted (eg UPS DT DOUBLE INT). This is useful if you
want to attach info to the sorted values (eg [value, penum] or [value, original index]).

UPS DP Vector norm()

Package

dp

Purpose

UPS DP Vector norm returns the 2-norm, ‖x‖ 2 =
√

xT x, of the input vector x.

Usage

C ierr = UPS DP Vector norm (x, count, datatype, norm x);
Fortran call UPSF DP VECTOR NORM (x, count, datatype, norm x,

MASK=mask, ierr)
Fortran77 call UPS DP VECTOR NORM (x, count, datatype, norm x,

ierr)

Arguments

x Intent: in
C type: void*
Fortran type: user choice {0-1}
Fortran77 type: user choice {0-1}
The input vector x.

C REFERENCE MANUAL 136

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of elements of vector x.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The datatype of x.

norm x Intent: out
C type: void*
Fortran type: user choice {0}
Fortran77 type: user choice {0}
The 2-norm of vector x.

mask Intent: in
C type: (na) see UPS DT Vector normm
Fortran type: (optional:UPS DP VECTOR NORMM) UPS KIND INT4 {x}
Fortran77 type: (na) see UPS DT Vector normm
true/false integer array specifying which elements
of the input vector are to be operated upon.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

UPS DP Vector norm first computes the inner product of vector
x using UPS DP Dot product, then returns the square root of that value.

SeeAlso

UPS DP Vector normm (page 136)

UPS DP Vector normm()

Package

dp

Purpose

UPS DP Vector normm extends the capability of UPS DP Vector norm by adding a masking

C REFERENCE MANUAL 137

capability.

Usage

C ierr = UPS DP Vector normm (x, count, datatype, norm x,
mask);

Fortran77 call UPS DP VECTOR NORMM (x, count, datatype, norm x,
mask, ierr)

Arguments

x Intent: in
C type: const void*
Fortran type: (na) see UPS DP Vector norm
Fortran77 type: user choice {0-1}
The input vector x.

count Intent: in
C type: int
Fortran type: (na) see UPS DP Vector norm
Fortran77 type: UPS KIND INT4 {0}
The number of elements of vector x.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: (na) see UPS DP Vector norm
Fortran77 type: UPS KIND INT4 {0}
The datatype of x.

norm x Intent: out
C type: void*
Fortran type: (na) see UPS DP Vector norm
Fortran77 type: user choice {0}
The 2-norm of vector x.

mask Intent: in
C type: const int*
Fortran type: (na) see UPS DP Vector norm
Fortran77 type: UPS KIND INT4 {x}
true/false integer array specifying which elements are
to be operated on.

ierr Intent: out
C type: (na) int return value
Fortran type: (na) see UPS DP Vector norm
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 138

ReturnV alues

Returns UPS OK if successful.

Discussion

UPS DP Vector normm first computes the inner product of vector
x using UPS DP Dot productm, then returns the square root of that value.

SeeAlso

UPS DP Vector norm (page 135)

C REFERENCE MANUAL 139

C.5 Datatypes

See the packages section (section 6.4, page 28 for a general description of this package.
This section contains an alphabetical listing of the routines available for use with UPS

datatypes. These routines may be called in conjunction with any UPS component.

UPS DT Sizeof()

Package

dt

Purpose

UPS DT Sizeof returns the number of bytes allocated for each element of the input datatype.

Usage

C ierr = UPS DT Sizeof (datatype, sizeof datatye);
Fortran call UPSF DT SIZEOF (datatype, sizeof datatye,

ierr)
Fortran77 call UPS DT SIZEOF (datatype, sizeof datatye,

ierr)

Arguments

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The type of the data.
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

sizeof datatye Intent: out
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
size (as an int) of the datatype.
Value of -1 indicates datatype unknown.

ierr Intent: out
C type: (na) integer return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Error return value

ReturnV alues

Returns UPS OK if successful.

Discussion

C language users will recognize this function as being analogous to the “sizeof” function.

C REFERENCE MANUAL 140

C.6 Error handling

See the packages section (section 6.5, page 29 for a general description of this package.
This section contains an alphabetical listing of the error handling routines available in

UPS.

UPS ER Get wait time()

Package

er

Purpose

Return the maximum time, in seconds, a process will spend after a call to UPS ER Set alarm
and before UPS ER Unset alarm.

Usage

C ierr = UPS ER Get wait time (max wait time);
Fortran call UPSF ER GET WAIT TIME (max wait time, ierr)
Fortran77 call UPS ER GET WAIT TIME (max wait time, ierr)

Arguments

max wait time Intent: out
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Time before alarm is triggered.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

The time waiting can be reset with a call to UPS ER Set wait time.

Notes

Please see the ER alarm variable section of
UPS AA ENVIRONMENT VARIABLES enum (section B page 43) for environment variables that
affect this call.

SeeAlso

UPS ER Get wait time (page 140)
UPS ER Set alarm (page 142)
UPS ER Set wait time (page 143)
UPS ER Unset alarm (page 144)

C REFERENCE MANUAL 141

UPS ER Perror()

Package

er

Purpose

UPS ER Perror prints the input string and integer code to stdout. The message is prepended
by the calling process number followed by “**UPS Error**”.

Usage

C ierr = UPS ER Perror (s1, info);
Fortran call UPSF ER PERROR (s1, info, ierr)
Fortran77 call UPS ER PERROR (s1, info, ierr)

Arguments

s1 Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The user supplied string to be printed. This string must
be null-terminated. As an example, Fortran users may
pass in a string concatenated with the null-character:
’main (foo)’//ACHAR(0)

info Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The user supplied integer to be printed.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

The message is prepended by the calling process number (except for single process execution).
The purpose of this function is to ensure that messages the user wants printed actually appear in a
timely fashion. At the simplest level this means fprintf(stdout,...) followed by a buffer flush.
The user should be aware, however, that we make no attempt at ordering messages among processes
since that would require additional synchronization, and this may alter the behavior of execution.

C REFERENCE MANUAL 142

UPS ER Set alarm()

Package

er

Purpose

UPS ER Set alarm sets an “alarm” to go off and terminate execution if the alarm is not reset
(using UPS ER Unset alarm) within the time specified with a prior call to UPS ER Set wait time or
through the environment variable UPS ER MAX WAIT TIME.

Usage

C ierr = UPS ER Set alarm ();
Fortran call UPSF ER SET ALARM (ierr)
Fortran77 call UPS ER SET ALARM (ierr)

Arguments

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

This function does not behave recursively. That is, successive calls simply reset the alarm clock
of the calling process.

We originally incorporated alarms directly into UPS functions. However, performance was ad-
versely affected due to the small granularity. Likewise, alarms should be placed in user applications
sparingly.

DANGER: this will grab SIGALRM and pass it to upsp er sig alarm. This might interfere with
traps set by other functions (eg debuggers, profilers).

Examples

In the following example, the user sets the maximum time to wait for completion to 60 seconds.
The alarm is set, and work is begun. If the work is not completed within 60 seconds, all processes are
terminated. If, however, the work is completed within 60 seconds, the alarm is unset, and execution
continues.

ierr = UPS_ER_Set_wait_time(60);
ierr = UPS_ER_Set_alarm();

(Do work.)

ierr = UPS_ER_Unset_alarm();

C REFERENCE MANUAL 143

Notes

Please see the ER alarm variable section of
UPS AA ENVIRONMENT VARIABLES enum (section B page 43) for environment variables that
affect this call.

SeeAlso

UPS ER Get wait time (page 140)
UPS ER Set alarm (page 142)
UPS ER Set wait time (page 143)
UPS ER Unset alarm (page 144)

UPS ER Set wait time()

Package

er

Purpose

UPS ER Set wait time lets the caller over-ride the default maximum time waiting for an alarm
to be re-set. This is designed to prevent program “hangs”.

Usage

C ierr = UPS ER Set wait time (max wait time);
Fortran call UPSF ER SET WAIT TIME (max wait time, ierr)
Fortran77 call UPS ER SET WAIT TIME (max wait time, ierr)

Arguments

max wait time Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Time (seconds) before the alarm is triggered when
the alarm is actived.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 144

ReturnV alues

Returns UPS OK if successful.

Discussion

See UPS ER Set alarm for details.

Examples

See the reference page for UPS ER Set alarm.

Notes

Please see the ER alarm variable section of
UPS AA ENVIRONMENT VARIABLES enum (section B page 43) for environment variables that
affect this call.

SeeAlso

UPS ER Get wait time (page 140)
UPS ER Set alarm (page 142)
UPS ER Set wait time (page 143)
UPS ER Unset alarm (page 144)

UPS ER Unset alarm()

Package

er

Purpose

UPS ER Unset alarm disables the alarm that has been set to go off via a call to
UPS ER Set alarm.

Usage

C ierr = UPS ER Unset alarm ();
Fortran call UPSF ER UNSET ALARM (ierr)
Fortran77 call UPS ER UNSET ALARM (ierr)

Arguments

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

See UPS ER Set alarm. This function resets the function to jump to during a SIGALRM from

C REFERENCE MANUAL 145

upsp er sig alarm to whatever function was previously set (if any).

Examples

See the reference page for UPS ER Set alarm.

SeeAlso

UPS ER Get wait time (page 140)
UPS ER Set alarm (page 142)
UPS ER Set wait time (page 143)
UPS ER Unset alarm (page 144)

C REFERENCE MANUAL 146

C.7 Gather/scatter

See the packages section (section 6.6, page 30 for a general description of this package.
This section contains an alphabetical listing of the gather/scatter routines available in

UPS.

UPS GS Collate()

Package

gs

Purpose

UPS GS Collate collects data from all participating processes onto the designated collector pro-
cess. The data from individual processes need not be of the same count. (The collector process is
by default set to process 0; this may be changed with a call to
UPS AA Io pe set.)

Usage

C ierr = UPS GS Collate (in, count, out, datatype);
Fortran call UPSF GS COLLATE (in, count, out, datatype,

ierr)
Fortran77 call UPS GS COLLATE (in, count, out, datatype,

ierr)

Arguments

in Intent: in
C type: void*
Fortran type: user choice {0-1}
Fortran77 type: user choice {0-1}
The input data from each process.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of elements the individual process is contributing.

out Intent: out
C type: void*
Fortran type: user choice {0-1}
Fortran77 type: user choice {0-1}
The location of the collected data on the collector process.
(Significant only at the collector process.)

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The datatype of the elements in array “in”.

ierr Intent: out

C REFERENCE MANUAL 147

C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

(This discussion will be presented in terms of MPI functionality.) UPS GS Collate is essentially
a call to MPI Gatherv, where the root process doesn’t have advance knowledge of the number of
elements it is to receive from the participating processes. The user should be aware that this (usually)
requires an overhead cost beyond what is necessary for a direct call to MPI Gatherv.

SeeAlso

UPS GS Collate (page 146)
UPS GS Distribute (page 147)

UPS GS Distribute()

Package

gs

Purpose

UPS GS Distribute distributes the data from the in buffer on the distributor process to the other
processes in the current processor context. (The distributor process is by default set to process 0;
this may be changed with a call to UPS AA Io pe set.)

Usage

C ierr = UPS GS Distribute (in, counts, out, datatype);
Fortran call UPSF GS DISTRIBUTE (in, counts, out, datatype,

ierr)
Fortran77 call UPS GS DISTRIBUTE (in, counts, out, datatype,

ierr)

Arguments

in Intent: in
C type: void*
Fortran type: user choice {0-1:numpes}
Fortran77 type: user choice {0-1:numpes}
The data to be distributed.
(Significant only at the distributor process.)

counts Intent: in
C type: int*
Fortran type: UPS KIND INT4 {0-1:numpes}
Fortran77 type: UPS KIND INT4 {0-1:numpes}
A participating process will receive counts[penum] elements.
(Significant only at the distributor process.)

C REFERENCE MANUAL 148

out Intent: out
C type: void*
Fortran type: user choice {0-1:counts}
Fortran77 type: user choice {0-1:counts}
The data received by each process.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The datatype of the elements in the “in” buffer.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

(This discussion will be presented in terms of MPI functionality.) UPS GS Distribute is essen-
tially a call MPI Scatterv, where the receiving processes don’t have prior knowledge regarding the
number of elements they are to receive. The user should be aware that this (usually) requires an
overhead cost beyond what is necessary for a direct call to MPI Scatterv.

SeeAlso

UPS GS Collate (page 146)
UPS GS Distribute (page 147)

UPS GS Free()

Package

gs

Purpose

UPS GS Free destroys the gather/scatter database associated with the input handle gs id.
If the gs id is 0, all gs structures will be freed.
In order to help debug memory leaks, an error message is printed if there are any gs structures

that have not been freed.

Usage

C ierr = UPS GS Free (gs id);
Fortran call UPSF GS FREE (gs id, ierr)
Fortran77 call UPS GS FREE (gs id, ierr)

Arguments

gs id Intent: in

C REFERENCE MANUAL 149

C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The handle for the associated gather/scatter database.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

SeeAlso

UPS GS Setup (page 165)

UPS GS Gather()

Package

gs

Purpose

UPS GS Gather copies specific indices from the globally distributed array in into the local array
out. The indices copied are set up by a call to UPS GS Setup - which returns a handle, gs id, for
future gather/scatters.

There might be cases where one gs id is to be used for several arrays at the same time. This is
accomplished by the count argument. Depending on how the arrays are laid out in memory, either
UPS GS Gather or UPS GS Gather multi should be used. Below is an example of the two types and
which function call one should use.

a(n) = the nth array
i(m) = the mth index (as set up in UPS_GS_Setup)

UPS_GS_Gather:
a(1),i(n) | a(2),i(n) | a(3),i(n) ... (the n-th index is blocked)

UPS_GS_Gather_multi:
a(m),i(1) | a(m),i(2) | a(m),i(3) ... (the m-th array is blocked)

Usage

C ierr = UPS GS Gather (in, out, datatype, count,
gs id);

Fortran call UPSF GS GATHER (in, out, datatype, count,
gs id, ierr)

Fortran77 call UPS GS GATHER (in, out, datatype, count,
gs id, ierr)

Arguments

C REFERENCE MANUAL 150

in Intent: in
C type: void*
Fortran type: user choice {0-2:setup}
Fortran77 type: user choice {0-2:setup}
The local portion of the globally distributed array.

out Intent: out
C type: void*
Fortran type: user choice {0-2:setup}
Fortran77 type: user choice {0-2:setup}
Local array gotten from the global indices defined by
UPS GS Setup.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The datatype of the elements.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Number of times to perform a gather.

gs id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The handle for the database set in a prior
call to UPS GS Setup.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

Each pe “owns” an index space. Suppose pe 0 owns indices [0-2] and pe 1 owns indices [3-5]. In
the gather, suppose both pe 0 and pe 1 wish to see the global vector. Here are some sample inputs:

process in out indices
0 1, 2, 3 currently undefined 0, 1, 2, 3, 4, 5
1 4, 5, 6 currently undefined 5, 4, 3, 2, 1, 0

C REFERENCE MANUAL 151

The above input says:

• process 0 owns indices 0, 1, and 2 (whose values are 1, 2, and 3 respectively). It wishes to see
the global vector, in order, and

• process 1 owns indices 3, 4, and 5 (who values are 4, 5, and 6 respectively). It wishes to see
the global vector in reverse order.

The desired result is:

process in out indices
0 1, 2, 3 1, 2, 3, 4, 5, 6 0, 1, 2, 3, 4, 5
1 4, 5, 6 6, 5, 4, 3, 2, 1 5, 4, 3, 2, 1, 0

SeeAlso

UPS GS Setup (page 165)
UPS GS Gather multi (page 153)
UPS GS Scatter (page 156)

UPS GS Gather list()

Package

gs

Purpose

This function is the reverse of UPS GS Scatter list. It takes the ”listed” input and sends it out
to the corresponging processes. In a mirror of UPS GS Scatter list, the input is the ”list” and the
output is the same type of output as a normal UPS GS Gather call.

See see UPS GS Scatter list (section C.7 page 158) for more information.

Usage

C ierr = UPS GS Gather list (in, out, datatype, count,
gs id);

Fortran call UPSF GS GATHER LIST (in, out, datatype, count,
gs id, ierr)

Fortran77 call UPS GS GATHER LIST (in, out, datatype, count,
gs id, ierr)

Arguments

in Intent: in
C type: void*
Fortran type: user choice {0-2:setup}
Fortran77 type: user choice {0-2:setup}
The local ”listed” array. The indices of the globally
distributed array out to which these
elements correspond to are defined by
UPS GS Setup.

out Intent: out
C type: void*

C REFERENCE MANUAL 152

Fortran type: user choice {0-2:setup}
Fortran77 type: user choice {0-2:setup}
The list values after corresponding to this process.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The datatype of the elements.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Number of times to perform a gather list.
Currently, only count value of 1 is supported.

gs id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The handle for the database set in a prior
call to UPS GS Setup.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

See see UPS GS Scatter list (section C.7 page 158) for more information.

Examples

See see UPS GS Scatter list (section C.7 page 158) for more information.

SeeAlso

UPS GS Setup (page 165)
UPS GS Gather (page 149)
UPS GS Scatter (page 156)
UPS GS Gather list (page 151)
UPS GS Scatter list (page 158)
UPS GS Get item (page 155)

C REFERENCE MANUAL 153

UPS GS Gather multi()

Package

gs

Purpose

UPS GS Gather multi performs UPS GS Gather count times given the array of in and out
addresses. See the purpose section of UPS GS Gather (section C.7 page 149) for a more detailed
description.

Usage

C ierr = UPS GS Gather multi (in multi, out multi, datatype,
count, gs id);

Fortran call UPSF GS GATHER MULTI (in multi, out multi, datatype,
count, gs id, ierr)

Fortran77 call UPS GS GATHER MULTI (in multi, out multi, datatype,
count, gs id, ierr)

Arguments

in multi Intent: in
C type: void**
Fortran type: UPS KIND ADDRESS {0-1}
Fortran77 type: UPS KIND ADDRESS {0-1}
Array of input addresses

out multi Intent: out
C type: void**
Fortran type: UPS KIND ADDRESS {in multi}
Fortran77 type: UPS KIND ADDRESS {in multi}
Array of output addresses

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Datatype of the elements

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Number of times to perform a gather.

gs id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The handle for the database set in a prior
call to UPS GS Setup.

ierr Intent: out

C REFERENCE MANUAL 154

C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

• Getting Addresses in Fortran
Getting an array of addresses in C is second nature. However, some work has to be done to
get an equivalent array in Fortran. Some possibilities are:

– MPI Address()
Send the first element of your array to this MPI function

– Write a C function

void GET_ADDRESS(
const void *ptr,
void **ptr_address
)

{
ptr_address = (void)ptr;
return;

}

Call this function (like MPI Address) from your Fortran routine. Store this address in
a variable of type UPS KIND ADDRESS

It is important that the size of the variable holding the address matches with what libups.a
expects. This variable is simply cast as a C void**. One must be careful when compiling
with 64 or n32 bit addressing.

– C
Just pass in a void**.

– Fortran
Just use a UPS KIND ADDRESS array

– Fortran77
When using 64 bit addressing, use an int*8 array. When using n32 bit addressing, use
an int*4 array.

• Performance

– Fewer Communication Calls .vs. Increased Message Size
Combining messages is a good thing because it means, in general, fewer communication
calls. However, these messages will be larger. There might be some threshold to message
size where under a certain size, some protocol is used to transfer data and over that

C REFERENCE MANUAL 155

threshold, another protocol is used. Therefor, decreasing the number of communication
calls but increasing the message size might actually hurt performance.
The user is encouraged to try the multi-call and the single call to see which offers the
better performance (if any).

– multi value should be small
Essentially, gather and scatters are just copying data from one buffer to another. The
multi-calls just put this data copying in a loop. For code simplicity/readability, this loop
was placed at a high level. Thus, high values for the multi argument might not perform
very well.

SeeAlso

UPS GS Setup (page 165)
UPS GS Gather (page 149)
UPS GS Scatter (page 156)

UPS GS Get item()

Package

gs

Purpose

Get info about things in the gs package. Currently, the items that can be gotten from
UPS GS Get item are useful mainly for the UPS GS Scatter list and UPS GS Gather list functions.

Usage

C ierr = UPS GS Get item (item type, gs id, item);
Fortran call UPSF GS GET ITEM (item type, gs id, item, ierr)
Fortran77 call UPS GS GET ITEM (item type, gs id, item, ierr)

Arguments

item type Intent: in
C type: UPS GS Item enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The type of info requested.
Please see UPS GS Item enum (section B page 65)
for a listing/explanation of different items.

gs id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The handle for the database set in a prior
call to UPS GS Setup.

item Intent: out
C type: void*
Fortran type: user choice {0-1:item type:item type}
Fortran77 type: user choice {0-1:item type:item type}
The output value of the item type. See item type

C REFERENCE MANUAL 156

above.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

When a gather/scatter communication pattern is set up via UPS GS Setup, it is known which
global indices the process wishes to ”deal with” since those indices are supplied to the setup call.
However, it might not be known how other processes might access the indices owned by this process.
This function allows access to this information.

Examples

See see UPS GS Scatter list (section C.7 page 158) for a detailed example.

SeeAlso

UPS GS Setup (page 165)
UPS GS Gather (page 149)
UPS GS Scatter (page 156)
UPS GS Gather list (page 151)
UPS GS Scatter list (page 158)

UPS GS Scatter()

Package

gs

Purpose

UPS GS Scatter copies (with the GS func operation) specific indices from the local array in into
the globally distributed array out. The indices copied (then operated on) are set up by a call to
UPS GS Setup - which returns a handle, gs id, for future gather/scatters.

Usage

C ierr = UPS GS Scatter (in, out, datatype, GS func,
count, gs id);

Fortran call UPSF GS SCATTER (in, out, datatype, GS func,
count, gs id, ierr)

Fortran77 call UPS GS SCATTER (in, out, datatype, GS func,
count, gs id, ierr)

Arguments

in Intent: in
C type: void*
Fortran type: user choice {0-2:setup}
Fortran77 type: user choice {0-2:setup}

C REFERENCE MANUAL 157

The local array. The indices of the globally
distributed array out to which these
elements correspond to are defined by
UPS GS Setup.

out Intent: inout
C type: void*
Fortran type: user choice {0-2:setup}
Fortran77 type: user choice {0-2:setup}
The local portion of the global distributed array.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The datatype of the elements.

GS func Intent: in
C type: UPS AA Operation enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Please see UPS AA Operation enum
(section B page 56)
for a listing of the possible operations.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Number of times to perform a scatter.
See the purpose section of UPS GS Gather
(section C.7 page 149)
for a more detailed description.

gs id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The handle for the database set in a prior
call to UPS GS Setup.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 158

ReturnV alues

Returns UPS OK if successful.

Discussion

Each process “owns” an index space. Suppose process 0 owns indices [0-2] and process 1 owns
indices [3-5]. In the scatter operation, process 0 and process 1 contribute to the global vector. Here
are some sample inputs:

process in out indices
0 1, 2, 3, 4, 5, 6 1, 2, 3 0, 1, 2, 3, 4, 5
1 2, 3, 4, 5, 6, 7 2, 3, 4 0, 1, 2, 3, 4, 5

Now let’s say the operation is summation (UPS AA SUM). The above input says:

• process 0 owns global indices 0, 1, and 2 (whose values are currently 1, 2, and 3 respectively)
and wishes to add 1, 2, 3, 4, 5, and 6 to global indices 0, 1, 2, 3, 4, 5 respectively.

• process 1 owns global indices 3, 4, and 5 (whose values are currently 2, 3, and 4 respectively)
and wishes to add 2, 3, 4, 5, 6, and 7 to global indices 0, 1, 2, 3, 4, 5 respectively.

Upon return from UPS GS Scatter, the result is:

process global index out array
0 0 1 (initial) + 1 (from pe0) + 2 (from pe1) = 4

1 2 (initial) + 2 (from pe0) + 3 (from pe1) = 7
2 3 (initial) + 3 (from pe0) + 4 (from pe1) = 10

1 3 2 (initial) + 4 (from pe0) + 5 (from pe1) = 11
4 3 (initial) + 5 (from pe0) + 6 (from pe1) = 14
5 4 (initial) + 6 (from pe0) + 7 (from pe1) = 17

SeeAlso

UPS GS Setup (page 165)
UPS GS Gather (page 149)
UPS GS Scatter multi (page 163)

UPS GS Scatter list()

Package

gs

Purpose

This operation performs a particular type of scatter where, although the input is the same as
a normal UPS GS Scatter call, the output is the list of all values that contributed to the indices
owned by this process.

In a normal UPS GS Scatter call, all input values from all processes that contribute to any
particular index owned by this process are combined by an operation (eg UPS AA SUM) and the
value of that index is modified. For example, suppose in UPS GS Setup, a communication pattern
was defined so that all processes accessed the first index owned by process 0. During UPS GS Gather,
all processes would obtain a copy of the first index owned by process 0. During UPS GS Scatter,
every process would combine their copy of the first index via some operation (eg UPS AA SUM)
and the resulting value would be placed in first index owned by process 0. Processes could then

C REFERENCE MANUAL 159

get the value of this sum by then doing another UPS GS Gather. Of course, far more complex
communication patterns are allowed.

In UPS GS Scatter list, instead of combining the values of the contributing processes into 1
location, the values are copied sequentially to an output buffer. Using the above simple example:

UPS_GS_Scatter: index[0] = pe0_val+pe1_val+pe2_val+...
UPS_GS_Scatter_list: output_buffer = {pe0_val,pe1_val,pe2_val,...}

In general, the output buffer in UPS GS Scatter list will contain a list of all the values that
contributed to the indices owned by the calling process:

output_buffer = [{indices contributing to index i},
{indices contributing to index j},
{indices contributing to index k}, ...]

In the output buffer, the ordering of the blocks of indices [i,j,k] is in order of smallest index to
largest index. Indices that are not contributed to will not be in the output buffer.

The ordering of the actual values in a particular set:

{indices contributing to index m}

will be the same for any identical communication pattern. In other words, for any single gs id
obtained from UPS GS Setup, the same input buffers will always return the same output buffers for
repeated UPS GS Scatter list calls or repeated UPS GS Gather list calls. Similarly, for one partic-
ular gs id, corresponding elements of input array A and input array B will have the same positions
in output array FOO and output array BAR. For example, one could do a UPS GS Scatter list on
integer input with a gs id and then do UPS GS Scatter list on float input with the same gs id and
have both the integer output and float output match up as would be expected.

C REFERENCE MANUAL 160

Information can be obtained about the output buffer from a call to UPS GS Get item:

• UPS GS SUM NUM INDICES ACCESSED

Total size of the output buffer

• UPS GS NUM INDICES ACCESSED

Number of elements of each accessed index set ordered by index

[|{indices contributing to index i}|,
|{indices contributing to index j}|,
|{indices contributing to index k}|, ...]

Again, indices not accessed will not have sets in this list.

• UPS GS INDICES ACCESSED

Index values of the above set

[i, j, k, ...]

• UPS GS TOTAL INDICES ACCESSED

How many indices were accessed. (size of the arrays UPS GS NUM INDICES ACCESSED
and UPS GS INDICES ACCESSED)

• UPS GS NUM INDICES ALL

Number of times all indices are accessed (indices not accessed will have a corresponding value
of 0)

[0, 0, |{indices contributing to index i}|, 0, |{j}|, |{k}|, ...]

where the 0’s correspond to indices not accessed. The nth element in this array is the number
of times index n (0 based) was accessed. If the value is 0, then the nth index was not accessed.

See see UPS GS Get info (section C.7 page 155) for other pieces of information that can be obtained.
See the Examples section below for...an example.

C REFERENCE MANUAL 161

Usage

C ierr = UPS GS Scatter list (in, out, datatype, count,
gs id);

Fortran call UPSF GS SCATTER LIST (in, out, datatype, count,
gs id, ierr)

Fortran77 call UPS GS SCATTER LIST (in, out, datatype, count,
gs id, ierr)

Arguments

in Intent: in
C type: void*
Fortran type: user choice {0-2:setup}
Fortran77 type: user choice {0-2:setup}
The local array. The indices of the globally
distributed array out to which these
elements correspond to are defined by
UPS GS Setup.

out Intent: out
C type: void*
Fortran type: user choice {0-2:setup}
Fortran77 type: user choice {0-2:setup}
The list values which contribute to the indices
owned by this process.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The datatype of in/out buffers.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Number of times to perform a scatter list.
Currently, only count value of 1 is supported.

gs id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The handle for the database set in a prior
call to UPS GS Setup.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}

C REFERENCE MANUAL 162

Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

Performance...always nagging at me. The GS list functions are not speedy. Since lists of data
are used, yet another level of indirection in the data copy loops is introduced. Also, strict ordering
must be preserved so data compression and optimized send/recv ordering cannot be used. Do NOT
use the list functions as a replacement for the normal gather/scatter functions - unless you don’t
care that they are slower and take up more memory. If you need additional functionality added to
the normal gather/scatter functions, notify the UPS team (ups-team@lanl.gov).

Examples

The following ties together calls to UPS GS Setup, UPS GS Get item, UPS GS Scatter list, and
UPS GS Gather list.
C:

#include "ups.h"
#include <stdio.h>
void main()
{
int
i, j, gs_id, count = 5, penum, num_scatter_list_out,
num_index_info, indices[5], my_space_size = 1, my_start_index = 0,
*indices_accessed, *num_indices_accessed, *num_indices_all, position;

double
*scatter_list_output,
scatter_list_input[5];

UPS_AA_Init(NULL, NULL);
UPS_CM_Get_penum(&(penum));
// perform a setup for some set of input parameters
for(i = 0; i < count; i++)
{
indices[i] = i;

}
UPS_GS_Setup(indices, my_space_size, my_start_index,

UPS_GS_GLOBAL_INDEX, count, &(gs_id));
// get info about sizes of arrays
UPS_GS_Get_item(UPS_GS_SUM_NUM_INDICES_ACCESSED, gs_id,

&(num_scatter_list_out));
UPS_GS_Get_item(UPS_GS_TOTAL_INDICES_ACCESSED, gs_id,

&(num_index_info));
// allocate arrays and get more info
scatter_list_output = (double*)malloc(num_scatter_list_out*sizeof(double));
num_indices_accessed = (int*)malloc(num_index_info*sizeof(int));
indices_accessed = (int*)malloc(num_index_info*sizeof(int));
num_indices_all = (int*)malloc(my_space_size*sizeof(int));
UPS_GS_Get_item(UPS_GS_NUM_INDICES_ACCESSED, gs_id,

num_indices_accessed);

C REFERENCE MANUAL 163

UPS_GS_Get_item(UPS_GS_INDICES_ACCESSED, gs_id,
indices_accessed);

UPS_GS_Get_item(UPS_GS_NUM_INDICES_ALL, gs_id,
num_indices_all);

// define the input buffer and scatter_list
for(i = 0; i < count; i++)
{
scatter_list_input[i] = penum;

}
UPS_GS_Scatter_list(scatter_list_input, scatter_list_output, UPS_DT_DOUBLE,

1, gs_id);
// print out some results
for(position = 0, i = 0; i < num_index_info; i++)
{
printf("method 1: penum %d index %d accessed %d",

penum, indices_accessed[i], num_indices_accessed[i]);
printf(" values: ");
for(j = 0; j < num_indices_accessed[i]; j++)
{
printf(" %f ", scatter_list_output[position++]);

}
printf("\n");

}
for(i = 0; i < my_space_size; i++)
{
printf("method 2: penum %d index %d accessed %d\n",

penum, i, num_indices_all[i]);
}

// swap in/out buffers if you want to gather_list
UPS_GS_Gather_list(scatter_list_output, scatter_list_input, UPS_DT_DOUBLE,

1, gs_id);
UPS_GS_Free(gs_id);
UPS_AA_Terminate();

}

SeeAlso

UPS GS Setup (page 165)
UPS GS Gather (page 149)
UPS GS Scatter (page 156)
UPS GS Gather list (page 151)
UPS GS Scatter list (page 158)
UPS GS Get item (page 155)

UPS GS Scatter multi()

Package

gs

Purpose

UPS GS Scatter multi performs UPS GS Scatter multi times given the array of in and out

C REFERENCE MANUAL 164

addresses. See the purpose section of UPS GS Gather (section C.7 page 149) for a more detailed
description.

Usage

C ierr = UPS GS Scatter multi (in multi, out multi, datatype,
GS func, count, gs id);

Fortran call UPSF GS SCATTER MULTI (in multi, out multi, datatype,
GS func, count, gs id, ierr)

Fortran77 call UPS GS SCATTER MULTI (in multi, out multi, datatype,
GS func, count, gs id, ierr)

Arguments

in multi Intent: in
C type: void**
Fortran type: UPS KIND ADDRESS {0-1}
Fortran77 type: UPS KIND ADDRESS {0-1}
Array of input addresses

out multi Intent: inout
C type: void**
Fortran type: UPS KIND ADDRESS {in multi}
Fortran77 type: UPS KIND ADDRESS {in multi}
Array of input addresses

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Datatype of the elements

GS func Intent: in
C type: UPS AA Operation enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Operation to perform

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Number of times to perform a scatter.

gs id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The handle for the database set in a prior
call to UPS GS Setup.

ierr Intent: out
C type: (na) int return value

C REFERENCE MANUAL 165

Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

See the discussion-section of UPS GS Gather multi (page 153).

SeeAlso

UPS GS Setup (page 165)
UPS GS Gather (page 149)
UPS GS Gather multi (page 153)
UPS GS Scatter (page 156)

UPS GS Setup()

Package

gs

Purpose

UPS GS Setup sets up a global distributed gather/scatter database and associated communica-
tion pattern based on the input list of (global) indices. The global index space must obey a simple
variable block distribution, where each process owns a contiguous block of the index space. On-
process references are expected as positive integers representing local indices. Off-process references
are expected as negative integers representing a global index.

Usage

C ierr = UPS GS Setup (indices, my space size,
my start index,
start index type, count, gs id);

Fortran call UPSF GS SETUP (indices, my space size,
my start index,
start index type, count, gs id,
ierr)

Fortran77 call UPS GS SETUP (indices, my space size,
my start index,
start index type, count, gs id,
ierr)

Arguments

indices Intent: in
C type: const int*
Fortran type: UPS KIND INT4 {0-1}
Fortran77 type: UPS KIND INT4 {0-1}
Array containing the global index number of the nodes you
are interested in. Normal index values will be between
the starting index of process 0 and the last index of last
process. Indices outside of this range follow different

C REFERENCE MANUAL 166

rules depending upon their values. Several consecutive
negative constants are defined as follows:

1) index < first index of process 0 + UPS GS INDEX ZERO:
Gather: value does not overwrite output
Scatter: value does not contribute

2) index = first index of process 0 + UPS GS INDEX ZERO:
Gather: sets output value to 0
Scatter: value does not contribute

3) index = first index of process 0 + UPS GS INDEX SKIP:
Gather: value does not overwrite output
Scatter: value does not contribute

4) index > last index of last process:
Gather: value does not overwrite output
Scatter: value does not contribute

my space size Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of indices local to the calling process.

my start index Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The value for the first index (see start index type).

start index type Intent: in
C type: UPS GS Index type enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Variable defining to what my start index points.
(UPS GS LOCAL INDEX) points to index owned by this PE.
(UPS GS GLOBAL INDEX) points to index owned by PE 0.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The length of the indices array.

gs id Intent: inout
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Integer returned by ups to be used as an id for future
gather/scatter operations.
If given a non-0 value, UPS will try to use that ID
(no guarantee).

ierr Intent: out

C REFERENCE MANUAL 167

C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Return UPS OK if successful

Discussion

We illustrate the use of this function with two small examples. Suppose we have the following
situation:

1. three participating processes,

2. space size for processors: 5, 10, and 15, and

3. each process wants to deal with the last index that each process owns.

The user would input the following variables:

process indices count my space size my start index start index type gs id

0 4, 14, 29 3 5 0 UPS GS GLOBAL INDEX 1
1 4, 14, 29 3 10 0 UPS GS GLOBAL INDEX 1
2 4, 14, 29 3 15 0 UPS GS GLOBAL INDEX 1

Another example describes the same situation but with a different starting index. Here are the
variables that would be set:

process indices count my space size my start index start index type gs id

0 4, 14, 29 3 5 0 UPS GS LOCAL INDEX∗ 1
1 -1, 9, 24 3 10 0 UPS GS LOCAL INDEX 1
2 -10, 0, 15 3 15 1∗∗ UPS GS LOCAL INDEX 1

∗ Note different starting index type.
∗∗ Note different starting index.

SeeAlso

UPS GS Setup s global (page 167)
UPS GS Setup s local (page 170)
UPS GS Setup study (page 173)
UPS GS Gather (page 149)
UPS GS Scatter (page 156)

UPS GS Setup s global()

Package

gs

Purpose

UPS GS Setup s global is an additional method for defining the communication pattern for
future gather/scatter operations.

C REFERENCE MANUAL 168

In this method, the user specifies the global indices they wish to deal (global indices), and then
the order they will appear in their local array (local indices).

Usage

C ierr = UPS GS Setup s global (global indices, my space size,
my start index,
start index type, local indices,
local index start, count,
gs id);

Fortran call UPSF GS SETUP S GLOBAL (global indices, my space size,
my start index,
start index type, local indices,
local index start, count, gs id,
ierr)

Fortran77 call UPS GS SETUP S GLOBAL (global indices, my space size,
my start index,
start index type, local indices,
local index start, count, gs id,
ierr)

Arguments

global indices Intent: in
C type: const int*
Fortran type: UPS KIND INT4 {0-1}
Fortran77 type: UPS KIND INT4 {0-1}
Array containing the global index number of the nodes you
are interested in. Normal index values will be between
the starting index of process 0 and the last index of last
process. Indices outside of this range follow different
rules depending upon their values. Several consecutive
negative constants are defined as follows:

1) index < first index of process 0 + UPS GS INDEX ZERO:
Gather: value does not overwrite output
Scatter: value does not contribute

2) index = first index of process 0 + UPS GS INDEX ZERO:
Gather: sets output value to 0
Scatter: value does not contribute

3) index = first index of process 0 + UPS GS INDEX SKIP:
Gather: value does not overwrite output
Scatter: value does not contribute

4) index > last index of last process:
Gather: value does not overwrite output
Scatter: value does not contribute

my space size Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of indices local to the calling process.

my start index Intent: in

C REFERENCE MANUAL 169

C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The value for the first index (see start index type).

start index type Intent: in
C type: UPS GS Index type enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Variable defining to what my start index points.
(UPS GS LOCAL INDEX) points to index owned by this PE.
(UPS GS GLOBAL INDEX) points to index owned by PE 0.

local indices Intent: in
C type: const int*
Fortran type: UPS KIND INT4 {0-1}
Fortran77 type: UPS KIND INT4 {0-1}
Contains the mapping of the global indices array to the
local array. All values must point to valid locations
in the local array.

local index start Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The value of the first element in the local array. This
provides a basis for the values in the local indices
array. So, typically, in C, this value will be 0 and
in fortran, the value will be 1.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The length of the global indices array.

gs id Intent: inout
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Integer returned by ups to be used as an id for future
gather/scatter operations.
If given a non-0 value, UPS will try to use that ID
(no guarantee).

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 170

ReturnV alues

Return UPS OK if successful

Examples

The following describe what certain values would mean:

• global indices: 200,400
Gather-from or scatter-to the 200th and 400th global indices.

• local indices: 100,20
Use these indices as destinations of a gather or as inputs of a scatter.

• local index start: 1
The 100 above is the 100th element. If local index start had been 0, 100 would have meant
the 101st element.

• count: 2
Size of global indices (and local indices).

• my space size: 300
The 200th index is onpe, but the 400th index is offpe.

• my start index: 1
The 200 above is the 200th element. If my start index had been 0, 200 would have been the
201st element.

SeeAlso

UPS GS Setup (page 165)
UPS GS Setup s local (page 170)
UPS GS Setup study (page 173)

UPS GS Setup s local()

Package

gs

Purpose

UPS GS Setup s local is an additional method for defining the communication pattern for future
gather/scatter operations.

In this method, the user specifies the indices they wish to deal with in terms of two arrays:
index pe and index value. The order in which they will appear in their local array is specified by

C REFERENCE MANUAL 171

local indices.

Usage

C ierr = UPS GS Setup s local (index pe, index value,
index value start,
local indices,
local index start, count,
gs id);

Fortran call UPSF GS SETUP S LOCAL (index pe, index value,
index value start,
local indices,
local index start, count, gs id,
ierr)

Fortran77 call UPS GS SETUP S LOCAL (index pe, index value,
index value start,
local indices,
local index start, count, gs id,
ierr)

Arguments

index pe Intent: in
C type: const int*
Fortran type: UPS KIND INT4 {0-1}
Fortran77 type: UPS KIND INT4 {0-1}
This array (along with index value below) define which
indices you want to deal with. A unique index may be
determined by specifying which pe owns an index
(index pe) and what the local value of that index is
(index value).
Normal index values will be between 0 through number of
pe - 1. Values outside of this range follow different
rules depending upon their values. Several consecutive
negative constants are defined as follows:

1) index pe < UPS GS INDEX ZERO:
Gather: value does not overwrite output
Scatter: value does not contribute

2) index pe = UPS GS INDEX ZERO:
Gather: sets output value to 0
Scatter: value does not contribute

3) index = UPS GS INDEX SKIP:
Gather: value does not overwrite output
Scatter: value does not contribute

4) index > number of processes:
Gather: value does not overwrite output
Scatter: value does not contribute

index value Intent: in
C type: int*
Fortran type: UPS KIND INT4 {index pe}
Fortran77 type: UPS KIND INT4 {index pe}
Array containing indices normalized to the pe owning

C REFERENCE MANUAL 172

the index (with the first index owned by the pe having
the value index value start (below). This array, along
with index pe (above) determine a unique index.

index value start Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The label for the first index owned by a pe. Normally,
this will be 1 for Fortran programs and 0 for C programs.

local indices Intent: in
C type: const int*
Fortran type: UPS KIND INT4 {0-1}
Fortran77 type: UPS KIND INT4 {0-1}
Contains the mapping of the global indices array to the
local array. All values must point to valid locations
in the local array.

local index start Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The value of the first element in the local array. This
provides a basis for the values in the local indices
array. So, typically, in C, this value will be 0 and
in fortran, the value will be 1.

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The length of the index arrays.

gs id Intent: inout
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Integer returned by ups to be used as an id for future
gather/scatter operations.
If given a non-0 value, UPS will try to use that ID
(no guarantee).

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 173

ReturnV alues

Return UPS OK if successful

Examples

The following describe what certain values would mean:

• index pe: 2, 4, 2
The three indices are owned by pe’s 2, 4, and 2 respectively.

• index value: 100, 20, 1000
The 100th index of pe 2, the 20th index of pe 4, and the 1000th index of pe 2.

• index value start: 1
The value of 100 for index value is the 100th element owned by pe 2. If the value had been 0
for index value start, 100 would have meant the 101st element index owned by pe 2.

• local indices: 6, 3, 1
Use these indices as destinations of a gather or as inputs of a scatter.

• local index start: 1
The value of 6 for local indices is the 6th element. If the value had been 0 for local index start,
6 would have meant the 7th element.

• count: 3
Size of index pe, index value, and local indices.

SeeAlso

UPS GS Setup (page 165)
UPS GS Setup s global (page 167)
UPS GS Setup study (page 173)

UPS GS Setup study()

Package

gs

Purpose

Allow the user to define certain parameters that dictate how the GS-setup routine should operate.
A call to this function dictates how all future GS-setup routines made by this process will operate.
If you wish to change the behavior of setup calls for all processes, all processes must make a call to
UPS GS Setup study with the same settings.

Usage

C ierr = UPS GS Setup study (study setting);
Fortran call UPSF GS SETUP STUDY (study setting, ierr)
Fortran77 call UPS GS SETUP STUDY (study setting, ierr)

Arguments

study setting Intent: in
C type: UPS GS Setup study type enum
Fortran type: UPS KIND INT4 {0}

C REFERENCE MANUAL 174

Fortran77 type: UPS KIND INT4 {0}
Describe specifics about how UPS GS Setup should
be conducted.
See page 69:
UPS GS Setup study type enum for a discussion
of the different options allowable.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS GS Setup study type enum (page 69) for a discussion of the different options allowable.
See UPS AA OPT TYPE enum (page 51) for additional GS options callable from UPS AA Opt set()

(page 98) that affect these settings.
See UPS GS Item enum (page 65) for additional options callable from UPS GS Get item() (page

155) to see what information can be obtained about the setup call.

• Compression Performance
Compression creates a list of unique indices from the initial list of indices given in a setup call.
Finding the unique indices can be costly (and the cost grows as the square of the number of
indices).
To make compression worth it (time wise), you have to do enough gather/scatter calls per
setup call. Data about how much compression was done in the setup can be obtained from
the output statistics file (see UPS AA Statistics). The code location
UPS GS LOCP SETUP COMPRESSION has the following data fields:

– 0: Number of indices before compression

– 1: Number of indices after compression

– 2: compression percentage

SeeAlso

UPS GS Setup (page 165)
UPS GS Setup s global (page 167)
UPS GS Setup s local (page 170)
UPS GS Setup study (page 173)
UPS GS Get item (page 155)
UPS AA Statistics (page 99)
UPS AA Opt set (page 98)

C REFERENCE MANUAL 175

C.8 File IO

See the packages section (section 6.7, page 32 for a general description of this package.
This section contains an alphabetical listing of the io routines available in UPS.

UPS IO Attr read()

Package

io

Purpose

Read an attribute from an object.

Usage

C ierr = UPS IO Attr read (attribute name, object name,
object id, datatype, buf);

Fortran call UPSF IO ATTR READ (attribute name, object name,
object id, datatype, buf, ierr)

Fortran77 call UPS IO ATTR READ (attribute name, object name,
object id, datatype, buf, ierr)

Arguments

attribute name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the attribute.
This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

object name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the object (wrt object id).

The path to the object is obtained from object name
relative to object id. If object name is ”.”,
object id actually points to the object.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

object id Intent: in
C type: int

C REFERENCE MANUAL 176

Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
An object id that qualifies location of object name.
This id can be an id obtained from IO package open
functions.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Datatype of buf.
If necessary, the routine UPS UT Dt change is used
to convert the data datatype to this datatype.
Please see UPS DT Datatype enum (section B page 63)
for a listing/description of the possible values.

buf Intent: out
C type: void*
Fortran type: user choice {0-1:UPS IO Info create}
Fortran77 type: user choice {0-1:UPS IO Info create}
The value of the attribute.
The entire attribute that was written out is read
into buf. There is no ability to read out
a portion of an attribute. If you need to do this,
you might consider writing a dataset instead.

The size of the buffer that will be read (and various
other items of information) may be obtained from
UPS IO Info item get (section C.8 page 220).

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

C REFERENCE MANUAL 177

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

The following is a C example of writing/reading attributes associated with datasets and groups
that have already been created. Please see the examples listed above for a demonstration on how
these can be created.

In UPS IO Attr write s, the size of the attribute is specified by the ndims and dims arguments.
In UPS IO Attr write, only 1 item is written (if a string, the characters up to but not including the
null-terminator are written).

All processes must have the same data (ndims, dims, buffer, ...) When writing an attribute.
C:

• Write an int attribute to an existing group with id group id:

UPS_IO_Attr_write("io_pe", ".", group_id,
UPS_DT_INT, &io_pe_value);

-or-
ndims = 1;
dims[0] = 1;
UPS_IO_Attr_write_s("io_pe", ".", group_id,

UPS_DT_INT, ndims, dims, &io_pe_value);

• Write a string attribute to a named dataset ”hello dataset” relative to group id:

UPS_IO_Attr_write("hello message", "hello dataset", group_id,
UPS_DT_STRING, "Hello - everything is fine");

-equivalent to-
ndims = 1;
dims[0] = strlen("Hello - everything is fine");
UPS_IO_Attr_write_s("hello message", "hello dataset", group_id,

UPS_DT_STRING, ndims, dims,
"Hello - everything is fine");

Note that in the above example, exactly the characters specified by dims will be written
to (and thus read from) the file. If you wish to write (and hence read) a null-terminator,
the string buffer needs to have a null-terminator at the end and specify a dims value with
UPS IO Attr write s to include it.

• Read in a specific attribute:
Note: as mentioned above, only the characters written will be read. Only the characters
”Hello - everything is fine” are put into buf - no additional null terminator is added.

UPS_IO_Attr_read("hello message", "hello dataset", group_id,
UPS_DT_STRING, character_array);

C REFERENCE MANUAL 178

One can get information about an attribute by using the UPS query functions:

UPS_IO_Info_create_self("hello message", "hello dataset", group_id,
&count, &info_id);

If found, count will be set to 1 and info id will be set.
If you want to get an array of info ids of all the attributes attached to an object, you can call:

UPS_IO_Info_count("hello dataset", group_id,
UPS_IO_INFO_LIST_ATTRIBUTES, num_attrs)

UPS_IO_Info_create("hello dataset", group_id,
UPS_IO_INFO_LIST_ATTRIBUTES, info_id_array)

This will get an array of info ids upon which you can use UPS IO Info item get to get things
like the name of the attribute.
See UPS IO File open (section C.8 page 198) for more examples of querying the file.

SeeAlso

UPS IO Attr read (page 175)
UPS IO Attr write (page 178)
UPS IO Info create (page 214)
UPS IO Info create self (page 217)

UPS IO Attr write()

Package

io

Purpose

Write an attribute to an object.
This is a synchronization point for all processes accessing the file.

Usage

C ierr = UPS IO Attr write (attribute name, object name,
object id, datatype, buf);

Fortran call UPSF IO ATTR WRITE (attribute name, object name,
object id, datatype, buf, ierr)

Fortran77 call UPS IO ATTR WRITE (attribute name, object name,
object id, datatype, buf, ierr)

Arguments

attribute name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the attribute.
This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)

C REFERENCE MANUAL 179

name(1:name length)//ACHAR(0)

object name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the object (wrt object id).

The path to the object is obtained from object name
relative to object id. If object name is ”.”,
object id actually points to the object.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

object id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
An object id that qualifies location of object name.
This id can be an id obtained from IO package open
functions.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Datatype of buf.
Please see UPS DT Datatype enum (section B page 63)
for a listing/description of the possible values.

buf Intent: in
C type: const void*
Fortran type: user choice {0-1:UPS IO Info create}
Fortran77 type: user choice {0-1:UPS IO Info create}
The value of the attribute.
This argument must be the same on all processes.
The buffer is a single item of type datatype.
If the datatype is UPS DT STRING, buf must be
null-terminated and the characters written to
the file will be the non-null characters.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 180

ReturnV alues

Returns 0 if successful

Discussion

This routine makes a call UPS IO Attr write s with the ndims and dims arguments filled in.
Please see UPS IO Attr write s (section C.8 page 180) for more information.

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO Attr read (page 175)
UPS IO Attr write (page 178)
UPS IO Attr write s (page 180)
UPS IO Info create (page 214)

UPS IO Attr write s()

Package

io

Purpose

Write an attribute to an object.
This is a synchronization point for all processes accessing the file.

Usage

C ierr = UPS IO Attr write s (attribute name, object name,
object id, datatype, ndims,
dims, buf);

Fortran call UPSF IO ATTR WRITE S (attribute name, object name,
object id, datatype, ndims,
dims, buf, ierr)

Fortran77 call UPS IO ATTR WRITE S (attribute name, object name,
object id, datatype, ndims,
dims, buf, ierr)

Arguments

C REFERENCE MANUAL 181

attribute name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the attribute.
This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

object name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the object (wrt object id).

The path to the object is obtained from object name
relative to object id. If object name is ”.”,
object id actually points to the object.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

object id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
An object id that qualifies location of object name.
This id can be an id obtained from IO package open
functions.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Datatype of buf.
Please see UPS DT Datatype enum (section B page 63)
for a listing/description of the possible values.

ndims Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Number of dimensions of the attribute.
This argument must be the same on all processes.

dims Intent: in

C REFERENCE MANUAL 182

C type: long long*
Fortran type: UPS KIND INT8 {0-1:ndims}
Fortran77 type: UPS KIND INT8 {0-1:ndims}
The size of each dimension.
This argument must be the same on all processes.

buf Intent: in
C type: const void*
Fortran type: user choice {0-1:UPS IO Info create}
Fortran77 type: user choice {0-1:UPS IO Info create}
The value of the attribute.
This argument must be the same on all processes.
The data written to the file is dictated by the
ndims and dims arguments.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns 0 if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO Attr read (page 175)
UPS IO Attr write (page 178)
UPS IO Attr write s (page 180)
UPS IO Info create (page 214)

C REFERENCE MANUAL 183

UPS IO Dataset read()

Package

io

Purpose

Reads subset (described by info data id) of a dataset.

Usage

C ierr = UPS IO Dataset read (name, group id, datatype,
info data id, buf);

Fortran call UPSF IO DATASET READ (name, group id, datatype,
info data id, buf, ierr)

Fortran77 call UPS IO DATASET READ (name, group id, datatype,
info data id, buf, ierr)

Arguments

name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the dataset (wrt group id).

The path to the dataset is obtained from name
relative to group id.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

group id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
A group id that qualifies location of object name.
This id can be an id obtained from IO package open
functions.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Datatype of buf.
If necessary, the routine UPS UT Dt change is used
to convert the data datatype to this datatype.
Please see UPS DT Datatype enum (section B page 63)
for a listing/description of the possible values.

info data id Intent: in

C REFERENCE MANUAL 184

C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Id of info struct describing how the dataset is
distributed.
See UPS IO Info create (section C.8 page 214) for more information.

buf Intent: out
C type: void*
Fortran type: user choice {0-4:UPS IO Info create}
Fortran77 type: user choice {0-4:UPS IO Info create}
The values of the dataset.
If a string, the buffer will not have any additional
null-terminator written to the buffer.
The length may be obtained from UPS IO Info item get
(section C.8 page 220).

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns 0 if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

A ”dataset” is logically n-dimensional. However, in memory the data is laid out contiguously in
one dimension. In the examples section, I demonstrate what information each process must set to
describe dataset and the order in which UPS expects to see dataset values.

When reading a dataset, the default behavior is to have each process read in the same dataset
section that was written by the corresponding pe. When a user writes a dataset, additional infor-
mation is written to the file describing which proceses wrote which part of the dataset. When it is
not possible for the processes to read in what the corresponding process wrote out (eg the number
of processes has changed from write to read), the user must specify what part of the dataset to read.
Before a read, the user has the ability to to get information about the dataset and modify what will
be read in. See the examples below.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

C REFERENCE MANUAL 185

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

An example...whew!, suppose you have a 1d array of global node ids where each node id corre-
sponds to 2d x/y/z coordinate array. Suppose, then, there are 7 nodes and 3 processes. One might
split up the nodes such that process 0 ”owns” the first 3, process 1 owns the next 2, and process 2
owns the last 2.

Node IDs Coordinates
1 1.1, 1.2, 1.3---|--> process 0
2 2.1, 2.2, 2.3 |
3 3.1, 3.2, 3.3---|

4 4.1, 4.2, 4.3---|--> process 1
5 5.1, 5.2, 5.3---|

6 6.1, 6.2, 6.3---|--> process 2
7 7.1, 7.2, 7.3---|

• Specifying UPS IO INFO NDIMS and UPS IO INFO DIMS (these must always be specified)
When the data is distributed contiguously in processor order, only the number of dimensions
of the dataset and the dimensions local to the process need be defined.
When writing the Node IDs, the arguments will be:

All: ndims_nid = 1
Process 0: dims_nid = [3]

buf_nid[] = [1,2,3]
Process 1: dims_nid = [2]

buf_nid[] = [4,5]
Process 2: dims_nid = [2]

buf_nid[] = [6,7]

When writing the Coordinates, the arguments will be:

All: ndims_coord = 2
Process 0: dims_coord = [3,3]

buf_coord[] = [1.1,1.2,1.3,2.1,2.2,2.3,3.1,3.2,3.3]
Process 1: dims_coord = [2,3]

buf_coord[] = [4.1,4.2,4.3,5.1,5.2,5.3]
Process 2: dims_coord = [2,3]

buf_coord[] = [6.1,6.2,6.3,7.1,7.2,7.3]

Note that all dimensions except for the first dimension must be the same. For processes not
writing any data, they would set the dims of the first dimension to be 0.
Also note the ordering of the buffer data (buff nid and buff coord). When traveling through
memory, the last dimension (in the buff coord case, the ”column number”) moves fastest. The
user must ensure that the memory layout of their buffer is consistent with what UPS expects.
Now, what does this look like in a program? We do the following steps:

C REFERENCE MANUAL 186

1. Create two info ids that contain information about how the datasets are distributed.
To create empty infos, supply ”” as a name to UPS IO Info create (and the group id
argument will not be used).

UPS_IO_Info_create("", 0, UPS_IO_INFO_DATA_DIST,
&info_id_nid);

UPS_IO_Info_create("", 0, UPS_IO_INFO_DATA_DIST,
&info_id_coord);

2. Set ndims and dims info in the info id’s.
Remember, due to the assumed data layout, each process only need know its local sizes.

UPS_IO_Info_item_set(info_id_nid, UPS_IO_INFO_NDIMS,
&ndims_nid);

UPS_IO_Info_item_set(info_id_nid, UPS_IO_INFO_DIMS,
dims_nid);

UPS_IO_Info_item_set(info_id_coord, UPS_IO_INFO_NDIMS,
&ndims_coord);

UPS_IO_Info_item_set(info_id_coord, UPS_IO_INFO_DIMS,
dims_coord);

Note, if dims/ndims were the same for both datasets, we could have just created 1 info id
and used it multiple times in UPS IO Dataset write. Since the datasets have different
sizes, we must create a new info id.

3. Now, we’re ready to write the datasets (into opened group id):

UPS_IO_Dataset_write("node ids", group_id, UPS_DT_INT,
info_id_nid, buf_nid);

UPS_IO_Dataset_write("coordinates", group_id, UPS_DT_DOUBLE,
info_id_coord, buf_coord);

4. Free the infos created:

UPS_IO_Info_free(1, info_id_nid);
UPS_IO_Info_free(1, info_id_coord);

• Specifying UPS IO INFO STARTS
Although not needed in this example due to the data layout, one can manually specify where
each process will start writing its data. Setting UPS IO INFO STARTS will override the
internal default settings.
Note: UPS IO INFO NDIMS and UPS IO INFO DIMS must still be defined in the same way
as the above example.
When writing the Node IDs, the starting positions will be:

Process 0: starts_nid = [0]
Process 1: starts_nid = [3]
Process 2: starts_nid = [5]

C REFERENCE MANUAL 187

When writing the Coordinates, the starting positions will be:

Process 0: starts_coord = [0,0]
Process 1: starts_coord = [3,0]
Process 2: starts_coord = [5,0]

When setting information, make the following calls in addition to the ones setting
UPS IO INFO NDIMS and UPS IO INFO DIMS:

UPS_IO_Info_item_set(info_id_nid, UPS_IO_INFO_STARTS,
&starts_nid);

UPS_IO_Info_item_set(info_id_coord, UPS_IO_INFO_STARTS,
&starts_coord);

• Specifying UPS IO INFO PGRID DIMS and UPS IO INFO PGRID ORDER
Although not needed in this example due to the data layout, one can specify a process grid
which defines how a dataset is split among the processes. These settings are superseded if
UPS IO INFO STARTS is also defined.
Note: UPS IO INFO NDIMS and UPS IO INFO DIMS must still be defined in the same way
as the first example.
UPS IO INFO PGRID DIMS must have the same dimensionality as UPS IO INFO DIMS.
You are defining the number of processes along each dimension.
UPS IO INFO PGRID ORDER is of size Product(UPS IO INFO PGRID DIMS) and defines
the ordering of the processes in the process grid. The default process ordering is the same as
data value ordering - along the last dimension first. So, in this example it is not needed but
is defined anyway.
When writing the Node IDs, the process grid values must be set by all processes and will be:

All processes: pgrid_dims_nid = [3]
pgrid_order_nid = [0,1,2]

When writing the Coordinates, the process grid values must be set by all processes and will
be:

All processes: pgrid_dims_coord = [3,1]
pgrid_order_coord = [0,1,2]

When setting information, make the following calls in addition to the ones setting
UPS IO INFO NDIMS and UPS IO INFO DIMS:

UPS_IO_Info_item_set(info_id_nid, UPS_IO_INFO_PGRID_DIMS,
&pgrid_dims_nid);

UPS_IO_Info_item_set(info_id_nid, UPS_IO_INFO_PGRID_ORDER,
&pgrid_order_nid);

UPS_IO_Info_item_set(info_id_coord, UPS_IO_INFO_PGRID_DIMS,
&pgrid_dims_coord);

C REFERENCE MANUAL 188

UPS_IO_Info_item_set(info_id_coord, UPS_IO_INFO_PGRID_ORDER,
&pgrid_order_coord);

O.K., now there are a couple of dataset written. How would you read them back in? With the
following calls:

1. Close the above file and open it again for reading.

2. Define a couple of infos describing how the dataset is distributed. As we are reading in the
same way we wrote them out, we can call UPS IO Info create and create filled-infos.

UPS_IO_Info_create("node ids", group_id,
UPS_IO_INFO_DATA_DIST, &info_id_nid);

UPS_IO_Info_create("coordinates", group_id,
UPS_IO_INFO_DATA_DIST, &info_id_coord);

Whalla - values for internal IO package data is set correctly to read in the dataset just as it
was written out.
Note: You can get the info id associated with a dataset in various ways:

• Use UPS IO Info create as above

• Use a similar UPS function

UPS_IO_Info_create_self("", "node ids", group_id, &count,
&info_id_nid);

If found, count will be set to 1 and info id nid will be the info id.

• Get a listing of the members of a group

UPS_IO_Info_count(".", group_id, UPS_IO_INFO_LIST_MEMBERS,
num_info_ids)

UPS_IO_Info_create(".", group_id, UPS_IO_INFO_LIST_MEMBERS,
info_id_array)

This will get an array of info ids upon which you can use UPS IO Info item get to get
things like name and object type (dataset or group).

See UPS IO File open (section C.8 page 198) for more examples of querying the file.
As mentioned in the discussion section above, the default is to read in how it was written. If
this is not possible (eg the number of processes reading does not equal the number of processes
writing), the user must specify what part of the dataset to read - as in the next example.
If you wish to read in a different dataset section than what is defaulted, for example you wish
to read in the entire dataset even though you are reading with the same number of pes that
were used for writing, you must do the following after calling UPS IO Info create:

(a) Get dims total dataset info:

UPS_IO_Info_item_get(info_id_coord, UPS_IO_INFO_DIMS_TOTAL,
dims_total);

C REFERENCE MANUAL 189

(b) reset dims to dims total and starts to start at beginning:

UPS_IO_Info_item_set(info_id_coord, UPS_IO_INFO_DIMS,
dims_total);

starts[0] = 0;
starts[1] = 0;
UPS_IO_Info_item_set(info_id_coord, UPS_IO_INFO_STARTS,

starts);

3. Read the datasets:

UPS_IO_Dataset_read("node ids", group_id, UPS_DT_INT,
info_id_nid, buf_nid);

UPS_IO_Dataset_read("coordinates", group_id, UPS_DT_DOUBLE,
info_id_coord, buf_coord);

4. Free the infos created:

UPS_IO_Info_free(1, info_id_nid);
UPS_IO_Info_free(1, info_id_coord);

Note, UPS IO Info create (and then UPS IO Info item get) can be used to query existing
datasets for information (just as shown in UPS IO Attr read).

Sequential File Access

The UPS IO routines are designed so that the file objects (groups, datasets, and attributes)
are accessed via names. This way, you can move around the file quickly and the file itself is self
descriptive (hopefully).

However, if you wish to operate in a sequential mode, you may. The basic operating procedure
would be:

1. Open file for creation

2. Write dataset, write dataset, write dataset, ...

3. Close file

4. Open file for read

5. Read dataset, read dataset, read dataset, ...
The first dataset read corresponds to the first dataset written

6. Close file

No names of datasets are given to the write or the read calls. Internally, UPS keeps track of
which dataset is being written or read and then increments a simple counter when the write or read
is finished.

Through calls to UPS IO Loc item get, the user can obtain the name of the dataset and then
use UPS IO Info create with that name to get information about the dataset. This is not required.

The following is an example of sequential write to a file. In this example, only a single dset id is
created because the datasets have the same layout. Note that names are not supplied to the write
or read calls.

C REFERENCE MANUAL 190

UPS_IO_File_open("seq_file.h5", UPS_IO_OPEN_CREATE, &file_id);
UPS_IO_Info_create("", file_id, UPS_IO_INFO_DATA_DIST, &dset_id);
UPS_IO_Info_item_set(dset_id, UPS_IO_INFO_NDIMS, ndims);
UPS_IO_Info_item_set(dset_id, UPS_IO_INFO_DIMS, dims);
UPS_IO_Dataset_write("", file_id, UPS_DT_DOUBLE, dset_id, first_dset);
UPS_IO_Dataset_write("", file_id, UPS_DT_DOUBLE, dset_id, second_dset);
UPS_IO_Dataset_write("", file_id, UPS_DT_DOUBLE, dset_id, third_dset);
UPS_IO_File_close(file_id);

In the read, I demonstrate how you can get the name of the dataset and feed that into
UPS IO Info create to get an info id that has information about the dataset. This makes it easier
to read if you are reading exactly how you wrote out. This is not necessary. You could create an
empty info id, fill it with the correct ndims, dims, and starts, then read the dataset.

Again, since the three datasets have the same layout, I can reuse the same dset id. If they did
not, I would call UPS IO Info create before each read.

UPS_IO_File_open("seq_file.h5", UPS_IO_OPEN_READ, &file_id);
UPS_IO_Loc_item_get(file_id, UPS_IO_LOC_DS_NEXT_R, dset_name);
UPS_IO_Info_create(dset_name, file_id, UPS_IO_INFO_DATA_DIST,

&dset_id);
UPS_IO_Dataset_read("", file_id, UPS_DT_DOUBLE, dset_id, first_dset);
UPS_IO_Dataset_read("", file_id, UPS_DT_DOUBLE, dset_id, second_dset);
UPS_IO_Dataset_read("", file_id, UPS_DT_DOUBLE, dset_id, third_dset);
UPS_IO_File_close(file_id);

Sequential access of a file is not encouraged because such files are not as self descriptive as files
with an organized structure and whose object names mean something.

Creating a Dataset from Pieces

There may be times when you wish to create a global dataset but you only have access to a
subset of the pieces at one time. You can call UPS IO Dataset write() multiple times with the
following caveats:

• UPS IO Dataset write() is a collective call.
All processes must still call UPS IO Dataset write. If a process has no data, set
UPS IO INFO DIMS to 0s.

• You must set UPS IO INFO NDIMS, UPS IO INFO DIMS, UPS IO INFO STARTS and
UPS IO INFO DIMS TOTAL.
You cannot use the default or UPS IO INFO PGRID settings and you must know the total
size of the dataset beforehand.

• The datatype, UPS IO INFO NDIMS, UPS IO INFO DIMS TOTAL, cannot change.

• You must set UPS IO INFO DIMS and UPS IO INFO STARTS when reading the dataset
back.
Saying ”must” is a little strong...”should” perhaps is better. Using the underlying protocol
UPS IO PROTOCOL HDF, the default values gotten from UPS IO Info create() (”what this

C REFERENCE MANUAL 191

process wrote is what it reads”) will get each process only the data it wrote during the last
UPS IO Dataset write(). However, other protocols might behave differently.
So, better safe than sorry - set dims and starts manually.

SeeAlso

UPS IO Dataset read (page 183)
UPS IO Dataset write (page 191)
UPS IO Info create (page 214)
UPS IO Loc item get (page 224)
UPS IO Loc item set (page 225)

UPS IO Dataset write()

Package

io

Purpose

Writes subset (described by info data id) of a dataset.
This is a synchronization point for all processes accessing the file.

Usage

C ierr = UPS IO Dataset write (name, group id, datatype,
info data id, buf);

Fortran call UPSF IO DATASET WRITE (name, group id, datatype,
info data id, buf, ierr)

Fortran77 call UPS IO DATASET WRITE (name, group id, datatype,
info data id, buf, ierr)

Arguments

name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the dataset (wrt group id).

The path to the dataset is obtained from name
relative to group id.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

group id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
A group id that qualifies location of object name.
This id can be an id obtained from IO package open
functions.

C REFERENCE MANUAL 192

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Datatype of buf.
Please see UPS DT Datatype enum (section B page 63)
for a listing/description of the possible values.

info data id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Id of info struct describing how the dataset is
distributed.
See UPS IO Info create (section C.8 page 214) for more information.

buf Intent: in
C type: const void*
Fortran type: user choice {0-4:UPS IO Info create}
Fortran77 type: user choice {0-4:UPS IO Info create}
The values of the dataset.
If a string, the buffer is not null-terminated.
The size is dictated by dims of info data id.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)

C REFERENCE MANUAL 193

This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

Notes

Please see UPS IO ACCESS PES enum (section B page 70) for environment variables that affect
this call.

SeeAlso

UPS IO Dataset read (page 183)
UPS IO Dataset write (page 191)
UPS IO Info create (page 214)
UPS IO Loc item get (page 224)
UPS IO Loc item set (page 225)

UPS IO Ds r s()

Package

io

Purpose

Wrap several UPS calls to allow for easier reading/writing of a globally distributed array dataset
in which every process owns a single value.

This is a synchronization point for all processes accessing the file.

Usage

C ierr = UPS IO Ds r s (name, group id, datatype,
buf);

Fortran call UPSF IO DS R S (name, group id, datatype, buf,
ierr)

Fortran77 call UPS IO DS R S (name, group id, datatype, buf,
ierr)

Arguments

name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the dataset (wrt group id).

The path to the dataset is obtained from name
relative to group id.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

group id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}

C REFERENCE MANUAL 194

A group id that qualifies location of object name.
This id can be an id obtained from IO package open
functions.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Datatype of buf.
Please see UPS DT Datatype enum (section B page 63)
for a listing/description of the possible values.

buf Intent: out
C type: void*
Fortran type: user choice {0}
Fortran77 type: user choice {0}
The single value.
The process will read what the corresponding process
wrote. An error occurs if called with a different
number of processes.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Upon writing, an array will be created consisting of each value from each process.
Upon reading, each process will read in the value it wrote out. An error occurs if reading with

a different number of processes that were used to write. In this case, one must use the general
UPS IO Dataset read and specify what exactly should be read.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)

C REFERENCE MANUAL 195

This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

Notes

This routine basically wraps several UPS calls:

1. UPS IO Info create
Get info id

2. UPS IO Dataset read
Read in the one value this pe wrote

3. UPS IO Info free
Free the info id created

Please see UPS IO ACCESS PES enum (section B page 70) for environment variables that affect
this call.

SeeAlso

UPS IO Dataset read (page 183)
UPS IO Dataset write (page 191)
UPS IO Ds r s (page 193)
UPS IO Ds w s (page 195)

UPS IO Ds w s()

Package

io

Purpose

Wrap several UPS calls to allow for easier reading/writing of a globally distributed array dataset
in which every process owns a single value.

This is a synchronization point for all processes accessing the file.

Usage

C ierr = UPS IO Ds w s (name, group id, datatype,
buf);

Fortran call UPSF IO DS W S (name, group id, datatype, buf,
ierr)

Fortran77 call UPS IO DS W S (name, group id, datatype, buf,
ierr)

Arguments

name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the dataset (wrt group id).

The path to the dataset is obtained from name
relative to group id.

This string must be null-terminated.

C REFERENCE MANUAL 196

As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

group id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
A group id that qualifies location of object name.
This id can be an id obtained from IO package open
functions.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Datatype of buf.
Please see UPS DT Datatype enum (section B page 63)
for a listing/description of the possible values.

buf Intent: in
C type: const void*
Fortran type: user choice {0}
Fortran77 type: user choice {0}
The single value.
If the datatype is UPS DT STRING, buf must be
null-terminated and the characters written to
the file will be the non-null characters.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Upon writing, an array will be created consisting of each value from each process.
Upon reading, each process will read in the value it wrote out. An error occurs if reading with

a different number of processes that were used to write. In this case, one must use the general
UPS IO Dataset read and specify what exactly should be read.

Examples

See the following for discussions on using the io package:

C REFERENCE MANUAL 197

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

Notes

This routine basically wraps several UPS calls:

1. UPS IO Info create/UPS IO Info item set
Get info id and set values so that each process writes a single value

2. UPS IO Dataset write
Write out the one value

3. UPS IO Info free
Free the info id created

Please see UPS IO ACCESS PES enum (section B page 70) for environment variables that affect
this call.

SeeAlso

UPS IO Dataset read (page 183)
UPS IO Dataset write (page 191)
UPS IO Ds r s (page 193)
UPS IO Ds w s (page 195)

UPS IO File close()

Package

io

Purpose

Close a file id opened with UPS IO File open. This must be called after closing all group ids
opened with the file id.

This is a synchronization point for all processes accessing the file.

Usage

C ierr = UPS IO File close (file id);
Fortran call UPSF IO FILE CLOSE (file id, ierr)
Fortran77 call UPS IO FILE CLOSE (file id, ierr)

Arguments

file id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}

C REFERENCE MANUAL 198

File id obtained by UPS IO File open.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

File ids obtained by UPS IO File open must be closed by UPS IO File close. Group ids obtained
by UPS IO Group open must be closed by UPS IO Group close.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO File close (page 197)
UPS IO File open (page 198)
UPS IO Group close (page 209)
UPS IO Group open (page 210)
UPS IO Info create (page 214)

UPS IO File open()

Package

io

Purpose

Opens the file and returns a file id.

C REFERENCE MANUAL 199

This is a synchronization point for all processes accessing the file.

Usage

C ierr = UPS IO File open (name, open method, file id);
Fortran call UPSF IO FILE OPEN (name, open method, file id,

ierr)
Fortran77 call UPS IO FILE OPEN (name, open method, file id,

ierr)

Arguments

name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the file.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

open method Intent: in
C type: UPS IO OPEN METHOD enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Types of opening (ie open for read, create, ...)
Please see UPS IO OPEN METHOD enum (section B page 82)

file id Intent: inout
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
File id. This id may be passed to
UPS IO Group open calls.
This id must be closed with
UPS IO File close.
By default, UPS sets this value and will make it the
same value as returned by the underlying protocol
(eg an HDF location id).
You may use your own non-negative value by calling
UPS AA Opt set with UPS IO OPT LOC ID USERS set
to UPS DT TRUE.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 200

ReturnV alues

Returns 0 if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

File ids obtained by UPS IO File open must be closed by UPS IO File close. Group ids obtained
by UPS IO Group open must be closed by UPS IO Group close.

HIGH LEVEL DISCUSSION
The following is a basic discussion of IO package file. I’ll start with a definition of objects.
Objects: All objects are named (and thus referenced) by a string. A file contains the following

basic objects:

1. Groups

Groups provide a way to structure a file. Much the same as Unix directories, groups are
containers for datasets (see below) and, in fact, other groups. Thus, a ”directory structure”
can be created.
After opening, an integer id is returned and is used as a ”handle” to that group. This id is
used in other IO package functions.
In general a file is a special case of a group (and thus on opening has an associated ID that
can be used like a group id).

2. Datasets

A Dataset, as the name suggests, is a collection of data. Typically, this is an array that was
distributed among the processes (although it can be data that only exists on a subset of the
process set).
Datasets exist in groups (similar to Unix files existing in a directory).

3. Attributes

Attributes are smaller, less robust datasets that are ”attached” to a group or dataset (as
opposed to existing autonomously in a group). They allow you to describe the object they
are attached to. For example, you could create a dataset called ”coordinates” and attach a
string attributed named ”units” with a value of ”fathoms”.

With the above objects, you can create structured, self-describing files.
Many of the IO package calls are synchronization points (all processes must call them and the

order of the calls to synchronization points must be the same). For the most part, an IO package
function will be a synchronization point whenever the file changes (eg writing a dataset or creating
a group). Even if, for example, a process is not contributing data to a dataset write, it still must
make the call to UPS IO Dataset write.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

C REFERENCE MANUAL 201

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

The following shows how to create a ”directory structure” in a file. The same type of thing can
be done to traverse an existing directory structure.

1. Set options dictating how the file will be used:
Options are set via a call to UPS AA Opt set (section C.2 page 98). An example is:

MPI_Info mpi_info;
UPS_IO_ACCESS_PES_enum file_access;
ierr += MPI_Info_create(&mpi_info);
ierr += MPI_Info_set(mpi_info, "striping_factor", "64");
ierr += UPS_AA_Opt_set(UPS_IO_OPT_INFO, &mpi_info);
file_access = UPS_IO_ACCESS_IO_PE;
ierr += UPS_AA_Opt_set(UPS_IO_OPT_ACCESS_WRITE, &file_access);
assert(!ierr);

2. Open a file:

UPS_IO_File_open("my_file.dat", UPS_IO_OPEN_CREATE, &file_id);

3. Open a group in the file:

UPS_IO_Group_open("group_a", file_id, UPS_IO_OPEN_CREATE, &group_a_id);

4. Open another group in the file:

UPS_IO_Group_open("group_b", file_id, UPS_IO_OPEN_CREATE, &group_b_id);

5. Open a subgroup under group a:

UPS_IO_Group_open("group_a_sub", group_a_id, UPS_IO_OPEN_CREATE,
&group_a_sub_id);

6. When finished, close everything up (with the file close last)

UPS_IO_Group_close(group_a_sub_id);
UPS_IO_Group_close(group_b_id);
UPS_IO_Group_close(group_a_id);
UPS_IO_File_close(file_id);

Now that the file exists, one can open the file/groups by doing the following (note the change
of the argument UPS IO OPEN CREATE to UPS IO OPEN READ):

C REFERENCE MANUAL 202

UPS_IO_File_open("my_file.dat", UPS_IO_OPEN_READ, &file_id);
UPS_IO_Group_open("group_a", file_id, UPS_IO_OPEN_READ, &group_a_id);

If the directory structure is unknown, queries can be made about the file. In the following
examples, when the file was created a dataset with an attribute was also created. This will help in
demonstrating how the count and create calls are used.

• Getting the members of a group
In this example, an array of info ids containing information about the members of a group is
obtained. Then each member is processed.
UPS IO Info count is used for getting the number of info ids that will be created when calling
UPS IO Info create.
Note: name array[i] is a pointer to a string that is long enough to hold the name of the i’th
attribute plus a null terminator. Also, it has been initialized to null since the name returned
by UPS IO Info item get is not null-terminated. Thus, this name can be passed to other
functions that expect the name to be null terminated.

UPS_IO_Info_count(".", group_a_id, UPS_IO_LIST_MEMBERS,
&count);

UPS_IO_Info_create(".", group_a_id, UPS_IO_LIST_MEMBERS,
info_id_array);

for(i = 0; i < count; i++)
{
UPS_IO_Info_item_get(info_id_array[i], UPS_IO_INFO_NAME,

name_array[i]);
printf("Member %d name is %s.\n", i, name_array[i]);
UPS_IO_Info_item_get(info_id_array[i], UPS_IO_INFO_OBJECT_TYPE,

object_type_array[i]);
if(object_type_array[i] == UPS_IO_FILE_OBJECT_GROUP)
{
printf("And it was a group.\n");

}
if(object_type_array[i] == UPS_IO_FILE_OBJECT_DATASET)
{
printf("And it was a dataset.\n");

}
}

UPS_IO_Info_free(count, info_id_array);

• Getting the attributes of a dataset
In this case, the object name and object id arguments to
UPS IO Info count/UPS IO Info create point to a specific dataset.
Note: when reading an attribute, the entire attribute is read into the buffer. There is no way
to read part of an attribute.
Note: when reading a string attribute, only the exact number of characters that were written
are read back in. Unless an explicit size that included the null terminator
(UPS IO Attr write s) was used to write the attribute, the null terminator was not written
to the attribute. Thus, space was allocated for 1 more than number of items and that last
character was initialized to the null terminator in order to get the printf to work.

C REFERENCE MANUAL 203

UPS_IO_Info_count("hello dataset", group_id,
UPS_IO_INFO_LIST_ATTRIBUTES, &count);

UPS_IO_Info_create("hello dataset", group_id,
UPS_IO_INFO_LIST_ATTRIBUTES, info_id_array);

for(i = 0; i < count; i++)
{
UPS_IO_Info_item_get(info_id_array[i], UPS_IO_INFO_NAME,

name_array[i]);
printf("Attribute %d name is %s.\n", i, name_array[i]);
UPS_IO_Info_item_get(info_id_array[i], UPS_IO_INFO_DATATYPE,

&datatype);
UPS_IO_Info_item_get(info_id_array[i], UPS_IO_INFO_NITEMS,

&number_of_items);
if(datatype == UPS_DT_STRING)
{
character_array = calloc(number_of_items + 1, sizeof(char));
printf("The datatype is an array of characters.\n");
UPS_IO_Attr_read(name_array[i], "hello dataset", group_id,

UPS_DT_STRING, character_array);
printf("With a value of %s.\n", character_array);

}
else
{

// error code for invalid datatype could go here
}

}
UPS_IO_Info_free(count, info_id_array);

• Using a filter to examine a specific attribute

One can use filters to limit the number of matches in
UPS IO Info count/UPS IO Info create.

UPS_IO_Filter_set("hello message", UPS_IO_FILTER_INFO);
UPS_IO_Info_count("hello dataset", group_id,

UPS_IO_INFO_LIST_ATTRIBUTES, &count);
assert(count == 1);
UPS_IO_Info_create("hello dataset", group_id,

UPS_IO_INFO_LIST_ATTRIBUTES,
&single_info_id);

UPS_IO_Info_item_get(single_info_id, UPS_IO_INFO_NITEMS,
num_chars);

printf("The ’hello message’ string attribute has %lli chars.",
num_chars);

UPS_IO_Info_free(count, &single_info_id);
UPS_IO_Filter_set("", UPS_IO_FILTER_INFO_SET);

Note: in the above example, the call to UPS IO Info count is done merely to verify a count
of 1. If you REALLY know the attribute is there, you can just assume a count of 1 and go
straight to the UPS IO Info create call.

C REFERENCE MANUAL 204

Also, the UPS IO Filter command lasts until reset by the next UPS IO Filter call (and is
removed with a null-terminated string of length 0 (C: ””, Fortran: ACHAR(0)).
For the same effect, one could use UPS IO Info create self:

UPS_IO_Info_create_self("hello message", "hello dataset", group_id,
&count, &single_info_id);

UPS_IO_Info_free(count, &single_info_id);

So, why have both ways (create self and filtering)? There are more complex filters one can do
(see the next example).

• Getting all info ids recursively

One can get a listing of all the members (NOT attributes) recursively from a particular
object name+object id.

UPS_IO_Filter_set("* /", UPS_IO_FILTER_INFO);
UPS_IO_Info_count("group_a", file_id,

UPS_IO_INFO_LIST_MEMBERS, &num_recursive_members);
UPS_IO_Info_create("group_a", file_id,

UPS_IO_INFO_LIST_MEMBERS,
info_id_array);

UPS_IO_Info_free(num_recursive_members, info_id_array);
UPS_IO_Filter_set("", UPS_IO_FILTER_INFO_SET);

Note: there is not space between ”*” and ”/”.

• Getting specific info ids recursively

One can get a listing of all the members of (NOT attributes) of a specific name recursively
from a particular object name+object id.

UPS_IO_Filter_set("* /hello dataset", UPS_IO_FILTER_INFO);
UPS_IO_Info_count(".", file_id,

UPS_IO_INFO_LIST_MEMBERS, &num_matches);
UPS_IO_Filter_set("", UPS_IO_FILTER_INFO_SET);

Note: there is not space between ”*” and ”/”.
This example returns the number of members named ”hello dataset” found recursively from
the top level directory.

Removing objects from the file
If you wish to remove an object from the file, use UPS IO Rm. This call is recursive. The

following will remove group a and all of its contents recursively. In this case, it is just sub group a.
If sub group a also had objects beneath it, they would be removed from the file as well:

UPS_IO_Rm("", ".", group_a_id);

Which is the same as

C REFERENCE MANUAL 205

UPS_IO_Rm("", "group_a", file_id);

The first argument to UPS IO Rm is for removing specific attributes. Leave as ”” for removing
entire datasets or groups.

Notes

Please see UPS IO OPEN METHOD enum (section B page 82) for a description of the different
open methods.

Please see UPS IO ACCESS PES enum (section B page 70) for environment variables that affect
this call.

SeeAlso

UPS IO File close (page 197)
UPS IO File open (page 198)
UPS IO Group close (page 209)
UPS IO Group open (page 210)
UPS IO Info create (page 214)
UPS IO Rm (page 227)

UPS IO File type()

Package

io

Purpose

Returns the type of protocol that wrote the file. If the protocol cannot be determined, protocol
is set to UPS IO PROTOCOL UNKNOWN

Usage

C ierr = UPS IO File type (name, protocol);
Fortran call UPSF IO FILE TYPE (name, protocol, ierr)
Fortran77 call UPS IO FILE TYPE (name, protocol, ierr)

Arguments

name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the file.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

protocol Intent: out
C type: UPS IO PROTOCOL enum*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The type of prototocol that wrote the file.

C REFERENCE MANUAL 206

If unknown, protocol is set to UPS IO PROTOCOL UNKNOWN.
Please see UPS IO PROTOCOL enum (section B page 82)

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns 0 if no errors. If the protocol was unknown but there were no errors, 0 will still be the
value of ierr and protocol will be UPS IO PROTOCOL UNKNOWN.

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

If able, UPS will use the appropriate protocol to read the file. If unable (eg the protocol is
UPS IO PROTOCOL UNKNOWN.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS AA Opt set (page 98)

UPS IO Filter get()

Package

io

Purpose

Get filter values. Currently, the filter is only used for UPS IO Info count and UPS IO Info create
calls. The filter modifies the number of matches in those calls.

Usage

C ierr = UPS IO Filter get (filter type, buf);
Fortran call UPSF IO FILTER GET (filter type, buf, ierr)
Fortran77 call UPS IO FILTER GET (filter type, buf, ierr)

Arguments

C REFERENCE MANUAL 207

filter type Intent: in
C type: UPS IO FILTER TYPE enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The filter type.
Please see UPS IO FILTER TYPE enum
(section B page 73)
for a listing of the possible values.

buf Intent: out
C type: void*
Fortran type: user choice {0-1:filter type:filter type}
Fortran77 type: user choice {0-1:filter type:filter type}
The value associated with filter type.

If a string, the buffer will not have any additional
null-terminator written to the buffer.
The length may be obtained from UPS IO Filter get
(section C.8 page 206).

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.
This also contains examples of using UPS IO Filter set to create a filters that modify the
results of UPS IO Info count and UPS IO Info create calls.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

C REFERENCE MANUAL 208

SeeAlso

UPS IO Filter get (page 206)
UPS IO Filter set (page 208)
UPS IO Info count (page 212)
UPS IO Info create (page 214)
UPS IO Info create self (page 217)
UPS IO Info free (page 219)
UPS IO Info item get (page 220)
UPS IO Info item set (page 222)

UPS IO Filter set()

Package

io

Purpose

Set filter values. Currently, the filter is only used for UPS IO Info count and UPS IO Info create
calls. The filter limits the number of matches in those calls.

Usage

C ierr = UPS IO Filter set (filter type, buf);
Fortran call UPSF IO FILTER SET (filter type, buf, ierr)
Fortran77 call UPS IO FILTER SET (filter type, buf, ierr)

Arguments

filter type Intent: in
C type: UPS IO FILTER TYPE enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The filter type.
Please see UPS IO FILTER TYPE enum
(section B page 73)
for a listing of the possible values.

buf Intent: in
C type: const void*
Fortran type: user choice {0-1:filter type:filter type}
Fortran77 type: user choice {0-1:filter type:filter type}
The value associated with filter type.

If setting a string, it must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 209

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO Filter get (page 206)
UPS IO Filter set (page 208)
UPS IO Info count (page 212)
UPS IO Info create (page 214)
UPS IO Info create self (page 217)
UPS IO Info free (page 219)
UPS IO Info item get (page 220)
UPS IO Info item set (page 222)

UPS IO Group close()

Package

io

Purpose

Close a group id opened with UPS IO Group open

Usage

C ierr = UPS IO Group close (group id);
Fortran call UPSF IO GROUP CLOSE (group id, ierr)
Fortran77 call UPS IO GROUP CLOSE (group id, ierr)

Arguments

group id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}

C REFERENCE MANUAL 210

Fortran77 type: UPS KIND INT4 {0}
Group id obtained by UPS IO Group open.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

File ids obtained by UPS IO File open must be closed by UPS IO File close. Group ids obtained
by UPS IO Group open must be closed by UPS IO Group close.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO File close (page 197)
UPS IO File open (page 198)
UPS IO Group close (page 209)
UPS IO Group open (page 210)
UPS IO Info create (page 214)

UPS IO Group open()

Package

io

Purpose

Opens a group and returns a group id
If the open method is UPS IO OPEN CREATE, parent directories will be created if needed.

C REFERENCE MANUAL 211

This is a synchronization point for all processes accessing the file when creating a group.

Usage

C ierr = UPS IO Group open (name, group id parent,
open method, group id);

Fortran call UPSF IO GROUP OPEN (name, group id parent,
open method, group id, ierr)

Fortran77 call UPS IO GROUP OPEN (name, group id parent,
open method, group id, ierr)

Arguments

name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the group (wrt group id parent)

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

group id parent Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Group id where to create group.
This id can be an id obtained from IO package open
functions. Thus, a file can have a structure
of groups like a unix directory structure.

open method Intent: in
C type: UPS IO OPEN METHOD enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Types of opening (ie open for read, create, ...)
Please see UPS IO OPEN METHOD enum (section B page 82)

group id Intent: inout
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Group id. This id may be passed to
UPS IO Group open calls.
This id must be closed with
UPS IO Group close.
By default, UPS sets this value and will make it the
same value as returned by the underlying protocol
(eg an HDF location id).
You may use your own non-negative value by calling

C REFERENCE MANUAL 212

UPS AA Opt set with UPS IO OPT LOC ID USERS set
to UPS DT TRUE.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

File ids obtained by UPS IO File open must be closed by UPS IO File close. Group ids obtained
by UPS IO Group open must be closed by UPS IO Group close.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO File close (page 197)
UPS IO File open (page 198)
UPS IO Group close (page 209)
UPS IO Group open (page 210)
UPS IO Info create (page 214)

UPS IO Info count()

Package

io

Purpose

Return the number of info ids associated with the object given the info type. This might be
used for allocating the info ids integer array to be passed into UPS IO Info create.

C REFERENCE MANUAL 213

A filter may be applied to modify the results by calling UPS IO Filter set.

Usage

C ierr = UPS IO Info count (object name, object id,
info type, count);

Fortran call UPSF IO INFO COUNT (object name, object id,
info type, count, ierr)

Fortran77 call UPS IO INFO COUNT (object name, object id,
info type, count, ierr)

Arguments

object name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the object (wrt object id).
If object name is ”.”, object id is the id of
the object.

The path to the object is obtained from object name
relative to object id. If object name is ”.”,
object id actually points to the object.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)

object id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
An object id that qualifies location of object name.
This id can be an id obtained from IO package open
functions.

info type Intent: in
C type: UPS IO INFO TYPE enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The info type in question.
Please see UPS IO INFO TYPE enum
(section B page 79)
for a listing of the possible values.

count Intent: out
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return the number of info ids associated with the object
given the info type.

C REFERENCE MANUAL 214

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO Filter get (page 206)
UPS IO Filter set (page 208)
UPS IO Info count (page 212)
UPS IO Info create (page 214)
UPS IO Info create self (page 217)
UPS IO Info free (page 219)
UPS IO Info item get (page 220)
UPS IO Info item set (page 222)

UPS IO Info create()

Package

io

Purpose

Create and return info ids associated with the object and info type. The number of ids returned
is found with a call to UPS IO Info count.

C REFERENCE MANUAL 215

A filter may be applied to modify the results by calling UPS IO Filter set.

Usage

C ierr = UPS IO Info create (object name, object id,
info type, info ids);

Fortran call UPSF IO INFO CREATE (object name, object id,
info type, info ids, ierr)

Fortran77 call UPS IO INFO CREATE (object name, object id,
info type, info ids, ierr)

Arguments

object name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the object (wrt object id).
If object name is ”.”, object id is the id of
the object.

The path to the object is obtained from object name
relative to object id. If object name is ”.”,
object id actually points to the object.

For info type of UPS IO INFO DATA DIST:
An object name of 0 length (””) will create an empty
info.
An object name of non-0 length will fill the info with
data on how penum filled the dataset.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

object id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
An object id that qualifies location of object name.
This id can be an id obtained from IO package open
functions.

info type Intent: in
C type: UPS IO INFO TYPE enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The info type in question.
Please see UPS IO INFO TYPE enum
(section B page 79)
for a listing of the possible values.

C REFERENCE MANUAL 216

info ids Intent: out
C type: int*
Fortran type: UPS KIND INT4 {0-1:UPS IO Info count}
Fortran77 type: UPS KIND INT4 {0-1:UPS IO Info count}
This array contains info ids that are used in other
IO info functions. Essentially, these ids are handles
to internal structs.
The number of elements in the array can be obtained
by UPS IO Info count.
The user is responsible for calling UPS IO Info free
when finished with these ids.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO Filter get (page 206)
UPS IO Filter set (page 208)
UPS IO Info count (page 212)
UPS IO Info create (page 214)
UPS IO Info create self (page 217)
UPS IO Info free (page 219)
UPS IO Info item get (page 220)
UPS IO Info item set (page 222)

C REFERENCE MANUAL 217

UPS IO Info create self()

Package

io

Purpose

Create an info id for the object at object name and object loc or get an info id for the attribute
at attribute name, object name, and object loc. If the object or attribute does not exist, info id is
not set and the count returned will be 0.

Usage

C ierr = UPS IO Info create self (attribute name, object name,
object id, count, info id);

Fortran call UPSF IO INFO CREATE SELF (attribute name, object name,
object id, count, info id, ierr)

Fortran77 call UPS IO INFO CREATE SELF (attribute name, object name,
object id, count, info id, ierr)

Arguments

attribute name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
If you wish to get an info id of a specific
attribute, this is the name of the attribute.
Otherwise, set this value to the null terminator
[C=””, Fortran=ACHAR(0)] and the info id will be that
of the object at object name and object id.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

object name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the object (wrt object id).
If object name is ”.”, object id is the id of
the object.

The path to the object is obtained from object name
relative to object id. If object name is ”.”,
object id actually points to the object.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)

C REFERENCE MANUAL 218

name(1:name length)//ACHAR(0)

object id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
An object id that qualifies location of object name.
This id can be an id obtained from IO package open
functions.

count Intent: out
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
If the object or attribute is found, the count will
be 1 and info id will be set (and info id must be
freed by with a call to UPS IO Info free).
Otherwise, count will be 0 and info id will not
be set.

info id Intent: inout
C type: int*
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
If the object or attribute is found, the count will
be 1 and info id will be set (and info id must be
freed by with a call to UPS IO Info free).
Otherwise, count will be 0 and info id will not
be set.

The info id can be used in other IO functions.
Essentially, these ids are handles to internal structs.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

The functionality of this call is a combination of UPS IO Filter set, UPS IO Info count, and
UPS IO Info create. I found myself writing code using the above functions to find if an object

C REFERENCE MANUAL 219

existed and get info about it. It was getting tedious so I decided to put it in a function.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO Filter get (page 206)
UPS IO Filter set (page 208)
UPS IO Info count (page 212)
UPS IO Info create (page 214)
UPS IO Info create self (page 217)
UPS IO Info free (page 219)
UPS IO Info item get (page 220)
UPS IO Info item set (page 222)

UPS IO Info free()

Package

io

Purpose

Free info ids

Usage

C ierr = UPS IO Info free (count, info ids);
Fortran call UPSF IO INFO FREE (count, info ids, ierr)
Fortran77 call UPS IO INFO FREE (count, info ids, ierr)

Arguments

count Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The number of elements in info ids array

info ids Intent: in
C type: const int*
Fortran type: UPS KIND INT4 {0-1}
Fortran77 type: UPS KIND INT4 {0-1}
An array containing info ids that were obtained

C REFERENCE MANUAL 220

by UPS IO Info create.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO Info create (page 214)
UPS IO Info create self (page 217)
UPS IO Info free (page 219)

UPS IO Info item get()

Package

io

Purpose

Get the value of a private data variable defined by info id, info item, and info type.

Usage

C ierr = UPS IO Info item get (info id, info item, buf);
Fortran call UPSF IO INFO ITEM GET (info id, info item, buf, ierr)
Fortran77 call UPS IO INFO ITEM GET (info id, info item, buf, ierr)

Arguments

C REFERENCE MANUAL 221

info id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The id of the info to deal with.
ID’s are obtained from UPS IO Info create.

info item Intent: in
C type: UPS IO INFO ITEM enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The info item in question.
Please see UPS IO INFO ITEM enum
(section B page 74)
for a listing of the possible values.

buf Intent: out
C type: void*
Fortran type: user choice {0-1:info item:info item}
Fortran77 type: user choice {0-1:info item:info item}
The value of the info item.
If a string, the buffer will not have any additional
null-terminator written to the buffer.
The length may be obtained from UPS IO Info item get
(section C.8 page 220).

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

C REFERENCE MANUAL 222

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO Filter get (page 206)
UPS IO Filter set (page 208)
UPS IO Info count (page 212)
UPS IO Info create (page 214)
UPS IO Info create self (page 217)
UPS IO Info free (page 219)
UPS IO Info item get (page 220)
UPS IO Info item set (page 222)

UPS IO Info item set()

Package

io

Purpose

Set the value of a private data variable defined by info id, info item, and info type.

Usage

C ierr = UPS IO Info item set (info id, info item, buf);
Fortran call UPSF IO INFO ITEM SET (info id, info item, buf, ierr)
Fortran77 call UPS IO INFO ITEM SET (info id, info item, buf, ierr)

Arguments

info id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The id of the info to deal with.
ID’s are obtained from UPS IO Info create.

info item Intent: in
C type: UPS IO INFO ITEM enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The info item in question.
Please see UPS IO INFO ITEM enum
(section B page 74)
for a listing of the possible values.

buf Intent: in
C type: const void*
Fortran type: user choice {0-1:info item:info item}
Fortran77 type: user choice {0-1:info item:info item}
The value of the info item.
If a string, it must be null-terminated.
As an example, Fortran users may pass in a string

C REFERENCE MANUAL 223

concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

Notes

• Setting some options invalidates others (requiring you to reset them if you had set the previ-
ously).

– UPS IO INFO DIMS: UPS IO INFO DIMS TOTAL

– UPS IO INFO NDIMS: Everything

– UPS IO INFO STARTS: UPS IO INFO DIMS TOTAL, UPS IO INFO PGRID DIMS,
UPS IO INFO PGRID ORDER

– UPS IO INFO PGRID DIMS: UPS IO INFO STARTS

– UPS IO INFO PGRID ORDER: UPS IO INFO STARTS

From writing UPS regression tests, I have found it easy to create bugs when trying to reuse
info ids for several dataset writes and changing the parameters via UPS IO Info item set().
As long as you do not change the parameters, reuse is fine. However, if you do change the
parameters, I would suggest just getting a ”fresh” info id and setting all the parameters again.
There should not be much of a performance loss doing this.

C REFERENCE MANUAL 224

SeeAlso

UPS IO Filter get (page 206)
UPS IO Filter set (page 208)
UPS IO Info count (page 212)
UPS IO Info create (page 214)
UPS IO Info create self (page 217)
UPS IO Info free (page 219)
UPS IO Info item get (page 220)
UPS IO Info item set (page 222)

UPS IO Loc item get()

Package

io

Purpose

Get the value of a private data variable defined by loc id and loc item.

Usage

C ierr = UPS IO Loc item get (loc id, loc item, buf);
Fortran call UPSF IO LOC ITEM GET (loc id, loc item, buf, ierr)
Fortran77 call UPS IO LOC ITEM GET (loc id, loc item, buf, ierr)

Arguments

loc id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The id of the loc to deal with.
ID’s are obtained from UPS IO File open and
UPS IO Group open.

loc item Intent: in
C type: UPS IO LOC ITEM enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The loc item in question.
Please see UPS IO LOC ITEM enum
(section B page 79)
for a listing of the possible values.

buf Intent: out
C type: void*
Fortran type: user choice {0-1:loc item:loc item}
Fortran77 type: user choice {0-1:loc item:loc item}
The value of the loc item.
If a string, the buffer will not have any additional
null-terminator written to the buffer.
The length may be obtained from UPS IO Loc item get
(section C.8 page 224).

C REFERENCE MANUAL 225

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO File open (page 198)
UPS IO Group open (page 210)
UPS IO Info item get (page 220)
UPS IO Info item set (page 222)
UPS IO Loc item get (page 224)
UPS IO Loc item set (page 225)

UPS IO Loc item set()

Package

io

Purpose

Get the value of a private data variable defined by loc id and loc item.

Usage

C ierr = UPS IO Loc item set (loc id, loc item, buf);
Fortran call UPSF IO LOC ITEM SET (loc id, loc item, buf, ierr)
Fortran77 call UPS IO LOC ITEM SET (loc id, loc item, buf, ierr)

Arguments

C REFERENCE MANUAL 226

loc id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The id of the loc to deal with.
ID’s are obtained from UPS IO File open and
UPS IO Group open.

loc item Intent: in
C type: UPS IO LOC ITEM enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The loc item in question.
Please see UPS IO LOC ITEM enum
(section B page 79)
for a listing of the possible values.

buf Intent: in
C type: const void*
Fortran type: user choice {0-1:loc item:loc item}
Fortran77 type: user choice {0-1:loc item:loc item}
The value of the loc item.
If a string, it must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful

Discussion

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

C REFERENCE MANUAL 227

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO Info item get (page 220)
UPS IO Info item set (page 222)
UPS IO Loc item get (page 224)
UPS IO Loc item set (page 225)
UPS IO Loc item get (page 224)
UPS IO Loc item set (page 225)

UPS IO Rm()

Package

io

Purpose

Remove an object (group, dataset, attribute) from a file. The remove is recursive.
This is a synchronization point for all processes accessing the file.

Usage

C ierr = UPS IO Rm (attribute name, object name,
object id);

Fortran call UPSF IO RM (attribute name, object name,
object id, ierr)

Fortran77 call UPS IO RM (attribute name, object name,
object id, ierr)

Arguments

attribute name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the attribute to remove. If you wish
to remove the object defined by object name and
object id, set attribute name to be the
null terminator [C=””, Fortran=ACHAR(0)].
This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

object name Intent: in
C type: const char*
Fortran type: UPS KIND CHAR {0}
Fortran77 type: UPS KIND CHAR {0}
The name of the object (wrt object id).
If attribute name is the null terminator, this is the
object to remove.

C REFERENCE MANUAL 228

The path to the object is obtained from object name
relative to object id. If object name is ”.”,
object id actually points to the object.

This string must be null-terminated.
As an example, Fortran users may pass in a string
concatenated with the null-character:
’my string here without null terminator’//ACHAR(0)
name(1:name length)//ACHAR(0)

object id Intent: in
C type: int
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
An object id that qualifies location of object name.
This id can be an id obtained from IO package open
functions (UPS IO File open, UPS IO Group open).

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns 0 if successful

Discussion

When an object is removed, it creates a hole in the file. A write during the same run will
attempt to use the hole (if it can fit) created by the rm. Hole reuse is not done inbetween runs.
Thus rm/write/rm/write/... will cause the file to grow. To ”repack” the file, use the command line
executable ups io cp to copy a file to a new location.

Existing info ids (from UPS IO Info create) and location ids (from UPS IO Group open) that
”point at” the removed objects should be freed (UPS IO Info free or UPS IO Group close respec-
tively) before a call to UPS IO Rm. The object is not guaranteed to be removed until all references
to it have been closed.

See UPS IO File open (section C.8 page 198) for a high level discussion of the structure of an
IO package file.

Examples

See the following for discussions on using the io package:

• UPS IO File open (section C.8 page 198)
This contains discussions on file/group creation and using UPS IO Info create to get informa-
tion about members of a group.

• UPS IO Dataset read (section C.8 page 183)
This contains discussions on dataset writing/reading and using UPS IO Info create to describe
the shape of the dataset.

C REFERENCE MANUAL 229

• UPS IO Attr read (section C.8 page 175)
This contains discussions on attribute writing/reading and using UPS IO Info create to get
information about an objects attributes.

SeeAlso

UPS IO Group open (page 210)
UPS IO Group close (page 209)
UPS IO Info create (page 214)
UPS IO Info free (page 219)

C REFERENCE MANUAL 230

C.9 Utilities

See the packages section (section 6.8, page 35 for a general description of this package.
This section contains an alphabetical listing of the utility routines available in UPS.

UPS UT Binary op()

Package

ut

Purpose

UPS DP Binary op performs a specified operation on 2 vectors (Options specified below). The
effect is to convert 2 arrays of count elements each into 1 array of count elements. This function is
used in UPS internals but is also provided for the users benefit.

Usage

C ierr = UPS UT Binary op (src a, src b, datatype,
operation, count, dest);

Arguments

src a Intent: in
C type: void*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The input vector of data.

src b Intent: in
C type: void*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The other input vector of data.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The type of the data.
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

operation Intent: in
C type: UPS AA Operation enum
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The operation to perform.
Please see UPS AA Operation enum
(section B page 56)
for a listing of the possible operations.

count Intent: in

C REFERENCE MANUAL 231

C type: int
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The number of elements in input array src [ab]

dest Intent: out
C type: void*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The output vector.

ierr Intent: out
C type: (na) int return value
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

This routine was added to provide a common routine to do binary operations. If a vector is
provided, then the operation is done on the first element of each array, stored in dest, then the
second element...and so on.

NOTE: For increased performance, this routine does not check for UPS initialization.

SeeAlso

UPS UT Binary op (page 230)
UPS UT Binary opm (page 231)
UPS UT Reduce op (page 244)
UPS UT Reduce opm (page 246)

UPS UT Binary opm()

Package

ut

Purpose

UPS UT Binary opm extends the capability of UPS UT Binary op by adding a masking capa-
bility.

Usage

C ierr = UPS UT Binary opm (src a, src b, mask, datatype,
operation, count, dest);

Arguments

src a Intent: in
C type: void*
Fortran type: (na) no equivalent routine

C REFERENCE MANUAL 232

Fortran77 type: (na) no equivalent routine
The input vector of data.

src b Intent: in
C type: void*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The input vector of data.

mask Intent: in
C type: const int*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
boolean (int) array specifying which elements
of the input vector are to be operated upon.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The type of the data.
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

operation Intent: in
C type: UPS AA Operation enum
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The operation to perform.
Please see UPS AA Operation enum
(section B page 56)
for a listing of the possible operations.

count Intent: in
C type: int
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The number of elements in input array src [ab]

dest Intent: out
C type: void*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The output vector.

ierr Intent: out
C type: (na) int return value
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 233

ReturnV alues

Returns UPS OK if successful.

Discussion

This routine was added to provide a common routine to do binary operations. If a vector is
provided, then the operation is done on the first element of each array, stored in dest, then the
second element...and so on.

NOTE: For increased performance, this routine does not check for UPS initialization.

SeeAlso

UPS UT Binary op (page 230)
UPS UT Binary opm (page 231)
UPS UT Reduce op (page 244)
UPS UT Reduce opm (page 246)

UPS UT Checksum get()

Package

ut

Purpose

Return a int8 (long long) checksum value computed from a buffer. This checksum can be used
as a check of data corruption.

Usage

C ierr = UPS UT Checksum get (buf, count, datatype,
checksum type, checksum value);

Fortran call UPSF UT CHECKSUM GET (buf, count, datatype,
checksum type, checksum value,
ierr)

Fortran77 call UPS UT CHECKSUM GET (buf, count, datatype,
checksum type, checksum value,
ierr)

Arguments

buf Intent: in
C type: void*
Fortran type: user choice {0-3}
Fortran77 type: user choice {0-3}
The buffer of data to compute the checksum on.

count Intent: in
C type: long long
Fortran type: UPS KIND INT8 {0}
Fortran77 type: UPS KIND INT8 {0}
The number of elements of type datatype in buf

datatype Intent: in
C type: UPS DT Datatype enum

C REFERENCE MANUAL 234

Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The datatype of the elements.
Please see UPS DT Datatype enum (section B page 63)

checksum type Intent: in
C type: UPS UT CHECKSUM TYPE enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The type of checksum for perform
Please see UPS UT CHECKSUM TYPE enum (section B page 85)
for a listing/explanation of different items.
Currently, only UPS UT CHECKSUM CRC is supported.

checksum value Intent: out
C type: long long*
Fortran type: UPS KIND INT8 {0}
Fortran77 type: UPS KIND INT8 {0}
The checksum value computed on buf.
NOTE: this value is a signed quantity.
See the discussion below.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

• checksum value is signed
In order to allow the same interface (and same checksum value) to be returned from both the
C and Fortran interfaces, I decided to have checksum value be a signed quantity. Internally
checksum value is likely to be unsigned and then cast to a signed quantity.
A problem arises when comparing two signed checksum values that, when converted from
unsigned quantities, end up being -0 and +0. There is no way to distinguish between the two.
So, the checksums will be different yet you will think they are the same.
However, the probability of the above happening is very small. First, the checksum value of a
data buffer would have to result in a (+/-)0. Then, the other checksum would have to result
in the other (-/+)0. For a 64 bit random checksums, that would be:

1/(2^63) * 1/(2^64) = 1/(2^127) (via Sunlung Suen)

As checksums are never truly random, the actual probability would be somewhat less than
this. The CRC checksum method will produce fairly random sequences so this should not be
a problem. Experiments pending....

C REFERENCE MANUAL 235

Examples

Suppose you wanted to verify that data is being sent correctly:

1. UPS UT Checksum get on send buffer to get checksum send

2. Sender: Send buffer and checksum send

3. Receiver: Recv buffer and checksum send

4. UPS UT Checksum get on recv buffer to get checksum recv

5. checksum recv and checksum send must be the same

UPS UT Convert()

Package

ut

Purpose

UPS UT Convert converts between UPS and other package (eg MPI) parameters.
This function is used in UPS internals but is also provided for the users benefit.

Usage

C ierr = UPS UT Convert (in, out, convert type);
Fortran call UPSF UT CONVERT (ierr)
Fortran77 call UPS UT CONVERT (in, out, convert type, ierr)

Arguments

in Intent: in
C type: const void*
Fortran type: (na) no equivalent routine
Fortran77 type: user choice {0}
in converted to out

out Intent: out
C type: void*
Fortran type: (na) no equivalent routine
Fortran77 type: user choice {0}
in converted to out

convert type Intent: in
C type: UPS UT Convert enum
Fortran type: (na) no equivalent routine
Fortran77 type: UPS KIND INT4 {0}
The type of conversion.
See UPS UT Convert enum (section B page 86)
for a listing of the possible conversion types.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}

C REFERENCE MANUAL 236

Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

UPS needs to have a consistent definition of types (variables types, reduction operations, etc.).
This function lets us convert between UPS types to “other package types”.

UPS UT Dt change()

Package

ut

Purpose

Assign to out buf (out datatype) the values of in buf (in datatype). If no conversion is possible,
an error is returned.

Usage

C ierr = UPS UT Dt change (in buf, in datatype,
out datatype, count, out buf);

Fortran77 call UPS UT DT CHANGE (in buf, in datatype,
out datatype, count, out buf,
ierr)

Arguments

in buf Intent: inout
C type: void*
Fortran type: (na) only F77
Fortran77 type: user choice {0-4::in datatype}
The input buffer (count number of elements)

in datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: (na) only F77
Fortran77 type: user choice {0-4::in datatype}
Datatype of in buf.
Please see UPS DT Datatype enum (section B page 63)
for a listing/description of the possible values.

out datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: (na) only F77
Fortran77 type: user choice {0-4::in datatype}
Datatype of out buf.
Please see UPS DT Datatype enum (section B page 63)
for a listing/description of the possible values.

C REFERENCE MANUAL 237

count Intent: in
C type: long long
Fortran type: (na) only F77
Fortran77 type: user choice {0-4::in datatype}
Number of elements in both in buf and out buf

out buf Intent: inout
C type: void*
Fortran type: (na) only F77
Fortran77 type: user choice {0-4::in datatype}
The output buffer (count number of elements).

ierr Intent: out
C type: (na) int return value
Fortran type: (na) only F77
Fortran77 type: user choice {0-4::in datatype}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns 0 if successful

Discussion

This routine simply does a copy of 1 datatype to another via a C assignment. So, any caveats
for C copying apply here as well. For example, copying a floating value to an integer value will
truncate and copying a long long to an int might produce overflow problems.

This operation will likely be irreversible: float to an int back to a float will likely give you a
different value than what you started with.

I have conversion to/from character data (UPS DT CHAR) because it was because I use it in
the HDF-EnSight reader libusert-HDF. This conversion will give different output depending upon
the architecture. Be careful when using this conversion - do not expect the same answer.

This routine is mainly used in UPS internals but is also provided to the user.

UPS UT Get name or value()

Package

ut

Purpose

Return the name or value given the value or name respectively. In the case of a tie, the first
match is returned.

Usage

C ierr = UPS UT Get name or value (name value struct,
name or value, get name or value,
value or name);

Arguments

name value struct Intent: in
C type: const UPS UT Name value struct*

C REFERENCE MANUAL 238

Fortran type: (na) not implemented
Fortran77 type: (na) not implemented
the name value struct

name or value Intent: in
C type: const void*
Fortran type: (na) not implemented
Fortran77 type: (na) not implemented
name or value to look for

get name or value Intent: in
C type: UPS UT Name or value enum
Fortran type: (na) not implemented
Fortran77 type: (na) not implemented
If looking for a name or a value.
See UPS UT Name or value enum
(section B page 87)
for the different options.

value or name Intent: out
C type: void*
Fortran type: (na) not implemented
Fortran77 type: (na) not implemented
value or name corresponding to name or value.
0 (value) or NULL (name) is returned if not found.
See ierr below.

ierr Intent: out
C type: (na) int return value
Fortran type: (na) not implemented
Fortran77 type: (na) not implemented
Return status.
Returns UPS OK if successfully found.

ReturnV alues

Returns UPS OK if found.

Discussion

The last name/value pair must be: ””, 0
When a name is returned, it is a pointer to the corresponding char* in the name value struct.

So, if you free the name value struct, the name will no longer point to a valid char*.

Examples

C:

static UPS_UT_Name_value_struct etypes_nnodes[] =
{
{ "point", 1 },
{ "bar2", 2 },
{ "bar3", 3 },

C REFERENCE MANUAL 239

{ "quad8", 8 },
{ "hexa8", 8 },
{ "", 0 }

};
int ierr, value, count;
char *name;
...
ierr = UPS_UT_Get_name_or_value(etypes_nnodes,

"hexa8",
UPS_UT_GET_VALUE,
&value);

...
value = 8;
ierr = UPS_UT_Get_name_or_value(etypes_nnodes,

&value,
UPS_UT_GET_NAME,
&name);

...
ierr = UPS_UT_Get_name_or_value(etypes_nnodes,

NULL,
UPS_UT_GET_COUNT,
&count);

This routine can also be used to get names/values of UPS constants.
Code Location:

...
ierr = UPS_UT_Get_name_or_value(UPS_AA_Code_location_enum_val_name,

"UPS_IO_LOC_ATTR_READ",
UPS_UT_GET_VALUE,
&value);

...
value = UPS_IO_LOC_ATTR_READ;
ierr = UPS_UT_Get_name_or_value(UPS_AA_Code_location_enum_val_name,

&value,
UPS_UT_GET_NAME,
&name);

Datatype:

...
ierr = UPS_UT_Get_name_or_value(UPS_DT_Datatype_enum_val_name,

"UPS_DT_DOUBLE",
UPS_UT_GET_VALUE,
&value);

...
value = UPS_DT_DOUBLE;
ierr = UPS_UT_Get_name_or_value(UPS_DT_Datatype_enum_val_name,

&value,
UPS_UT_GET_NAME,

C REFERENCE MANUAL 240

&name);

The rule for the name of the UPS UT Name value struct that has the name/value enums you
want is to take the name of the enum and add on ” val name” to the end.

UPS_AA_Code_location_enum --> UPS_AA_Code_location_enum_val_name

UPS UT Loc struct alloc()

Package

ut

Purpose

Allocates space in the private variable upsp ut.<d,f,i,l>buf <in,out>. The process is as
follows:

1. If there is already enough space for the count desired, just return.

2. Otherwise, free the location and set the new location to a place with enough memory.

3. reset the private size of this new buffer.

Negative counts have the effect of freeing the memory for that private variable.

Usage

C ierr = UPS UT Loc struct alloc (datatype, count);

Arguments

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The type of the data.
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

count Intent: in
C type: const int
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
Number of elements being allocated.

ReturnV alues

Returns UPS OK if successful. Values less than 0 indicate an error.

Discussion

This function is used in UPS internals but is also provided for the users benefit.

C REFERENCE MANUAL 241

UPS UT Loc structure()

Package

ut

Purpose

Doing an allreduce for a location datatype requires a structure (containing .val and .loc elements)
as input and output. Often (as is the case for fortran), you have either 2 arrays (one being val, and
the other loc) or a single array ([2*i] = value, [2*i+1] = location: i=0,n).

This routine maps that structure to the arrays.

Usage

C ierr = UPS UT Loc structure (val, loc, loc struct,
datatype, count, operation,
loc type);

Arguments

val Intent: inout
C type: void*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
Either the array corresponding to the .val element in the
struct or an array containing both the .val and .loc elements

loc Intent: inout
C type: int*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
Array of the loc values corresponding .loc in the struct

loc struct Intent: inout
C type: void*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The array of .val .loc structs

datatype Intent: in
C type: const UPS DT Datatype enum
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The type of the local data.
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

count Intent: in
C type: const int
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
Number of vals you are dealing with

C REFERENCE MANUAL 242

operation Intent: in
C type: const UPS UT Loc structure op enum
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The operation (winding or unwinding)
Please see UPS UT Loc structure op enum
(section B page 87)
for a listing of the possible operations.

loc type Intent: in
C type: const UPS UT Loc type enum
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
What type of loc structure you have (scalar, vector, value)
Please see UPS UT Loc type enum
(section B page 87)
for a listing of the possible loc types.

ReturnV alues

Returns UPS OK if successful. Values less than 0 indicate an error.

Discussion

This function is used in UPS internals but the c version is also provided for the users benefit.

UPS UT Mem get item()

Package

ut

Purpose

Get information about the memory routines. See the argument item type below for a listing of
the different information that can be obtained.

Usage

C ierr = UPS UT Mem get item (item type, address, item);
Fortran call UPSF UT MEM GET ITEM (item type, address, item,

ierr)
Fortran77 call UPS UT MEM GET ITEM (item type, address, item,

ierr)

Arguments

item type Intent: in
C type: UPS AA Mem item enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The type of info requested.
Please see UPS AA Mem item enum (section B page 49)
for a listing/explanation of different items.

C REFERENCE MANUAL 243

address Intent: inout
C type: void*
Fortran type: UPS KIND ADDRESS {0}
Fortran77 type: UPS KIND ADDRESS {0}
The address of the memory area gotten by
the private macros UPSP UT MEM MALLOC. For
general users, this value will probably be NULL
since they do not have access to the private macros.
For some item type values, this argument is not used.

item Intent: out
C type: void*
Fortran type: user choice {0::item type}
Fortran77 type: user choice {0::item type}
The output value of the item type. See item type
above.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

The main purpose for writing memory management is the detection of possible memory problems.

• Memory Errors Detected

– Near Overwrites
When UPS allocates a memory block, additional memory is allocated at the beginning
and end of the block. If these ”guard bytes” are corrupted, a memory overwrite has
occurred. So, simple errors such as writing 1 or 2 elements beyond allocated space can
be detected. However, a skip that writes beyond 2 elements can not be detected since
the writes will take place beyond the guard bytes. The guard bytes are automatically
checked when freed in UPS.

– Attempting to Free Memory Never Allocated
Information about memory allocated by UPS is stored in a linked list. Unlike the C
function free(), UPS will return an error if it tries to free internal memory it has not
allocated.

– Unfreed Memory Upon Termination
UPS AA Terminate checks to make sure all memory allocated by UPS has been freed.

• Additional Information Provided upon Termination
Normal memory allocation in UPS is done via the internal macros
UPSP UT MEM (C|M|RE)ALLOC/UPSP UT MEM FREE located in the internal header
file upsp ut.h. The code locations (section B page 58) UPS UT LOCP MEM ALLOC and

C REFERENCE MANUAL 244

UPS UT LOCP MEM FREE make some data available to the user. When statistics are
turned on (see UPS AA Statistics), the following info fields are recorded at the end of each
alloc/free call:

– Field ID 0: Total size (bytes) of normal memory allocated
– Field ID 1: Total number of normal memory allocations active
– Field ID 2: Size (bytes) of normal memory just allocated/freed

Upon calling UPS AA Terminate, the file ups log.ps will contain the above information. For
example, one can see the high water mark for UPS normal memory allocation by looking at
the max column of field id 0 of the UPS UT LOCP MEM ALLOC code location.

• Performance Penalty
UPS code allocates memory by calling the private macro UPSP UT MEM MALLOC and
frees memory by calling the
private macro UPSP UT MEM FREE.
During an allocation, the following steps are done:

1. Create memory info struct and place in linked list.
2. Allocate requested memory plus space for guard bytes before and after memory buffer.
3. Initialize values of guard bytes.
4. Call statistics gathering routine (eg records time spent in function).

During a free, the following steps are done:

1. Check values of guard bytes.
2. Free allocated memory.
3. Free memory info struct.
4. Call statistics gathering routine (eg records time spent in function).

This overhead takes additional time. On the SGI’s, the time for a UPS malloc/free is approx-
imately 100 times longer than a normal malloc/free. In stead of taking tens of nanoseconds,
it takes microseconds.
To reduce this affect, UPS tries to reuse memory that must be allocated. That is, when the
memory requirements are small, we allocate buffers once in init routines (eg UPS AA Init or
UPS GS Setup), reuse them as much as possible, and then free them upon UPS termination.

Notes

Please see the memory management variable section of
UPS AA ENVIRONMENT VARIABLES enum (section B page 43) for environment variables that
affect this call.

SeeAlso

UPS AA Statistics (page 99)
UPS CM Sm get item (page 120)

UPS UT Reduce op()

Package

ut

Purpose

UPS DP Reduce op performs a specified operation on the input vector. The effect is to reduce
count elements into 1 element. NOTE: if count is 0, the identity element for that operation is

C REFERENCE MANUAL 245

returned (if one exists - otherwise 0 is assigned to dest). For loc operations with 0 count, the loc
will be 0.

Usage

C ierr = UPS UT Reduce op (src, datatype, operation,
count, dest);

Arguments

src Intent: in
C type: const void*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The input vector of data.

datatype Intent: in
C type: const UPS DT Datatype enum
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The type of the data.
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

operation Intent: in
C type: const UPS AA Operation enum
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The operation to perform.
Please see UPS AA Operation enum
(section B page 56)
for a listing of the possible operations.

count Intent: in
C type: const int
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The number of elements in input array src [ab]

dest Intent: out
C type: void*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The output vector.

ierr Intent: out
C type: (na) int return value
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
Return status. Returns UPS OK if successful.

C REFERENCE MANUAL 246

ReturnV alues

Returns UPS OK if successful.

Discussion

NOTE: For increased performance, this routine does not check for UPS initialization.

SeeAlso

UPS UT Binary op (page 230)
UPS UT Binary opm (page 231)
UPS UT Reduce op (page 244)
UPS UT Reduce opm (page 246)

UPS UT Reduce opm()

Package

ut

Purpose

UPS UT Reduce opm extends the capability of UPS UT Reduce op by adding a masking capa-
bility.

Usage

C ierr = UPS UT Reduce opm (src, mask, datatype,
operation, count, dest);

Arguments

src Intent: in
C type: const void*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The input vector of data.

mask Intent: in
C type: const int*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
boolean (int) array specifying which elements
of the input vector are to be operated upon.

datatype Intent: in
C type: const UPS DT Datatype enum
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The type of the data.
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

operation Intent: in
C type: const UPS AA Operation enum

C REFERENCE MANUAL 247

Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The operation to perform.
Please see UPS AA Operation enum
(section B page 56)
for a listing of the possible operations.

count Intent: in
C type: const int
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The number of elements in input array src [ab]

dest Intent: out
C type: void*
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
The output vector.

ierr Intent: out
C type: (na) int return value
Fortran type: (na) no equivalent routine
Fortran77 type: (na) no equivalent routine
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

NOTE: For increased performance, this routine does not check for UPS initialization.

SeeAlso

UPS UT Binary op (page 230)
UPS UT Binary opm (page 231)
UPS UT Reduce op (page 244)
UPS UT Reduce opm (page 246)

C REFERENCE MANUAL 248

UPS UT Sleep()

Package

ut

Purpose

Sleep for a time in seconds.

Usage

C ierr = UPS UT Sleep (sleep time);
Fortran call UPSF UT SLEEP (sleep time, ierr)
Fortran77 call UPS UT SLEEP (sleep time, ierr)

Arguments

sleep time Intent: in
C type: double
Fortran type: UPS KIND REAL8 {0}
Fortran77 type: UPS KIND REAL8 {0}
Time in seconds to sleep.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

The ’sleep’ system call is used for the sleep time portion over 1 second and over. A finer grained
sleep call is then made for the rest of the time.

Due to the overhead of the function call and the granularity of the underlying sleep function(s)
called, UPS only guarantees that sleep time is the minimum time spent sleeping.

For example, there is no high resolution sleep call on the TFLOP machine. Sleeping for 1.00001
seconds will result in a sleep of 2 seconds. On the other hand, SGI has a nano-second sleep call.
Although UPS uses this nanosleep call, the granularity is not that high. In general a granulatity of
1-10 milliseconds is seen on architectures that support nanosleep.

C REFERENCE MANUAL 249

UPS UT Sort compress()

Package

ut

Purpose

Sorts and compresses (removes duplicates) the input buffer.

Usage

C ierr = UPS UT Sort compress (buf, count, datatype);
Fortran call UPSF UT SORT COMPRESS (buf, count, datatype, ierr)
Fortran77 call UPS UT SORT COMPRESS (buf, count, datatype, ierr)

Arguments

buf Intent: inout
C type: void*
Fortran type: user choice {0-3}
Fortran77 type: user choice {0-3}
The buffer of data to sort and compress

count Intent: inout
C type: long long *
Fortran type: UPS KIND INT8 {0}
Fortran77 type: UPS KIND INT8 {0}
On input, the number of elements.
On output, the new number of elements.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The datatype of the elements.
Please see UPS DT Datatype enum (section B page 63)

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

C REFERENCE MANUAL 250

UPS UT Square root()

Package

ut

Purpose

UPS UT Square root returns the square root of the input variable, operating on it in terms of
the input UPS datatype.

Usage

C ierr = UPS UT Square root (x, datatype, sqrt x);
Fortran call UPSF UT SQUARE ROOT (x, datatype, sqrt x, ierr)
Fortran77 call UPS UT SQUARE ROOT (x, datatype, sqrt x, ierr)

Arguments

x Intent: in
C type: const void*
Fortran type: user choice {0}
Fortran77 type: user choice {0}
The number whose square root will be returned.

datatype Intent: in
C type: UPS DT Datatype enum
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
The type of the data.
Please see UPS DT Datatype enum
(section B page 63)
for a listing of the possible datatypes.

sqrt x Intent: out
C type: void*
Fortran type: user choice {0}
Fortran77 type: user choice {0}
The square root of x.

ierr Intent: out
C type: (na) integer return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Error return value

ReturnV alues

Returns UPS OK if successful.

Discussion

UPS UT Square root provides coding convenience and readability.

C REFERENCE MANUAL 251

UPS UT Time wall get()

Package

ut

Purpose

UPS UT Time get returns an opaque handle related to the time this routine is called.

Usage

C ierr = UPS UT Time wall get (time handle);
Fortran call UPSF UT TIME WALL GET (time handle, ierr)
Fortran77 call UPS UT TIME WALL GET (time handle, ierr)

Arguments

time handle Intent: out
C type: UPS DT TIME TYPE*
Fortran type: UPS KIND REAL8 {1:UPS DT TIME TYPE DT}
Fortran77 type: UPS KIND REAL8 {1:UPS DT TIME TYPE DT}
An opaque handle relating to a time entity.
Fortran users must pass in an array of sufficient
length to hold the time handle variable.
The number of bytes used for this time handle can be
obtained with a call to UPSF DT SIZEOF() with the
datatype argument being UPS DT TIME TYPE DT.
This size is probably 16 bytes so an array of
2 elements will be enough.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

The handles returned are not meant to be viewed directly by the user. A call to
UPS UT Time wall interval is needed.

NOTE: For increased performance and to allow ups init/terminate routines to call the statistics
routine, this routine does not check for UPS initialization.

Examples

The following is a fortran example of the timer calls.
Fortran:

! ---
! number of doubles to hold UPS_DT_TIME_TYPE

C REFERENCE MANUAL 252

! ---
integer(KIND=UPS_KIND_INT4), parameter :: SIZE_FOR_TIME_HANDLE = 2

real(KIND=UPS_KIND_REAL8) :: &
time_start(SIZE_FOR_TIME_HANDLE), &
time_stop(SIZE_FOR_TIME_HANDLE), &
time_interval

call UPSF_AA_INIT(ierr)

call UPSF_UT_TIME_WALL_GET(time_start, ierr)

<user code>

CALL UPSF_UT_TIME_WALL_GET(time_stop, ierr)

CALL UPSF_UT_TIME_WALL_INTERVAL(time_start, time_stop, time_interval)

<user code>

CALL UPSF_AA_TERMINATE (ierr)

SeeAlso

UPS UT Time wall interval (page 252)

UPS UT Time wall interval()

Package

ut

Purpose

Return the time in seconds given the two time handles.

Usage

C ierr = UPS UT Time wall interval (time handle a, time handle b,
time sec);

Fortran call UPSF UT TIME WALL INTERVAL (time handle a, time handle b,
time sec, ierr)

Fortran77 call UPS UT TIME WALL INTERVAL (time handle a, time handle b,
time sec, ierr)

Arguments

time handle a Intent: in
C type: UPS DT TIME TYPE
Fortran type: UPS KIND REAL8 {1:UPS DT TIME TYPE DT}
Fortran77 type: UPS KIND REAL8 {1:UPS DT TIME TYPE DT}
An opaque handle relating to a time entity.
See UPS UT Time wall get (page 251)
for requirements of the size of the array for Fortran users.

C REFERENCE MANUAL 253

time handle b Intent: in
C type: UPS DT TIME TYPE
Fortran type: UPS KIND REAL8 {1:UPS DT TIME TYPE DT}
Fortran77 type: UPS KIND REAL8 {1:UPS DT TIME TYPE DT}
An opaque handle relating to a time entity.
See UPS UT Time wall get (page 251)
for requirements of the size of the array for Fortran users.

time sec Intent: out
C type: double*
Fortran type: UPS KIND REAL8 {0}
Fortran77 type: UPS KIND REAL8 {0}
The time in seconds between the 2 time handles given.

ierr Intent: out
C type: (na) int return value
Fortran type: UPS KIND INT4 {0}
Fortran77 type: UPS KIND INT4 {0}
Return status. Returns UPS OK if successful.

ReturnV alues

Returns UPS OK if successful.

Discussion

NOTE: For increased performance and to allow ups init/terminate routines to call the statistics
routine, this routine does not check for UPS initialization.

Examples

See UPS UT Time wall get (page 251) for a code example.

SeeAlso

UPS UT Time wall get (page 251)

C REFERENCE MANUAL 254

C.10 Reference Pages Index

Listing and reference page number of routines
aa package Routine Name Reference Page
UPS AA Abort 91
UPS AA Init 92
UPS AA Io pe get 95
UPS AA Io pe set 96
UPS AA Opt get 97
UPS AA Opt set 98
UPS AA Statistics 99
UPS AA Terminate 100
cm package Routine Name Reference Page
UPS CM Allgather 102
UPS CM Allreduce 103
UPS CM Barrier 104
UPS CM Barrier idle 105
UPS CM Bcast 106
UPS CM Context free 107
UPS CM Get context 108
UPS CM Get numpes 110
UPS CM Get penum 110
UPS CM P group item 111
UPS CM Reduce 115
UPS CM Salltoall 117
UPS CM Set context 118
UPS CM Sm free 119
UPS CM Sm get item 120
UPS CM Sm malloc 122
UPS CM Sm set item 124
dp package Routine Name Reference Page
UPS DP Combiner 126
UPS DP Combinerm 127
UPS DP Count mask 129
UPS DP Dot product 130
UPS DP Dot productm 131
UPS DP Number mask 133
UPS DP Sort 134
UPS DP Vector norm 135
UPS DP Vector normm 136
dt package Routine Name Reference Page
UPS DT Sizeof 139

C REFERENCE MANUAL 255

er package Routine Name Reference Page
UPS ER Get wait time 140
UPS ER Perror 141
UPS ER Set alarm 142
UPS ER Set wait time 143
UPS ER Unset alarm 144
gs package Routine Name Reference Page
UPS GS Collate 146
UPS GS Distribute 147
UPS GS Free 148
UPS GS Gather 149
UPS GS Gather list 151
UPS GS Gather multi 153
UPS GS Get item 155
UPS GS Scatter 156
UPS GS Scatter list 158
UPS GS Scatter multi 163
UPS GS Setup 165
UPS GS Setup s global 167
UPS GS Setup s local 170
UPS GS Setup study 173
io package Routine Name Reference Page
UPS IO Attr read 175
UPS IO Attr write 178
UPS IO Attr write s 180
UPS IO Dataset read 183
UPS IO Dataset write 191
UPS IO Ds r s 193
UPS IO Ds w s 195
UPS IO File close 197
UPS IO File open 198
UPS IO File type 205
UPS IO Filter get 206
UPS IO Filter set 208
UPS IO Group close 209
UPS IO Group open 210
UPS IO Info count 212
UPS IO Info create 214
UPS IO Info create self 217
UPS IO Info free 219
UPS IO Info item get 220
UPS IO Info item set 222
UPS IO Loc item get 224
UPS IO Loc item set 225
UPS IO Rm 227

C REFERENCE MANUAL 256

ut package Routine Name Reference Page
UPS UT Binary op 230
UPS UT Binary opm 231
UPS UT Checksum get 233
UPS UT Convert 235
UPS UT Dt change 236
UPS UT Get name or value 237
UPS UT Loc struct alloc 240
UPS UT Loc structure 241
UPS UT Mem get item 242
UPS UT Reduce op 244
UPS UT Reduce opm 246
UPS UT Sleep 248
UPS UT Sort compress 249
UPS UT Square root 250
UPS UT Time wall get 251
UPS UT Time wall interval 252

	COPYRIGHT
	Introduction
	Getting Started
	Writing a UPS Program
	Writing a UPS Program in C/C++
	Writing a UPS Program in Fortran
	Writing a UPS Program in Fortran-77

	Compiling/Running a UPS Program
	General Notes on Libraries
	Compiling/Running a UPS Program: Basic Example

	Administration Details
	Install Directory Structure
	Email Information
	Future Plans

	Use Details
	Name Space Conventions
	Initialization/Termination
	Routine argument list ordering
	Opaque Object Handles
	Programming Language Issues
	Fortran Interface
	UPS_DT_INT8 vs UPS_DT_LONG
	Passing Identical Arguments from Fortran

	Communication Contexts
	Conflicts With Other Packages
	Error Reporting
	UPS Version Consistency

	Packages
	General Package (AA)
	Communication Package (CM)
	Shared Memory Example

	Data Parallel Package (DP)
	Datatype Package (DT)
	Error Package (ER)
	Gather Scatter Package (GS)
	File IO Package (IO)
	Utility Package (UT)

	Acknowledgements
	UPS Constants
	Reference Manual
	Organization of reference pages
	General
	Communication
	Data parallel
	Datatypes
	Error handling
	Gather/scatter
	File IO
	Utilities
	Reference Pages Index

