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1. Introduction

The Internet has evolved into an indispensable component of our daily lives and protecting
its critical infrastructure has thus become a crucial task. In this work, we present and com-
pare different methods to assess the criticality of individual facilities of the Internet infra-
structure at a national-level: graph-theoretical analysis, route-based analysis, traffic-based
analysis, and consequence-based analysis. Our key observations are: (1) The geographical
topology, which is derived from a national-level IP backbone network, has a power-law
degree distribution and is a small-world network; (2) A few locations appear much more
frequently among all paths in the IP backbone topology than others, and they also witness
a high percentage of US Internet traffic. (3) Relative ranking of Internet facility locations
from traffic-based analysis differs significantly from those derived from graph-theoretical
analysis and route-based analysis, suggesting that a comprehensive, high-fidelity Internet
model is necessary to assess critical Internet infrastructure facilities. (4) Consequence-
based analysis, although computationally intense, cannot be replaced by other rankings,
including traffic-based analysis. Conclusions drawn from this work extend our knowledge
regarding the Internet and also shed lights on which critical Internet infrastructure facili-
ties should be protected with limited resources.

Published by Elsevier B.V.

tion systems, become increasingly dependent on the Inter-
net for their normal operations, it is vital to protect

As the Internet has permeated into almost every aspect
of our lives, it is crucial to ensure that its infrastructure
functions properly. The Internet infrastructure can suffer
severe physical damages from natural disasters, such as
hurricanes and earthquakes, or physical attacks. Mean-
while, a malicious cyber-attack (e.g., a distributed denial-
of-service attack) can cause undesirable effects, if it dis-
ables a critical Internet infrastructure facility completely
or even only makes it behave abnormally. As many other
infrastructure sectors, such as power grids and transporta-
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Internet infrastructure from severe physical damages and
malicious cyber-attacks.

Given the vast scale of the Internet, it is a challenging
task to decide where we should dedicate our resources to
protect its infrastructure, especially when resources
provided are only limited. This is the main theme of this
paper: we perform criticality analysis of the Internet infra-
structure at a national-level from four different methodo-
logical perspectives. Graph-theoretical analysis studies the
structural properties of a geographical network derived
from the Internet backbone topology, including its degree
distribution, clustering structure, and also its centrality
measures. Although theoretically appealing, graph-theo-
retical analysis ignores the hierarchical routing scheme of
the real Internet and uses the shortest path routing scheme
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due to its simplicity. Route-based analysis, instead, models
realistic inter-domain and intra-domain routing schemes
used in the Internet and then identifies those facilities that
appear most frequently on paths in the Internet backbone
topology. Realizing that route-based analysis still produces
biased results because all paths are evenly weighted, we
propose another approach, traffic-based analysis, which
weighs each path by its traffic demands. To do this, we
generate synthetic end devices and also session-level traf-
fic among them. In contrast to previous efforts on Internet
modeling, we attempt to achieve high-fidelity through a
socio-technical modeling approach that uses realistic data-
sets such as US census data, computer usage statistics, and
also market shares of Internet service providers. Based on a
comprehensive Internet model, we perform consequence-
based analysis to evaluate the importance of each Internet
facility by measuring the amount of traffic lost after it is re-
moved from the topology.
The key conclusions drawn from this paper are:

(1) The geographical topology, which is derived from a
national-level IP backbone network, has a power-
law degree distribution; it is a small-world network
with a high clustering coefficient and a small charac-
teristic path length. Moreover, the number of IP
addresses at each location in the IP backbone net-
work is also well characterized by a power-law
distribution.

(2) A few locations appear much more frequently
among all paths in the IP backbone topology than
others, and these locations also witness a high per-
centage of US Internet traffic.

(3) Relative ranking of Internet facility locations from
traffic-based analysis differs significantly from those
derived from graph-theoretical analysis and route-
based analysis, suggesting that a comprehensive,
high-fidelity Internet model is necessary to assess
critical Internet infrastructure facilities.

(4) We perform consequence-based analysis on Internet
facilities by calculating the amount of unroutable
traffic after each of them is removed. Consequence-
based analysis, although computationally intense,
cannot be replaced by other rankings, including traf-
fic-based analysis.

The remainder of this paper is structured as follows.
We first present related-work in Section 2. In Section 3,
we discuss how we construct a geographical network
from the Internet backbone topology and also analyze
its structural property, including its degree distribution,
clustering coefficient, and centrality measures. In Section
4, we present an algorithm that models realistic Internet
routing from both inter-domain and intra-domain levels;
after that, we analyze how frequently a backbone loca-
tion is traversed among all paths in the backbone topol-
ogy. In Section 5, we describe how to generate synthetic
end devices and their traffic at a session-level; we also
discuss how paths computed in the previous section, if
weighted with their traffic demands, affect the relative
rank of each location. In Section 6, we perform conse-
quence-based analysis on Internet facilities using the

Internet model built in the previous sections. Section 7
further gives the limitations of our work, such as impre-
cise datasets used in this study. We conclude this paper
in Section 8.

2. Related work

There have been numerous efforts on analyzing the
structural properties of the Internet topology, mostly at
the AS-level and at the router level. Faloutsos et al. first ob-
served that the Internet topology exhibits several power-
law distributions [13]. This conclusion on the AS-level
topology was later questioned in [9] and a recent study
suggests that power-law distributions may result from
sampling errors of traceroutes [22,3]. Using a method with
solid statistical footing, we show that the skitter dataset at
a national-level does not exhibit power-law degree distri-
bution. Instead, we observe that the geographical topology
condensed from it seems to fit well with the power-law
distribution. The small-world property of the Internet
topology has been investigated in [6,20], and spectral anal-
ysis of Internet topologies has been pursued in [7,40]. In
this paper, we complement previous work along these
lines by studying the geographical topology condensed
from the IP backbone network.

A plethora of models have been proposed to character-
ize routing and traffic in the Internet, many of which were
developed for simulation purposes [25,23,42,24,31]. Differ-
ent from previous inter-domain routing models, we use an
AS path inference algorithm to derive inter-domain paths
that are used in the real Internet; our traffic model gener-
ates synthetic end-to-end sessions originating from end
devices that statistically follow the observed distribution
in the US. The level of authenticity carried in our model
has rarely been pursued in the literature before.

3. Graph-theoretical analysis

In this section, we analyze the criticality of assets in the
Internet  infrastructure from a  graph-theoretical
perspective.

3.1. Internet backbone topology

3.1.1. Backbone topology

The Internet backbone consists of routers and links
that are owned and operated by major Internet service
providers such as AT&T, Sprint, and XO. Fig. 1 gives a
geographical overview of 18,000 backbone equipment
locations, which are shown in green circles. These loca-
tions house more than 291,000 unique backbone IP ad-
dresses in the US, which are extracted from the skitter
dataset collected by the CAIDA project [8]. We note that
the original skitter dataset does not produce a connected
graph. Hence, two approaches are adopted to make it
more connected. First, each IP address corresponds to a
network interface at a backbone router and multiple IP
addresses can belong to the same physical backbone rou-
ter. This is the well-known IP alias resolution problem
[34]. We use the alias clustering data provided by the
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Fig. 1. Internet backbone in the US.

iPlane project [19] and for any two IP addresses in the
skitter dataset that belong to the same physical router,
we create a virtual link between them. We call such links
virtual alias links to differentiate them from those realistic
observed links in the skitter dataset. Second, we leverage
the following heuristic: if two IP addresses belong to
the same AS and are located at the same place, it is un-
likely that traffic between them traverses through a dif-
ferent location. The geographical position of each
backbone IP address, in the form of its longitude and lat-
itude, is derived from the ip2location dataset [18]. We en-
sure that all co-located IP addresses that belong to the
same AS are connected by creating virtual links among
them. These links are termed virtual co-located links in
our model. To avoid creating too many such links by,
say, using a clique structure, we use a star structure in-
stead to connect co-located IP addresses owned by the
same AS. We call the center of such a star topology a
hub IP. With these two techniques, we are able to pro-
duce a connected Internet backbone that covers more
than 99.7% of the IP addresses in the skitter dataset.

3.1.2. Internet PoPs

Another important concept in the Internet infrastruc-
ture is PoP (Point of Presence). An Internet PoP is an ac-
cess point to the Internet backbone, which is typically
owned by an ISP, or located in an Internet exchange
points or colocation centers. Large companies and institu-
tions (e.g., IBM) and small Internet service providers are
connected to the Internet backbone at these PoPs. We ob-
tained a set of 543 PoPs from the telegeography colocation
database [36], which lists operators present in each PoP.
The locations of these 543 PoPs are also illustrated as
red boxes in Fig. 1.

Next, we populate the 543 PoPs with backbone IP ad-
dresses in the skitter dataset: if the geo-location of a back-
bone IP address (i.e., its longitude and latitude) agrees with
that of a PoP, we assign it to that PoP. We, however, find
that such a simple assignment scheme leads to inconsis-
tency: for an AS A; present in PoP P, according to the
telegeography colocation database, it may not have any
of its backbone IPs assigned to that PoP. To circumvent this

problem, we create a virtual backbone IP address that be-
longs to AS A; in PoP P,; moreover, if there exists a geolo-
cated backbone IP address that belongs to AS A; within
15 miles, we connect the virtual IP address to it. In total,
1247 virtual backbone IP addresses have been created
thereby, consisting of only 0.4% of all backbone IP ad-
dresses. For simplicity, we call a backbone IP address inside
a PoP a PoP IP.

As the skitter dataset is generated from traceroute out-
put, inter-AS links derived from it are incomplete and
biased [16]. To mitigate this problem, we assume that all
ASes present in the same PoP are internally connected.
We create a virtual PoP IP inside each PoP, which is called
virtual inter-AS PoP IP, and connect it to every hub IP in that
PoP. Note that this process may introduce extra inter-AS
links that do not exist in reality. For example, if two ASes
do not have any business relationships, there may not be
physical AS links between them. The routing scheme in
our model, however, relies on inferred AS-level relation-
ships from realistic BGP data to compute AS paths and
these extra links thus will not be used in routing. We will
explain it further in Section 4.

3.2. Analysis

3.2.1. Power-law?

We first investigate whether the degree distributions of
the backbone topology in our model conform to power-law
distributions. We consider two different IP topologies:
graph G, generated directly from the skitter dataset and
the full IP topology in our model Gy,:. Their degree distri-
butions, plotted on doubly logarithmic axes, are depicted
in Fig. 2. An interesting question regarding the Internet
topology is whether its degree distribution follows the
power-law. Previous work along this line often uses a
least-squares linear regression to determine whether a
power-law exists [13]. This approach is however signifi-
cantly biased and also often incorrect [10]. In the following,
we perform a rigorous study on G, and Gy,+, and pursue an-
swers to what power-law models best fit these topologies
or even whether the power-law hypothesis holds for these
topologies at all.
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Fig. 2. Probability that a node’s degree is no smaller than x (in log-scale).

We use the method proposed in [10], in which a power-
law model has two parameters: scaling exponent & and cut-
off . In our context, the power-law hypothesis can be stated
as follows: the frequency f; of a degree d is proportional to d
to the power of o, when d is no smaller than g. The reason for
introducing g is simply to avoid the divergence of the den-
sity function at degrees close to 0. The method uses Maxi-
mum likelihood estimation and Kolmogorov-Smirnov
statistics to estimate o and pB; to test whether the power-
law distribution models well the empirical data, the method
computes the p-value. The results are summarized in
Table 1. Based on the suggested p-value threshold in [10],
which is 0.1, we can safely conclude that neither G, nor
G+ exhibits the power-law behavior, which is in contrast
to previous conclusions made simply based on the least-
squares linear regression approach.

As the main goal of this work is to identify key locations
that house critical Internet infrastructure facilities, we now
focus on analyzing the Internet topology from a geograph-
ical perspective. Based on the IP topology in our model, we
further derive a location topology G, by aggregating all IP
addresses that belong to the same location into a single
location node; a link is added between two locations in
the topology graph if and only if in the IP topologies there
exist links that cross over between them. Note that the vir-
tual alias links and co-located links introduced do not af-
fect the location topology, because they are limited to
connect backbone IPs at the same location. The degree dis-
tribution of G, plotted on doubly logarithmic axes, is de-
picted in Fig. 3, and the goodness-of-fit is presented in
Table 1. The p-value is higher than 0.1, suggesting that
the location topology can be reasonably characterized by

Table 1

Power-law model parameters and goodness-of-fit test.
Topology o B p-Value
Gip 298 64 0
Gip+ 2.78 90 0.015
Gioc 2.53 60 0.302

Pr(X > x)
=

Fig. 3. Degree distribution of location topology Gi.

the power-law model, although we cannot rule out other
alternatives with better fitting results. Here, it is worth
noting that the IP topologies may miss some links in the
real Internet due to sampling biases of traceroute, but such
errors are decreased to a lesser degree in the location
topology because links between IPs at two locations are
aggregated into a single one in the latter.

The implication of a location graph with a power-law
degree distribution is that a few locations are well con-
nected to the other part of the network. To protect the
Internet infrastructure, it is important to enhance the secu-
rity and safety of these locations. As we shall discuss later,
however, simply choosing those locations with the highest
degrees may not function as effectively as other
approaches.

The distribution of the number of IP addresses in the
skitter dataset that are co-located at the same place is pre-
sented in Fig. 4. Similarly, we perform the hypothesis test
on whether it can be modeled by a power-law distribution.
The goodness-of-fit test has the following results: scaling
exponent o is 2.05, cutoff g is 50, and the p-value is
0.9120. The high p-value suggests that the power-law dis-
tribution is a very good fit for the number of IPs within the
same geographical location.
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Pr(X > x)

Fig. 4. Distribution of number of IPs at a location.

3.2.2. Small-world networks?

Small-world networks refer to a class of graphs in
which nodes are highly clustered such that most nodes
are reachable from each other by only a small number of
hops. Internet topologies have been shown to exhibit
small-world behavior at both AS and router levels [6,20].
In this study, we complement previous work by exploring
whether the location graph is also a small network. Rigor-
ously speaking, a small-world network can be character-
ized as a graph with a high clustering coefficient and a
small characteristic path length [41]. The clustering coeffi-
cient p, of a node v in an undirected graph G(V,E) is de-
fined by:

2H,
Py = My, —1)° (1)
where H, is the number of edges between node v’s neigh-
bors and n, is the number of neighbors node v has in graph
G. The average clustering coefficient over all the nodes in
graph G gives the probability that any two nodes sharing
the same neighbor are directly connected.

To evaluate the degree to which nodes in the location
graph are clustered, we compare clustering coefficients of
the nodes in this graph (in non-increasing order) against
those in an Erdos-Renyi random graph, which is not a
small-world network, with a similar number of nodes
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Fig. 5. Comparison of clustering coefficients.

and edges. The results, depicted in Fig. 5, show that nodes
in the location graph are much more clustered than those
in the Erdos-Renyi random graph: the average clustering
coefficient is 0.3130 in the former, as opposed to 0.0015
in the latter. Actually, the average clustering coefficient
of the location graph is very close to or even higher than
those observed from social networks such as YouTube
and Flickr [29]. In Fig. 6, we show how clustering coeffi-
cient of a node is correlated with its degree. It is obvious
that nodes with low degrees tend to have high clustering
coefficients, suggesting that there exists significant cluster-
ing among low-degree nodes.

Another feature of a small-world network is that it has a
small characteristic path length, which is defined as the
average length of the shortest paths between all pairs of
vertices. The characteristic path length of the location
topology is 2.9, which is even smaller than that of the Er-
dos-Renyi random graph, which is 3.9. In Fig. 7, we plot
the fractions of the top 30 locations’ appearances in the
shortest paths among all vertex pairs. A close examination
reveals that the site with the highest degree contributes to
55% of all shortest paths. To conclude, the small character-
istic path length of the location topology, together with its
high clustering coefficient, indeed makes it qualified as a
small network [41].

A location graph with small-world behavior means that
theoretically speaking, it is possible that packets are deliv-
ered to their destinations through only a small number of
locations. Later, we will present how many locations are
traversed on average in the context of realistic Internet
routing.

3.2.3. Centrality

In graph theory, the importance of a vertex in a graph is
measured by its centrality. The four centrality measures
that are widely used in network analysis are degree cen-
trality, betweenness, closeness, and eigenvector centrality
[30]. We have already shown the degree distribution in
Fig. 3, and the betweenness centrality of a vertex is essen-
tially the fraction of all shortest paths on which it appears,
which is provided in Fig. 7. Here, we further measure the
eigenvector centrality of each location. The eigenvector
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Fig. 6. Avarage clustering coefficient vs. degree in Gj.
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centrality of a graph is defined as the principal eigenvector
of its adjacency matrix, i.e., the eigenvector that corre-
sponds to the largest eigenvalue of its adjacency matrix. In-
stead of treating every connection in the network equally,
the eigenvector centrality assigns a higher score to a node
that has connections to neighbors which themselves have
high scores.

In Fig. 8, we plot the eigenvector centrality of each node
in the location topology against its rank. We observe that a
few locations have much higher scores than the rest of
locations. For instance, only 2.5% of the locations have an
eigenvector centrality above 0.025. In the same graph, we
also plot the correlation between eigenvector centrality
and the other two rankings, degree and betweenness cen-
trality rankings. We observe that the eigenvector centrality
ranking is more consistent with the degree ranking than
with the betweenness ranking. To further verify this, we
define the agreement ratio among k top locations as the
percentage of locations that appear among the top k in
both rankings. For the degree ranking and the eigenvector
centrality ranking, the agreement ratio among 100 top
locations is 90%. For the betweenness centrality ranking
and the eigenvector centrality ranking, however, the agree-
ment ratio is only 66%. This suggests that if we decide to
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protect the top 100 locations, using the eigenvector cen-
trality ranking or the betweenness centrality ranking will
give us very different results. In the following sections,
we will explore alternative ranking methods with better
supporting evidence.

4. Route-based analysis

Ranking locations according to their eigenvector cen-
trality, although mathematically appealing, lacks a strong
physical foundation: what does an eigenvector centrality
really mean? Ranking locations based on their between-
ness centrality scores, however, ignores the fact that Inter-
net routing is not always using shortest paths. Internet
routing, instead, is strictly hierarchical: inter-domain rout-
ing protocols (e.g., BGP) regulate Internet traffic among dif-
ferent ASes, and intra-domain routing protocols (e.g., OSPF
and RIP) specifies how traffic is routed within the same AS.
In this section, we discuss how to assess critical Internet
assets in the context of more realistic Internet routing
schemes.

4.1. Internet routing

BGP is the de-facto inter-domain routing protocol used
in the current Internet. Due to its complexity and the fact
that commercial relationships between ASes are generally
unavailable to the public, we use AS-level paths inferred
from existing BGP routing tables for inter-domain routing.
We use the AS path inference algorithm in [32], which is
able to infer AS-level paths with 95% accuracy. With regard
to intra-domain routing, we simply use the shortest path
algorithm.

Algorithm 1 is used to compute the route between any
two PoP IPs in our model. In the algorithm, we let
I'(AS;,AS;) denote the set of PoPs where both ASes AS;
and AS; have presence. We introduce ¢(Xx) to denote the
virtual inter-AS PoP IP of PoP X, (see Section 3). We also
use G(AS;) to denote the network formed by all backbone
IPs inside AS AS;, those virtual inter-AS PoP IPs that they
are connected to, and all links between these IPs. Given
the source and destination PoP IPs, the algorithm first de-
rives an AS-level path ASJAS;---°AS, between them. As
the algorithm in [32] provides multiple alternative AS
paths, we choose the shortest one in our study. We then
iteratively work on each AS; from i = 1 to n. Once the first
backbone IP inside AS; (or a source virtual inter-AS PoP IP)
has been decided, we calculate the shortest path in graph
G(AS;), starting from it to any virtual inter-AS PoP IP in
set I'(AS;,AS;,1).> Next, we start from that (virtual) destina-
tion inter-AS PoP IP and find the shortest path in graph
G(AS;,1) to any virtual inter-AS PoP IP in set I'(AS;.1,ASi;2).
This process repeats until the last AS along the path. Inside
the last AS, we simply find the shortest path to the destina-
tion IP on the route.

3 If the source and the destination are both the same virtual inter-AS PoP

IP, we make sure at least one backbone IP inside AS AS; is traversed on the
path.
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Algorithm 1. Compute the route from PoP IP E, to E,

1: ¢ < AS number of E,

2:  Use the algorithm in [32] to obtain the AS-level path P
with origin AS number ¢ and destination E;, where
P = AS3AS - - ° AS,

3: src — E,

4: Z — 0

5: fork=1ton-1do

6: Otmin (K) 00, Brnin (k) null

7: for each virtual inter-AS PoP IP dst € I'(ASk,ASk1)
do

8: Q « the shortest path from src to dst in G(AS)

9: if opin (k) > |Q| then

10: Omin(K) — |Ql, Bin(k) — dst

11: Qmin(k) - Q

12: end if

13: end for

14: STC — PBmin(k)

15:  Z — Z°Quin(k)

16: end for

17: Q <« the shortest path from src to E, in G(ASy)
18: Z — Z°Q

19: Output route Z

How realistic is the path as calculated by Algorithm 1?
Actually, this algorithm is very similar to routing policy
(Min AS path, early exit) described in [27]. It has been
shown that such a policy can achieve more than 78% accu-
racy due to BGP’s default object function as minimizing AS
path length and the default early exit intra-domain routing
policy. In the future, we plan to perform a more rigorous
study to validate routes derived from Algorithm 1 against
realistic paths observed from the Internet.

We compute IP-level paths between every pair of PoP
IPs in the Internet backbone topology. There are 60,506
PoP IPs in our model and calculating routes between each
pair of them still imposes high computation cost. We thus
simplify the routing model by computing routes only be-
tween a source hub IP and a destination PoP IP. As there
are only 4916 hub IPs in the model, the overall computa-
tion cost is reduced by more than one order of magnitude.
We assume that packets from an arbitrary PoP IP to a des-
tination PoP IP traverse the hub IP of that source PoP IP first
and use the precomputed path from the hub IP to the des-
tination PoP IP.

For some destination PoP IPs, the algorithm in [32] fails
to infer AS-level paths to them. In such circumstances, we
derive their AS numbers and use www.fixedorbit.com to
obtain a list of prefixes for each of them. We then use
the algorithm in [32] again to infer AS-level paths to these
prefixes. These derived AS-level paths are further used to
compute the IP-level paths to these destination PoP IPs.

4.2. Analysis

We now analyze paths derived between all PoP IP pairs.
Fig. 9 depicts the frequency histogram of the number of
locations that appear on a path. We observe that on aver-
age a path between any two PoP IPs traverses 4.7 different
locations (including both source and destination), which is
60% longer than the characteristic path length of the loca-

0.18 T
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0.06 -
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0
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0 2 4 6 8 10 12 14 16 18 20
Number of locations

Fig. 9. Frequency histogram of the number of locations in a path.

tion graph. Also, it is very rare that a path traverses more
than 10 different locations. Here, it is worth mentioning
that the number of locations discussed here differs from
what we see from a traceroute output. First, multiple IPs
reported from a traceroute command can actually locate
at the same place. Second, the output from a traceroute
command includes all IPs seen on the path, which includes
not only backbone IP addresses but also IPs on Internet ac-
cess routers.

We rank the 543 PoPs based on the frequency at which
they appear on a path between any two PoP IPs and show
the top 100 PoPs in Fig. 10. We observe that one PoP ap-
pears on almost 40% of paths between all PoP IP pairs
and 10 PoPs appear on more than 5% of paths between
all PoP IP pairs. Such high frequency suggests that these
PoPs are important for network connectivity in the context
of Internet hierarchical routing.

Similarly, we rank all the backbone IP locations based
on the frequency at which they are visited by a path be-
tween any two PoP IPs. Fig. 11 depicts the frequency
histogram for the top 100 locations. We note that the
top location appears on almost 70% of the paths be-
tween all pairs of PoP IPs. Although surprising, this is
actually consistent with earlier reports about the crucial
role of some locations in the US [38,39]. We will further
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Fig. 10. Rank of PoPs based on their appearances in derived paths.
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discuss this when we present results from traffic-based
analysis.

Fig. 12 presents the scatterplot of the correlation be-
tween the route-based rank of a location and its rank if
its degree or eigenvector centrality is used. Clearly, these
rankings are not consistent: a location with a high route-
based rank can have a low-degree rank or eigenvector cen-
trality rank. The agreement ratio of the top 100 locations is
only 49% between the route-based rank and both the de-
gree rank and the eigenvector centrality rank. One may
wonder whether route-based ranking and betweenness
centrality ranking produces similar results because both
of them focus on routing. Fig. 13 depicts the scatter plot
of such correlation, which clearly shows that ranking re-
sults from them are not strongly correlated. Actually, the
agreement ratio for the top 100 is only 40%.

5. Traffic-based analysis

Route-based criticality analysis, although taking realis-
tic Internet routing schemes into account, is still biased be-
cause it does not consider traffic demands between
different PoP IP pairs. For instance, if a PoP location houses
a large number of IPs, paths among them may significantly
improve its rank, although there is little traffic flowing
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Fig. 11. Rank of locations based on their appearances in derived paths.
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among these IPs in reality. In this section, we present a
more complicated ranking scheme that improves route-
based ranking by considering traffic demands between
PoP IP pairs. In this approach, we first generate synthetic
end devices, including both residential and business com-
puters, and then connect them to the Internet backbone
topology. We further generate synthetic sessions, includ-
ing HTTP, Email, P2P, and streaming traffic, for every com-
puter within 24 h.

5.1. End devices and access routers

5.1.1. End devices

We distinguish residential and business computers in
our model. To generate residential computers, we use a
US Census data source that gives the census-block level
population data in each 250 x 250 m? grid in the entire
US for both day and night time [28]. From this dataset,
we synthesize the average number of households in each
grid. We then derive the income distribution per house-
hold in each grid from the US census-block-group dataset,
which provides the fraction of households whose annual
income falls into each range in every block group. Also,
the US census data provides the percentage of residential
computer usages for each annual family income category.
Based on these data, we synthesize the number of comput-
ers that are located in each grid. In total, we have gener-
ated 73,884,296 residential computers in the US. This
number is close to the 73 million computers reported in
a Yankee group survey.

To generate business computers, we use the Dun &
Bradstreet (D&B) dataset, which provides information
about all companies in the US, including their headquarter
locations, numbers of employees, and SIC (Standard Indus-
trial Classification) codes. A SIC code has four digits and
indicates the business type of a company. The US census
data presented in [11] gives us computer penetration ra-
tios in different business categories. Based on this, we syn-
thesize the number of business computers in each
company. In total, we have generated 58,923,964 business
computers in the US, which is close to the 65 million busi-
ness computers reported by the US Department of
Commerce.
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5.1.2. Access routers

Internet access routers are used to connect end devices
to the Internet backbone. To generate these routers, we
need to know which companies provide Internet access
services in each region. Currently we only consider three
types of Internet access services, dial-up, DSL, and Cable,
as they are mostly widely used in US. According to the
Home Broadband Adoption 2006 report by Pew Internet
& American Life Project, there are in total 48 million dial-
up users and 84 million broadband users in the US, and
among all broadband users, the market shares for DSL
and Cable are 50% and 41%, respectively. These numbers
are used to assign the Internet access type of each end
device.

For the dial-up service, we collect a list of aggregators
for each zip code from the Internet Service Provider
Directory [14] and for each of these aggregators we create
an Internet access router. A dial-up access router is lo-
cated at the central office of the corresponding area.*
For the other two types of services, we model the entire
market by using the subscriber numbers of the top nine
companies for each service that collectively cover more
than 50% of the respective market [26]. For each of these
companies that provide broadband Internet access ser-
vice, we collect a list of zip codes or area codes that it
provides broadband Internet access services (i.e., DSL or
Cable) and also create an Internet access router for each
zip code within its service coverage. Each DSL access rou-
ter is located at the central office of the corresponding
area and each Cable access router is located at the closest
business office that the cable company has in the corre-
sponding area.

5.1.3. Connections

For each end device, we connect it to an Internet access
router. We first randomly choose the type of Internet ac-
cess service based on the market shares of all Internet ac-
cess services. If the chosen access service is dial-up, we
randomly assign the end device to an aggregator for the
zip code where the device is located. If the access type is
DSL or Cable, we randomly choose an Internet broadband
access router based on the market shares of the top broad-
band companies. After an Internet access router is chosen,
we create a link between it and the end device.

Recall that there are 543 PoPs in the backbone topology
and each of them has a list of backbone IPs. Also, each PoP
IP is associated with an AS number. Given an Internet ac-
cess router, we decide which PoP IP it connects to based
on the following algorithm. First, we sort all PoPs according
to their distances from the Internet access router. Second,
starting from the closest PoP, we check whether it has a
PoP IP that peers with the ISP company owning that Inter-
net access router. This can be done by checking whether
the AS (Autonomous System) number of the PoP IP con-
nects to any one of the AS numbers owned by the ISP com-
pany in the AS-level graph. If we cannot find it, we try the
second closest PoP. This process repeats until one such PoP

4 A central office is a building that houses telephone switches in
telecommunication networks.

IP is found. Thereafter, we create a link between it and the
Internet access router.

5.2. Sessions

Due to the complexity and dynamics of Internet traffic,
any attempt to characterize it accurately will be arduous, if
not impossible. For simplicity, we model Internet traffic at
the granularity of sessions, as they closely reflect the
behaviors of Internet users, such as web browsing, file
downloading, and Email communications. We ignore ef-
fects of transport layers (such as TCP or UDP) or layers be-
low on the traffic characteristics. Currently, HTTP, P2P,
Email, and streaming traffic constitutes the majority of
the Internet traffic [21,1,2], so it suffices to generate these
four types of sessions in our model. From a high level, our
session generation algorithm works as follows: for each
Internet session, based on the relative occurrence of differ-
ent types of sessions, we assign it a session type, and then
we choose its origin and destination. In total, we have gen-
erated around 1.14 billion sessions for the entire US popu-
lation within a 24-h period.

Table 2 summarizes the relative occurrence of each type
of sessions originating from both residential and business
computers. The relative occurrence of each session is ob-
tained from the traffic mix observed in the current Internet
traffic as presented in [17,1,2,37]. The size of each session
is selected based on the following studies. The literature
suggests that approximately 80% of Web document trans-
fers are less than 100 kB in size [5], though there is a signif-
icant heavy tail to the distribution [5,12]. The average size
of Email sessions is taken as 100 K, which is chosen based
on the average size of all Emails in the inbox of various
employees in a large institution. Similarly, the size of HTTP
session is computed by downloading a number of web
pages and finding the average of these downloaded web
pages. The average streaming rate of streaming sessions
is 200 kB/s (kBps) [15] and the average duration of stream-
ing session is approximately 125 s [35]. This gives the aver-
age size of streaming session as approximately 30 M. The
average size of P2P session is computed by observing the
history of already completed transfers in a P2P client
[33]. The size of each session is drawn from exponential
distribution with the average size given in Table 2.

We have a distribution that gives us the probability of
each type of session for any particular hour of a day for ses-
sions originating at home and at work. We iterate through
every second of the day, and compute the number of ses-
sions that will be generated for a particular second follow-
ing a Normal Distribution. Once we assign the session a
particular type, we decide the origin of the session. The ori-
gin of a session can be either a business location or a home

Table 2
Session types and size parameters.

Session Percentage of Percentage of Avarage size
type home sessions (%) work sessions (%) (in bytes)
HTTP 25.14 14.86 25K

Email 11.87 18.13 100 K

P2P 18.71 1.29 10 M
Streaming  6.29 3.71 30 M




1178 G. Yan et al./Computer Networks 54 (2010) 1169-1182

location. This assignment is again based on the proportion
of sessions that originate from different locations. For in-
stance, the probability of Email sessions originating from
work locations are higher during office hours (8 a.m. to 5
p.m.) and those originating from other locations are higher
after office hours. For both P2P sessions and streaming ses-
sions, they originate mainly after office hours, as people
tend to watch news or download music either from home
or after office hours if they are engaged in those activities
from the office. For HTTP sessions originating from work,
the activity is mainly during lunch hours and during the
end of the day, and for those originating from other loca-
tions, they are mainly after office hours.

We characterize the end-points of the sessions based on
the type of the session. We need to assign an originating
device and a destination device or server to the session.
For an Email and P2P session, we assume that the end-
points of the session are end devices residing either at
home or business locations. For HTTP and streaming traffic
we assume that the source of the session is an end-device
whereas the destination of the session is a server. To pick
an end device as either the source or destination, we pick
a device from a state based on the percentage of devices
in that state. When the end-device is a server (for HTTP
and streaming sessions), we pick a server from one of the
top 100 servers that are most visited, based on the propor-
tion of web access hits they receive [4].

Many web servers are located in the technological cen-
ters of Silicon Valley and Washington, D.C., as well as a few
smaller centers mostly in metropolitan areas. Most major
websites use the services of content distribution networks,
such as the one offered by Akamai, Inc. These overlay net-
works cause HTTP traffic to be distributed evenly across
different content sites. Unfortunately, very little data is
available on the infrastructure and geographical distribu-
tion of these overlay networks or content distribution net-
works (CDNs). We however geo-locate the websites that
are most widely visited (according to [4]) and split the ses-
sions uniformly across those locations for each incoming
session request to a particular server.

5.3. Analysis

In Fig. 14, we plot the average number of transit ASes
that each byte traverses on a path. Here, we only consider
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Fig. 14. Average number of ASes that a byte visits on its path.

ASes associated with backbone IPs and hence the number
does not include the ASes associated with access routers.
From the graph, we observe that the majority of the traffic
traverses only two ASes in the Internet backbone topology.
The average number of ASes traversed by each byte is 1.9.
We further present in Fig. 15 the frequency histogram of
the number of locations that each byte visits in the back-
bone topology. Although the shape of the curve is similar
to what we have observed in Fig. 9, in which the frequency
histogram is calculated over all pairs of PoP IP pairs, we
note that paths with a single location appearance are used
less frequently than their fraction among paths between all
pairs of PoP IPs. This suggests that traffic-based analysis
helps eliminate biases introduced by the route-based
counterpart when a PoP location houses a large number
of IPs. The average number of locations that a byte visits
in the backbone topology is 5.2, which is slightly larger
than the number derived from the route-based analysis
and 80% longer than the characteristic path length of the
location graph.

Figs. 16 and 17 depict the portion of traffic that each
PoP sees against its rank and the portion of traffic that tra-
verses each location against its rank, respectively. We note
that the top PoP sees about 60% of the total traffic, and the
top location is traversed by about 70% of the total traffic.
Although very surprising, this result is actually in concert
with earlier observations that some locations witness more
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Fig. 15. Number of locations that a byte visits on its path.

0.6 T T T T

0.5H J

0.3 1
0.2 1

y VWWTWWWWW |
0 u U

0 20 40 60 80 100
PoP rank

Fraction of total traffic

Fig. 16. Rank of PoPs based on their appearances on a byte’s path.



G. Yan et al./ Computer Networks 54 (2010) 1169-1182 1179

0.8 T T T T

07 1
06| ]
05 1
04| 1
03} 1
02} 1

0-1»WHWWWWWWWW A
o L ) 1 "

0 20 40 60 80 100
Location rank

Fraction of total traffic
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than 50% of the Internet traffic in the US [38,39]. Admit-
tedly, our model still may overestimate the amount of traf-
fic traversing a single location. This is because our model
only allows traffic from different ASes to be exchanged at
those 543 PoPs, which may leave out many local IXPs
(Internet Exchange Points), where regional ISPs also ex-
change their traffic in reality. Nevertheless, our model puts
more emphasis on all 543 PoPs, many of which are indeed
critical Internet assets. Hence, the fidelity of our model suf-
fices to evaluate the relative importance of Internet infra-
structure facilities.

In Fig. 18, we present a scatterplot of the route-based
ranking and the eigenvector centrality ranking against
the traffic-based ranking. The graph shows that no strong
correlation exists for both of them. In Table 3, we present
the agreement ratios for the top 100 between the traffic-
based ranking and other methods. The results reveal that
the relative importance of each location or PoP among
the top 100, if traffic-based analysis is applied, differs sig-
nificantly from what we have derived from the other meth-
ods. This suggests that a comprehensive, high-fidelity
Internet model is indeed necessary to evaluate the critical-
ity of Internet infrastructure facilities.

6. Consequence-based analysis

In the previous section, we rank each location based on
how much traffic traverses each location under normal
operational circumstances. Another way of measuring the
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Fig. 18. Correlation of traffic-based ranking and other methods.

Table 3
Agreement ratios of consequence-based analysis with other rankings for
the top 100 locations.

Rank 1

Rank 2

Agreement ratio
(%)

PoPs (traffic-based) PoPs (route-based) 67
Locations (traffic- Locations (route- 56
based) based)
Locations (traffic- Locations (degree) 48
based)
Locations (traffic- Locations 49
based)
(eigenvector
centrality)
Locations (traffic- Locations 38
based)
(betweenness

centrality)

importance of a location is how much impact it would
cause if we remove this location from the network. This
kind of consequence-based analysis is crucial for us to pre-
pare for unexpected incidents such as natural disasters
(e.g., hurricanes and earthquakes) and physical attacks
against Internet facilities. In this section, we consider rank-
ing Internet assets based on how much traffic would be
lost if a location is removed.

The routing and traffic models performed in conse-
quence-based analysis are the same as those developed in
Sections 4 and 5. Basically, when we evaluate the impor-
tance of a location, we remove all IP addresses that belong
to this location and also edges associated with these IP ad-
dresses. We then use the routing algorithm illustrated in
Algorithm on the remaining topology to route the traffic
generated with the models in Section 5. But due to the re-
moval of a location, for some traffic that is routable before
the removal, it is possible that we cannot find a path for it
in the remaining topology any more. By counting the num-
ber of bytes that become unroutable after each location is re-
moved, we use it to measure its importance in the topology.

It is worth noting that performing consequence-based
analysis on a large topology like the Internet infrastructure
is computationally expensive. This is because we have to
redo path computation after each of the thousands of
locations is removed from the graph. To accelerate conse-
quence-based analysis, we, when evaluating the impor-
tance of a location, consider only those sessions that
traverse this location under normal operational circum-
stances. We then attempt to find a path for each of these
sessions on the topology without the location under anal-
ysis. If it fails, we add the number of bytes in the session
to the lost traffic amount without this location.

Fig. 19 depicts the fraction of total traffic that is lost due
to removal of the top 100 locations. We note that removing
the top location that carries the most traffic as shown in
Fig. 17 leads to loss of about 22% of the total traffic. This
further confirms the importance of this location. We show
the scatterplot of the consequence-based ranking and the
traffic-based ranking in Fig. 20, and it is clear that there
is strong correlation between these two rankings.

We calculate the agreement ratios of the ranking based
on consequence-based analysis and other rankings and the
results are demonstrated in Table 4. We observe that con-
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Fig. 20. Scatterplot of the traffic-based ranking against the consequence-
based ranking.

sequence-based ranking and traffic-based ranking have
about two thirds in common for the top 100 locations,
much higher than those between consequence-based
ranking and other rankings. The results still suggest that
consequence-based ranking, although computationally
expensive, cannot be replaced by other rankings, including
traffic-based ranking.

Table 4
Agreement ratios of consequence-based analysis with other rankings for
top 100 locations.

Rank 1 Rank 2 Agreement ratio
(%)
Locations (consequence-  Locations (traffic- 67
based) based)
Locations (consequence-  Locations (route- 39
based) based)
Locations (consequence-  Locations (degree) 36
based)
Locations (consequence-  Locations 39
based)
(eigenvector
centrality)
Locations (consequence-  Locations 31
based)
(betweenness
centrality)

7. Scope of our work

In this work, we attempt to build a comprehensive
Internet model for the purpose of evaluating the relative
importance of Internet assets. As these models are ab-
stracted from datasets collected from the real-world Inter-
net, the correctness of our analysis is contingent on how
accurately they characterize the state and behavior of the
Internet. It is, however, known that modeling Internet at
high-fidelity is a notoriously daunting, if not impossible,
task. Our work presented previously relies on a backbone
topology derived from traceroute outputs. Such sampling
may introduce a distorted IP topology due to missed links.
Moreover, our model only incorporates IP addresses that
reside in the US and is thus not representative of the full
Internet structure. More importantly, the IP geo-location
software used in our study sometimes fails to provide
high-resolution results. Lack of street-level IP geo-location
precision, for instance, results in some IPs belonging to dif-
ferent but close PoPs that are mapped onto the same
location. This inevitably affects the structural analysis per-
formed in this study.

Another challenge of our work is the dynamic nature of
the Internet. It is possible that some datasets used in our
study are outdated and thus do not reflect the current state
of the Internet. For instance, we notice that some IPs in the
skitter dataset we used cannot be reached any more, pos-
sibly because they have been decommissioned. Also, the
AS-level graph may vary over the years due to changes of
business relationships among ISPs, which poses another
challenge for us to obtain a consistent view of the Internet
backbone topology.

This work is also limited to discover those facilities that
are crucial for data transmissions. It does not, however,
consider other components of the Internet that are also
indispensable for its normal operation, such as DNS servers
and BGP routers. Moreover, our traffic generation model in
this work is still preliminary, considering the diverse types
of Internet traffic nowadays. We will continue to improve
it in our future work.

8. Conclusions

The main focus of this paper is to evaluate the critical-
ity of assets in the Internet infrastructure. Towards this
end, we first analyze the structural property of the geo-
graphical network derived from the Internet backbone
topology, using standard graph-theoretical tools. We then
model realistic Internet routing and compare the frequen-
cies at which Internet locations appear on the paths in
the backbone topology. We further improve our ranking
results by weighing these paths with session-level traffic
demands that are generated from synthetic end devices.
Finally, we perform consequence-based analysis on Inter-
net facilities by computing the amount of unroutable
traffic after each of them is removed. The contributions
made in this paper extend our knowledge regarding the
Internet and also shed lights on which critical Internet
infrastructure facilities should be protected with limited
resources.
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