
Efficient Multi-GPU Computation of All-Pairs Shortest Paths

Hristo Djidjev and Sunil Thulasidasan
Los Alamos National Laboratory

Los Alamos, NM, USA
Email: {djidjev,sunil}@lanl.gov

Guillaume Chapuis, Rumen Andonov, and Dominique Lavenier
INRIA/IRISA, University of Rennes

Rennes, France
Email: {guillaume.chapuis,rumen.andonov,dominique.lavenier}@irisa.fr

ABSTRACT

We describe a new algorithm for solving the all-pairs
shortest-path (APSP) problem for planar graphs and graphs
with small separators that exploits the massive on-chip
parallelism available in today’s Graphics Processing Units
(GPUs). Our algorithm, based on the Floyd-Warshall algo-
rithm, has near optimal complexity in terms of the total num-
ber of operations, while its matrix-based structure is regular
enough to allow for efficient parallel implementation on the
GPUs. By applying a divide-and-conquer approach, we are
able to make use of multi-node GPU clusters, resulting in
more than an order of magnitude speedup over the fastest
known Dijkstra-based GPU implementation and a two-fold
speedup over a parallel Dijkstra-based CPU implementation.

I. INTRODUCTION

Shortest-path computation is a fundamental problem in
computer science with applications in diverse areas such as
transportation, robotics, network routing, and VLSI design.
The problem is to find paths of minimum weight between
pairs of nodes in edge-weighted graphs, where the weight
|p| of a path p is defined as the sum of the weights of all
edges of p. The distance between two nodes v and w is
defined as the minimum weight of a path between v and w.

There are two basic versions of the shortest-path problem:
in the single-source shortest-path (SSSP) version, given a
source node s, the goal is to find all distances between s
and the other nodes of the graph; in the all-pairs shortest-
path (APSP) version, the goal is to compute the distances
between all pairs of nodes in the graph. While the SSSP
problem can be solved very efficiently in nearly linear time
by using Dijkstra’s algorithm [1], the APSP problem is much
harder computationally.

Two main families of algorithms exist to solve the APSP
problem exactly: the first family is based on the Floyd-
Warshall algorithm [2], while the second derives from Di-
jkstra’s algorithm. The Floyd-Warshall approach consists in
iterating through every vertex vk of the graph to improve
the best known distance between every pair of vertices
(vi, vj) (see Algorithm 1). The complexity of this approach
is O(|V |3), regardless of the density of the input graph.
While the algorithm works for arbitrary graphs (including

those with negative edge weights), its cubic complexity
makes it infeasible for very large graphs.

Given that the Dijkstra algorithm solves the SSSP prob-
lem, it is possible to solve the APSP problem by simply
running the Dijsktra algorithm over all source vertices in the
graph (see Algorithm 2). When using min-priority queues,
the complexity of this approach is O(|E|+ |V | log |V |) for
the SSSP problem, where V and E are the sets of the
vertices and edges, respectively. For the APSP problem, the
total complexity is thus O(|V | ∗ |E|+ |V |2 log |V |), which
becomes O(|V |3) when the graph is complete, but only
O(|V |2 log |V |) when |E| = O(|V |), making this approach
faster than Floyd-Warshall for sparse graphs.

While the All-Pairs Shortest Path problem regularly oc-
curs in routing in transportation networks, it is also applica-
ble to many other domains. It is the first step in obtaining
several network measures that are of importance in domains
such as social network analysis and bio-informatics. One
such measure is the betweenness centrality, which is defined,
for any vertex v, as the number of shortest paths between
all pairs of vertices that pass through v. Betweenness is
a measure of v’s centrality (importance) in the network,
and algorithms frequently use the centrality of the nodes
in a network in order to compute the community structure
of the network [3]. Furthermore, in several applications,
the networks that need to be analyzed may have negative
weights, and hence one needs an algorithm that solves the
APSP problem for graphs with real (positive as well as
negative) weights. In online social networks, for instance,
negative weights may be used to indicate antagonism be-
tween two individuals [4] or even conflicts and alliances
between two groups [5]. Causal networks in bioinformatics
also use negative edges to represent inhibitory effects [6].

In this paper, we present an algorithm for solving the
APSP problem for graphs with real weights that exploits
the high degree of parallelism available in today’s Graphics
Processing Units (GPU). GPUs and other stream processors
were originally developed for intensive media applications
and thus advances in the performance and general purpose
programmability of these processors have hitherto bene-
fited applications that exhibit computational similarities to
graphics applications, namely high data parallelism, high
computational intensity, and data locality. However, many

Algorithm 1 Floyd-Warshall algorithm.

1 INPUT : A graph G(V, E) , where V i s a s e t o f
v e r t i c e s

and E a s e t o f w e i g h t e d edges between t h e s e
3 v e r t i c e s .

OUTPUT: The d i s t a n c e o f t h e s h o r t e s t p a t h between
5 any two p a i r s o f v e r t i c e s i n G.

7 f o r each v e r t e x v i n V
d i s t [v] [v] = 0

9 end f o r
f o r each edge (u , v) i n E

11 d i s t [u] [v] = w(u , v) / / t h e we i gh t o f t h e edge
(u , v)

end f o r
13 f o r k from 1 t o | V |

f o r i from 1 t o | V |
15 f o r j from 1 t o | V |

d i s t [i] [j] =
17 min (d i s t [i] [j] , d i s t [i] [k] + d i s t [k] [j])

end f o r
19 end f o r

end f o r
21 r e t u r n d i s t

theoretically optimal graph algorithms exhibit few of these
properties. Such algorithms often use efficient data structures
storing as little redundant information as possible, resulting
in highly unstructured data and un-coalesced memory ac-
cess making them less-than-ideal candidates for streaming
processor manipulations. Nevertheless, given the wide appli-
cability of graph-based approaches, the massive parallelism
afforded by today’s graphics processors is too compelling
to ignore; current GPUs support hundreds of cores per chip
and even future CPUs will be many core.

Our approach exploits the structure of the input graphs
and specifically, their partitioning properties to parallelize
shortest path computations . Our algorithm will be especially
efficient if the input graph has a good separator, which
means (informally) that it can be divided into two or more
equal parts by removing O(n) vertices or edges, where n
is the number of the vertices of the graph. Such graphs are
frequently seen in road networks, geometric networks and
social networks; all planar graphs also satisfy this property.
To harness the GPU’s parallel computing power for solving
the path problem on such graphs, we partition the input
graphs into an appropriate number of parts and solve the
APSP on each part and then use the partial solutions to com-
pute the distances between all pairs of vertices in the graph.
Our algorithm, based on the Floyd-Warshall algorithm, has
near quadratic (i.e. near optimal) complexity with respect
to the number of nodes, while its matrix-based structure is
regular enough to allow for efficient parallel implementation
on GPUs. By applying a divide-and-conquer approach, we
are able to make use of multi-node GPU clusters, resulting
in more than an order of magnitude speedup over fastest

Algorithm 2 Dijkstra’s Single Source Shortest Path algo-
rithm.

1 INPUT : A graph G(V, E) , where V i s a s e t o f
v e r t i c e s

and E a s e t o f w e i g h t e d edges between t h e s e
3 v e r t i c e s . A s o u r c e v e r t e x from V.

OUTPUT: The d i s t a n c e o f t h e s h o r t e s t p a t h s between
5 t h e s o u r c e v e r t e x and e v e r y v e r t e x i n V.

7 f o r each v e r t e x v i n V
d i s t [v] = i n f i n i t y

9 p r e v i o u s [v] = u n d e f i n e d
end f o r

11 d i s t [s o u r c e] = 0
Q = V

13 w h i l e Q i s n o t empty
u = v e r t e x i n Q wi th s m a l l e s t d i s t a n c e i n d i s t []

15 Q = Q\ { u}
i f d i s t [u] = i n f i n i t y

17 b r e a k

19 f o r each n e i g h b o r v o f u i n Q
a l t = d i s t [u] + d i s t _ b e t w e e n (u , v)

21 i f a l t < d i s t [v]
d i s t [v] = a l t

23 p r e v i o u s [v] = u
d e c r e a s e−key v i n Q

25 end i f
end f o r

27 end w h i l e
r e t u r n d i s t

known (Dijkstra-based) GPU implementation and a two-fold
speedup over a parallel Dijkstra-based CPU implementation.

In what follows, Section II presents recent parallel imple-
mentations for solving the APSP problem; in Section III, we
detail the principles of our partitioned algorithm; Section IV
focuses on the structure of the data and the computations and
how the algorithm is implemented on large multi GPU clus-
ters. Finally, Section V shows the results of two experiments
and possible ways to improve our implementation.

II. RELATED WORK

When considering a distributed GPU implementation,
both the Floyd-Warshall and Dijkstra’s approaches have
advantages and drawbacks. Though slower for sparse graph,
a Floyd-Warshall approach has the advantage of having
regular data access patterns that are identical to those of a
matrix multiplication. The amount of computations required
for a given graph, using a Floyd-Warshall approach, solely
depends on the number of vertices in the graph; therefore,
balancing workloads between different processing units can
be achieved easily. Dijkstra’s approach is much faster for
sparse graphs but, to achieve best performance, requires
complex data structures which are difficult to implement
efficiently on a GPU.

Implementing parallel solvers for the APSP problem
is an active field of research. Harish and Narayanan [7]

proposed GPU implementations of both the Dijkstra and
Floyd-Warshall algorithms to solve the APSP problem and
compared them to parallel CPU implementations. Both ap-
proaches however require that the whole graph fit in the
GPUs memory. They report solving APSP for a 100k vertex
graph in around 22 minutes on a single GPU. A cache-
efficient parallel, blocked version of the Floyd-Warshall al-
gorithm for solving the APSP problem in GPUs is described
in [8]. While the graphs mentioned in [8] are larger than
what would fit onto GPU on-board memory, the largest graph
instances described in the paper are still only around 10k
vertices.

Buluç et al. [9] proposed a blocked-recursive Floyd-
Warshall approach. Their implementation, running on a
single GPU, shows a speedup of 17-45 when compared
to a parallel CPU implementation and outperforms both
GPU implementations from [7]. Their blocked-recursive
implementation also requires that the entire graph fit in the
GPU’s global memory; therefore, they only report timings
for graphs with up to 8k vertices. Okuyama et al. [10]
proposed an improvement over the GPU implementation
of Dijkstra for APSP from [7] by caching data in on-chip
memory and exhibiting a higher level of parallelism. Their
approach showed a speedup of 2.8−13 over Dijkstra’s SSSP-
based method of [7]. Matsumoto et al. [11] also proposed
a blocked Floyd-Warshall algorithm that they implemented
for computations on a single GPU and a multicore CPU
simultaneously. Their implementation handles graphs with
up to 32k and achieves near peak performance. Only Ortega-
Arranz et al. [12] report solving APSP on large graphs - up
to 1024k vertices. Using an SSSP-based Dijkstra approach,
their implementation runs on a multicore CPU and up
to 2 GPUs simultaneously. Experimental work on parallel
algorithms for solving just the SSSP problem for large graph
instances using a ∆-stepping approach [13] is described
in [14].

Our Contribution: We propose a novel APSP algorithm
and its parallel implementation to compute all shortest
distances between all pairs of vertices of a graph with good
partitioning properties. To make the algorithm scalable to
large graphs, our implementation uses a combination of
shared and distributed-memory GPU computing; the current
implementation targets executions on large clusters of GPUs
in order to handle graphs with up to a million vertices.
Experiments show that the trillion pairs of shortest paths of
a million vertex graph can be found in less than 25 minutes
using a 64-node cluster with 2 GPUs on each node.

We view our contributions as the following:

(i) We developed a new Floyd-Warshall-based APSP algo-
rithm that is simultaneously work-efficient, has a high-
degree of parallelism, and is built upon matrix oper-
ations; we are aware of no previous APSP algorithm
with such properties.

(ii) Our implementation uses a high degree of parallelism,
both at the fine-grained, shared-memory GPU level as
well as at the coarse-grained distributed-memory level,
employing up to 300 GPUs.

(iii) Our algorithm beats the previous algorithm [12] by
more than an order of magnitude with respect to
running times using the same or similar computational
resources.

(iv) In addition to the fact that our algorithm is faster
than Dijkstra-based algorithms, it also has the advan-
tage that it works with arbitrary–negative as well as
positive–weights.

III. ALGORITHM DETAILS

In this section we give the overall structure and the idea
of the algorithm and describe its individual steps (details of
the GPU implementation are covered in Section IV).

A. Overview

Our algorithm takes as input a weighted directed or undi-
rected graph G with n vertices and computes the distances
between all pairs of vertices of G. Based on a divide-and-
conquer approach, it consists of four steps (see Algorithm 3).
In the first step, the original graph G is partitioned into
k components of roughly equal sizes using a min-cut like
heuristic – our implementation uses a k-way partitioning
method from the METIS library [15]. In the second step, the
APSP problem is solved on each component independently;
in the third step the distance information computed for the
components is used to compute distances between all pairs
of boundary vertices of G (a boundary vertex is one that is
adjacent to a vertex from another component); and in the
final step the information obtained in steps two and three is
combined to compute shortest paths between non-boundary
pairs of vertices of G.

We will use the following notation: disti(v, w) will denote
the (approximate) value of the distance between v and w
computed in Step i, for i = 2, 3, 4, and distG(v, w) will
denote the (exact) distance in G. Next we describe the steps
in more detail.

B. Step 1: Graph decomposition

In Step 1 the input graph G is divided into k components
of roughly equal sizes. The decomposition is done be
identifying a set of edges (cut set) whose removal from
G results into a disconnected graph of k parts we call
components. The set of all components is called a partition.
Note that while by the standard definition in graph theory,
a component is connected, this is not a requirement in our
case (although in the typical case our components will be
connected). We do require that every vertex in G belong
to exactly one component of the partition. Moreover, in
order for the resulting APSP algorithm to be efficient, the
cut set of edges should be small. Not all classes of graphs

Algorithm 3 Partitioned All-Pairs Shortest Path algorithm

INPUT : A graph G(V, E) , where V i s a s e t o f
v e r t i c e s and E a s e t o f w e i g h t e d edges between

t h e s e v e r t i c e s .
2 OUTPUT: The d i s t a n c e o f t h e s h o r t e s t p a t h between

any two p a i r s o f v e r t i c e s i n G.

4 f u n c t i o n p a r t i t i o n e d _ A P S P (G)
/ / S t ep 1

6 f o r each Component C i n G
Floyd−W a r s h a l l (C) %compute_APSP (C)

8 end f o r

10 / / S t ep 2
Graph BG = e x t r a c t _ b o u n d a r y _ g r a p h (G)

12 compute_apsp (BG)
f o r each Component C i n G

14 Floyd−W a r s h a l l (C) %compute_APSP (C)
end f o r

16

/ / S t ep 3
18 f o r each Component C1 i n G

f o r each Component C2 i n G
20 compute_apsp_be tween_components (C1 , C2)

end f o r
22 end f o r

end f u n c t i o n

have such partitions, but some important classes do. These
include the class of planar graphs, the class of graphs of low
genus, some geometric graphs, and graphs corresponding to
networks with good community structure.

C. Step 2: Computing distances within each graph compo-
nent

Step 2 involves computing the distances in each compo-
nent of the partition P of G using a conventional algorithm,
e.g., the Floyd-Warshall or Dijkstra algorithm. For each
component C ∈ P and any two vertices s and t of C,
the output of this step is the minimum length of a path
between s and t that is restricted to lie entirely in C.
Hence, the distance computed between s and t may be
larger that the distances between s and t in G, if there is
a shorter path between them that leaves and then re-enters
C. Nevertheless, as we will show in later subsections, the
computed approximate distances can be used to efficiently
compute the correct distances in G.

In order to implement this step, for each component
C ∈ P , a subgraph is extracted containing vertices from
the current component and existing edges between these
vertices. Any APSP algorithm can then be applied in order
to compute distances in each of these sub-graphs. This step
thus has k independent tasks–one for each sub-graph–that
can be computed in parallel. Since each component contains
roughly n/k vertices, using an algorithm whose complexity
solely depends on the number of vertices allows these tasks
to be computed in roughly the same number of operations.

This property can be advantageous depending on the type
of parallelism that we want to exploit.

D. Step 3: Computing distances in the boundary graph

In step 3, we first extract the boundary graph BG of
G with respect to the partition P . The vertices of BG
are defined to be all boundary vertices of G. There are
two types of edges of BG: the first type are edges in G
between boundary vertices from different components. The
weights on these edges are the same as their weights in G.
The second type of edges, which we call virtual edges, are
between boundary vertices in the same components – for
any two boundary vertices v and w belonging to the same
component C there is an edge (v, w) in BG with weight
equal to the distance between v and w computed in Step 2.
Hence, BG is a compressed version of the original graph,
where all non-boundary vertices have been removed, and
replaced by edges whose weights are equal to the weight
of the shortest path between them. Having constructed BG,
we then solve for it the APSP problem using a conventional
APSP algorithm.

Despite the fact that the distances encoded in the weights
of the new edges of BG are only approximate, the distances
between the boundary nodes of BG computed at the end of
Step 3 are exact. The next lemma formally establishes this
fact.

Lemma 1. For any two boundary vertices v and w, the
distance between v and w in BG is equal to their distance
in G.

Proof: Let p = (v = x1, x2, . . . , xl = w) be a shortest
path in G and let (xb1 , xb2 , . . . , xbj) be the subsequence of
all boundary vertices in p, i.e., 1 = b1 < · · · < bj = l
and there are no boundary vertices on p between xbi and
xbi+1

. Hence p′ = (xb1 , xb2 , . . . , xbj) is a path in BG. We
are going to estimate the length of p′.

Let h = (xbi , xbi+1) be an edge of p′. If xbi and xbi+1 are
from different components, then, by the definition of BG,
h is also an edge of G with the same weight as in BG. If
xbi and xbi+1

are from the same component C (Figure 1),
then h corresponds to a subpath q = (xbi , xbi+1, . . . , xbi+1

)
of p consisting of vertices from only C, by the assumption
that p′ contains all the boundary vertices of p. Hence, the
weight of h and the length of q are the same. By induction
on the number of the edges of p′, p and p′ have the same
length, which implies that the distance between v and w in
BG is no greater than the distance between them in G. The
reverse inequality is obtained in the same way, namely, by
showing that any path in BG can be transformed into a path
of the same length in G by replacing each virtual edge of
the former with the corresponding shortest path computed
in Step 2. The claim follows.

This step presents no apparent parallelism, since only
one task needs to be computed. This absence of parallelism

Cxbi

xbi+1

xbi−1

xbi+2

xbi+1

xbi+2

boundary vertices

non-boundary vertices

q

Figure 1. Illustration to the proof of Lemma 1. The shaded region
illustrates a component C with the subpath q = (xbi , xbi+1, . . . , xbi+1

)
of p inside it.

at this step may be a major bottleneck for a coarse-grain
parallel implementation as boundary graphs can be very
large. This issue can however be mitigated by applying
our current algorithm recursively on the boundary graph.
Boundary graphs are nevertheless denser than the original
graph with the addition of virtual edges at Step 2. Boundary
graphs are therefore less easily partitioned than input graphs
- the number of edges cut per node for a given number of
components will be higher.

E. Step 4: Distances between non-boundary vertices

In Step 4 we compute distances where at least one
vertex is non-boundary using the information computed in
Steps 2 and 3. In order to compute the distance between
two non-boundary vertices vi and vj from (not necessarily
different) components Ci and Cj respectively, we need
to find boundary vertices bi and bj from components Ci
and Cj , respectively, that minimize the sum dist2(vi, bi) +
dist3(bi, bj) + dist2(bj , vj), where dist2 and dist3 are the
distances computed in Step 2 and Step 3, respectively. By
our analysis above, dist3 is the same as the distance in G, but
dist2 is not. We need therefore to prove that such a method
produces accurate distances in G.

Lemma 2. Let vi and vj be two vertices from different
components Ci and Cj , respectively. Define Bi = Ci∩BG,
Bj = Cj ∩BG, and

dist4(vi, vj) = min{dist2(vi, bi)+dist3(bi, bj)+dist2(bj , vj)

| bi ∈ Bi, bj ∈ Bj}. (1)

Then dist4(vi, vj) is equal to the distance in G between vi
and vj .

Proof: Let p be a shortest path in G between vi and
vj . Since vi and vj belong to different components, then p
will contain at least one vertex from Bi and at least one
vertex from Bj . Let bi be the first vertex on p from Bi

vi

bi

bj

vj

Ci Cj

p

Figure 2. Illustration to the proof of Lemma 2. Note that while in the
figure both vi and vj are non-boundary, the proof does not make such an
assumption.

and bj be the last vertex on Bj (Figure 2). Let p1 be the
portion of p between vi and bi, p2 be the portion between bi
and bj , and p3 – the portion between bj and vj . Since any
subpath of a shortest path is also a shortest path between
the corresponding endpoints, p1 is a shortest path in G
between vi and bi, i.e., |p1| = distG(vi, bi). Moreover, by
the definition of bi as the first boundary point of Ci on p,
p1 is entirely in Ci and hence |p1| = dist2(vi, bi). In the
same way one can prove that |p2| = dist2(bj , vj). Finally,
|p3| = distG(bi, bj) = dist3(bi, bj) by Lemma 1. Hence

|p| = |p1|+|p2|+|p3| = dist2(vi, bi)+dist3(bi, bj)+dist2(bj , vj).

By the definition of dist4(vi, vj) as a minimum over all
bi ∈ Bi, bj ∈ Bj , the last equality implies dist4(vi, vj) ≤
distG(vi, vj). But since dist4(vi, vj) is a length of a path
between vi and vj , while distG(vi, vj) is the length of a
shortest path, then dist4(vi, vj) ≥ distG(vi, vj). Combining
the last two inequalities we infer that none of them can be
a strict inequality, i.e., dist4(vi, vj) = distG(vi, vj).

Lemma 3. Let vi and vj be two vertices from component Ci.
Then distG(vi, vj) = min{dist2(vi, vj), dist4(vi, vj)}, where
dist4 is as defined in Lemma 2.

Proof: Consider the following two cases. If p leaves Ci,
then p should cross the boundary Bi at least twice. Define bi
and bj as the first and last vertex from Bi on p. Then exactly
the same arguments as in Lemma 2 apply to the three paths
into which bi and bj divide p. In this case distG(vi, vj) =
dist4(vi, vj). If p does not leave p, then Step 2 will compute
the accurate distance in G between vi and vj , and therefore
distG(vi, vj) = dist2(vi, vj).

The lemmas imply that the distances in G between all
pairs of vertices where at least one of the vertices is non-
boundary can be computed by using (eq:step4). Since we
don’t know which pair (bi, bj) of boundary nodes corre-
sponds to the minimum in (eq:step4), we have to try all
such pairs, resulting in total of |Bi||Bj | operations needed
for computing distG(vi, vj). For a graph with k components,
we need to compute the distances between pairs in any pair
of components; we therefore have k2 independent tasks.
Components being of roughly equal sizes, these tasks also
represent the same amount of computations. This step is

Part 1

Part 2

Part 3

Part 4

Part 3
3

1

3

1

Other
 vertices

Boundary
vertices

Boundary

Other

Other vertices

Figure 3. Adjacency matrix after reordering of the vertices. Vertices from
the same component are stored contiguously starting with boundary vertices
(in red).

the most computationally intensive, but presents massive,
already balanced, coarse-grain parallelism.

IV. IMPLEMENTATION

In this section, we first focus on how operations described
in the previous section translate in terms of data structures.
We then detail the two-level parallel aspect of our imple-
mentation. We finally describe the current main memory
bottleneck of our approach.

A. Data organization

A simple way to represent a weighted graph is to use
an adjacency matrix. For very large graphs however, such a
memory intensive representation is often avoided. Instead,
large sparse graphs are stored using lists; sub-matrices,
corresponding to sub-graphs, are extracted from these lists.
For simplicity reasons, we can however assume that a large
adjacency matrix representation is available and keep in
mind that sub-matrix extraction operations are slightly more
costly than they appear. We are also taking into account the
fact that, even when the input graph (matrix) is sparse, the
output is always a dense matrix as it encodes the distances
between all pairs of vertices.

Partitioning the graph is performed using a k-way parti-
tioning routine from the METIS library [15]. The result is a
partitioning of the graph into k parts such that the number of
edges with endpoints in different parts is minimized. Since
that partitioning problem is NP-hard, METIS computes an
approximation based on heuristics. Vertices are then re-
ordered so that vertices belonging to the same component are
numbered consecutively starting with the boundary vertices
– see Figure 3.

Diagonal sub-matrices contain information about sub-
graphs for each component; non-diagonal sub-matrices con-
tain known shortest distances between components. Within
each diagonal sub-matrix, the top left sub-matrix contains
information about the sub-graph induces by boundary ver-
tices of the component; the bottom right sub_matrix contains
information about the sub-graph induced by non-boundary

Figure 4. The boundary matrix, here in red, is scattered over the adjacency
matrix. Step 3 consits in reconstituting the boundary matrix and computing
shortest distances.

vertices of the component and the rest of the diagonal sub-
matrix contains known shortest distances between boundary
and non-boundary vertices.

For Step 2, diagonal sub-matrices are extracted; a Floyd-
Warshall approach is then used to compute shortest dis-
tances. The Floyd-Warshall algorithm guarantees that the
total number of operations for a single matrix solely depends
on the size of the matrix. Since all components of the graph
have roughly the same number of vertices, all diagonal sub-
matrices represent roughly the same amount of operations.

For Step 3, the boundary matrix is extracted – see
Figure 4. We then apply the same algorithm recursively
reducing the number k of component at each iteration.
Recursion stops when k = 1 or when the boundary graph
becomes so dense that it does not have good partitioning
(in terms of number of boundary vertices). At that point the
APSP subproblem is solved using Floyd-Warshall.

For Step 4, we compute shortest distances between every
pair of distinct components. This process corresponds to
filling non-diagonal sub-matrices. For two components I and
J , filling the associated, I to J , non-diagonal sub-matrix
requires information from three sub-matrices:

• the non-diagonal sub-matrix being filled. We are partic-
ularly interested in the part of the sub-matrix contain-
ing shortest distances between boundary vertices from
component I to boundary vertices from component J .

• the diagonal sub-matrix corresponding to component
I - located in the same row as the non-diagonal sub-
matrix being filled. We are particularly interested in the
part of this diagonal sub-matrix that contains shortest
distances from any vertex of component I to boundary
vertices.

• the diagonal sub-matrix corresponding to component J
- located in the same column as the non-diagonal sub-
matrix being filled. We are particularly interested in the
part of this diagonal sub-matrix that contains shortest

Part I

Part J

.

.

.

. . .
I

J

* *

d b2, j 

d b1,b2 d i , b1

Figure 5. Computations associated to each non-diagonal sub-matrix uses
data from 2 diagonal sub-matrices and part of the non-diagonal sub-matrix
itself. Computations are similar to matrix multiplications.

distances from boundary vertex of component J to any
vertex - see left of Figure 5.

Shortest distances from vertices from component I to
vertices from component J are obtained by multiplying
the three parts of sub-matrices - as shown on the right
of Figure 5 - where (+, ∗) operations are replaced with
(min,+) operations.

B. Work analysis

Next we will try to estimate the work (number of op-
erations) of the algorithm. Since the work depends on the
partitioning properties of the input graph, we will do the
analysis for the case of planar bounded-degree graphs. For
that class of graphs, there exists a partitioning of any n-
vertex graph into k parts such that the number of boundary
vertices in each part is O(

√
n/k) [16]. We make the assump-

tion that METIS produces a partition with such properties.
Although the partition METIS produces does not come with
theoretically guaranteed bounds, it works in practice better
than alternative algorithms that have such guarantees, which
is the reason we chose it. The time needed for Step 1 is
O(n log n).

In Step 2, we have k subtasks of computing APSP
on graphs of size O(n/k) using an algorithm of cubic
complexity, so the number of operations for that step is
k(n/k)3 = n3/k2.

In Step 3, we have to solve the APSP on a graph of
size O(k

√
n/k) = O(

√
kn). Using an algorithm with

complexity O(Nα), where N is the number of the vertices
of the subgraph, the number of operations for this step is
O((kn)α/2).

For Step 4, we have k2 tasks and each tasks involves
the multiplication of three matrices with dimensions n/k×√
n/k,

√
n/k ×

√
n/k, and

√
n/k × n/k, respectively.

Computing the product of the first and the second matrix
takes

O((n/k)
√
n/k

√
n/k) = O((n/k)2)

operations and finding the product of the resulting n/k ×

√
n/k matrix and the third matrix takes

O((n/k)
√
n/k(n/k)) = O((n/k)5/2)

operations, which is the dominating term. Hence, the total
number of operations for Step 4 is

O(k2(n/k)5/2) = O(n5/2/k1/2).

The total number of operations is the sum of the numbers
computed for Steps 1, 2, 3, and 4 and is minimized when
(kn)α/2 = n5/2/k1/2 or kα+1 = n5−α. If in Step 3 Floyd-
Warshall is used, then α = 3 and k = n1/2 is optimal,
resulting in a bound of O(n9/4) for the total number of
operations, slightly worse than the theoretical lower bound of
O(n2). Our implementation in fact uses recursion in Step 3
so the total complexity is even closer to quadratic, but we
will skip the details of the exact evaluation since the analysis
gets much more complex.

C. Parallel implementation

Our implementation specifically targets large clusters of
hybrid systems - possessing both a multicore CPU and
manycore GPUs. This implementation exploits parallelism
at two levels. At a coarse-grain level, large independent
tasks - corresponding to computations of diagonal and non-
daigonal sub-matrices - can be performed simultaneously on
different nodes of a cluster. At a fine-grain level, each task
is computed on a massively parallel GPU. Remaining CPU
cores handle tasks that are not suited for GPUs: input/output
file operations and communication with other nodes.

Coarse-grain parallelism: Steps 2 and 4 of our algorithm
exhibit interesting parallel properties: a large number of
balanced, independent tasks; k tasks for Step 2 and k2 − k
for Step 4. Using the MPI standard [17], these tasks are
distributed accross nodes of the cluster for simultaneous
computations. One master node is in charge of reading the
input graph file, calling the partitioning routine and sending
tasks to a number of slave nodes equal to the number of
available GPUs on the cluster. Depending on the cluster’s
topology, the number of master and slave nodes will not
match the number of physical nodes used on the cluster if
each cluster node contains more than one GPU.

For Step 3, the large initial boundary matrix is computed
recursively using the same algorithm with decreasing values
for the number k of components. The amount of independent
tasks therefore decreases with k, until a single, smaller
boundary matrix is obtained and computed by a single slave
node.

Fine grain parallelism: Upon receiving a task from the
master node, each slave node then sends the corresponding
data to its GPU for computations, retrieves results and send
them back to the master node. Tasks are of two different
kinds: diagonal workloads, which consist in computing
shortest distances over a small subgraph, and non-diagonal
workloads, which consist in multiplying three matrices.

Computations of diagonal workloads are implemented on
the GPU using a blocked-recursive Floyd-Warshall approach
developped by [9] and adapted for non-power of 2 matri-
ces. Non-diagonal workloads require less synchronization
and can be implemented using a fast matrix-multiplication
approach derived from [18] and adapted for (min,+) oper-
ations.

In this configuration, each physical node on the cluster
makes use of as many CPU cores as there are available
GPUs. If more CPU cores are available than GPUs, compu-
tational power is still available. On slave nodes, remaining
CPU cores are used for outputting final results to disk. On
large clusters, communication between the master node and
slave nodes can become a bottleneck, leaving slave nodes
idle while waiting for the master node to be available. In
order to increase the availability of the master node, a single
CPU thread is used to initiate communications with slave
nodes while remaining CPU cores handle the rest of the
communications, updating data structures with temporary
results and outputting final results to disk.

D. Memory limitations

For very large input graphs, memory usage becomes an
issue. As stated previously, an entire adjacency matrix for
the graph cannot be allocated; the graph is instead kept in
memory as a list of edges, a much more memory-efficient
representation. Even with this efficient representation, tem-
porary sub-matrices (diagonal sub-matrices and boundary
matrices) need to be kept in memory. When recursively
computing Step 3, boundary matrices are output to files so
as to only keep a single boundary matrix in memory.

Final results for diagonal sub-matrices are only obtained
at the end of Step 3. As soon as final values for these
diagonal sub-matrices are obtained, they are output to files;
only relevant parts are kept in memory for Step 4, namely,
parts of these sub-matrices containing shortest distances
from and to boundary vertices. Shortest distances between
non-boundary vertices are thus discarded from main memory
at the end of Step 3.

The current limiting factor in terms of memory usage
is the initial boundary matrix. The first boundary matrix
has to fit in the main CPU memory. Section V discusses
ways to overcome this limitation. It is however probable
that prohibitive run-times or results too large to process may
become the limiting factor before main memory usage does.

V. RESULTS AND PERSPECTIVES

In this section, we compare our implementation to two
parallel Dijkstra implementations. It is important to note that
our implementation allows graphs with negative edges – but
no negative cycles – unlike Dijkstra-based approaches.

In order to test our implementation, we generated random
graphs with increasing numbers of vertices, ranging from
1024 to 1024k. These graphs, generated using the LEDA

1000 10000 100000 1000000 10000000
0,0E+0

5,0E+3

1,0E+4

1,5E+4

2,0E+4

2,5E+4

3,0E+4

Run times with respect to # of vertices

GPU Dijkstra

Part. APSP EM

of vertices

R
u

n
 ti

m
e

s
 (

in
 s

)

Figure 6. Evolution of run times with respect to the number of vertices.
Two implementations are compared: our implementation using external
memory and the GPU Dijkstra implementation from [12]. Computations
were run using two GPUs on a single cluster node.

library [19], were made planar to ensure good partitioning
properties.

Computations were run on a cluster of more than 300
computer nodes; each node is equipped with two NVIDIA
C2090 GPUs, a 16 core Intel(R) Xeon(R) CPU E5-2670 0
@ 2.60GHz and 32 GB of RAM.

Our implementation handles instances up to 512k vertices
without using external memory. For the very last instance,
the use of external memory was required to fit in the 32
GB of main memory. We later refer to our implementation
without using external memory as “Part. APSP no EM” and
our implementation using external memory as “Part. APSP
EM”.

The GPU Dijkstra implementation from [12] is, to the
best of our knowledge, the only implementation that was
reported to solve APSP for graphs with up to 1024k vertices;
we later refer to this implementation as “GPU Dijkstra”.
This implementation parallelizes SSSP computations on a
single computer using two GPUs and a multicore CPU. In
order to compare this implementation to ours, we restricted
computations of both implementations to using only two
GPUs. Both implementations could therefore run on a single
cluster node; no communication between nodes were there-
fore required.

Figure 6 shows the runtimes for GPU Dijkstra and Part.
APSP EM for graphs with numbers of vertices ranging from
1024 to 1024k using only two GPUs. GPU Dikstra could not
compute the last two instances - 512k and 1024k vertices
- within the 10 hour limit enforced on the cluster. Results
in 6 indicate our implementation to be significantly faster
than GPU Dijkstra.

Figure 7 shows the evolution of the speedup of our
method without using external memory with respect to the
number of GPUs used for the computations. Speedups are
calculated using the run time obtained using only one GPU
as a reference. Computations were done for the 512k vertex
instance using the Part. APSP (without I/O). We can see

1 10 100 1000
1

10

100

1000

Speedup w.r.t. # of GPUs

Ideal scaling

Speedup

of GPUs

S
p

e
e

d
u

p

Figure 7. Evolution of speedups with respect to the number of GPUs. The
ideal scaling line is given as a reference.

that coarse-grained parallelism is close to optimal up to
around 31 GPUs; almost no benefit can however be gained
from using more than about 63 GPUs. The reason for this
stagnation of the speedup above 63 GPUs is the saturation
of communication with the master node.

The scalability can be improved using a coarse-grained
parallelism approach that would relieve the master node
of some of its communication. A work-stealing approach,
for instance, would reduce the amount of communication
required for the master node by decentralizing some of
the memory transfers. A work-stealing approach is however
difficult to implement, due to the two-sided communication
scheme enforced by the MPI standard. [20] showed that such
an efficient approach was nevertheless feasible. This issue
could also be addressed by creating a hierarchy of master
nodes; some computations would be redundant between the
different master nodes - handling the main data structure -
but this would only represent a negligible fraction of the
overall workload.

Figure 8 shows a comparison between our two implemen-
tations and a distributed Dijkstra approach - later referred to
as CPU Dijkstra - for graphs ranging from 1024 to 1024k
vertices. The distributed Dijkstra approach was implemented
by dynamically distributing SSSP computations for each
vertex of the graph over every core of every available cluster
node. The Dijkstra-based implementation used is that of the
Boost C++ library [21]. This experiment is not intended
to compare directly the performances of 2 GPUs versus a
multicore CPU. Instead, we intend to show that our approach
is competitive with a distributed Dijkstra approach given a
fixed number of heterogeneous cluster nodes. The run times
presented in Figure 8 were obtained using 64 cluster nodes.
We can see that our version using external memory obtains
very similar run times to that of the distributed Dijkstra
version, while allowing graphs with negative edges to be
computed. Our version without external memory is however
significantly faster.

In order to test our implementation on a real dataset, we
retrieved the Californian road network dataset from [22].

1000 10000 100000 1000000 10000000
0

200

400

600

800

1000

1200

1400

1600

Run times w.r.t. # of vertices

Part. APSP EM

CPU Dijkstra

Part. APSP no EM

of vertices

R
u

n
 ti

m
e

s
 (

in
 s

)

Figure 8. Evolution of run times with respect to the number of vertices.
Three implementations are compared: our two implementations - with and
without using external memory - and a distributed Dijkstra implementation
referred to as CPU Dijkstra. All computations were run on 64 cluster nodes.

This dataset consists in the entire road network of the state of
California; it contains 1, 957, 027 vertices corresponding to
road intersections and more than 5 million edges correspond-
ing to roads. Computing the 3.8 trillion shortest distances in
this network took 31 minutes, using 64 cluster nodes.

VI. CONCLUSION

We described a new algorithm for solving the all-pairs
shortest path problem on planar and other graphs with
good partitioning properties, which is characterized by a
nearly optimal number of operations, a regular matrix-
structured computations, and which admits a high degree
of parallelism. Our implementation on a multi-GPU cluster
allows a trillion distances to be computed in half an hour
or less. Compared with similar algorithms, ours is orders of
magnitude faster and also allows exploiting a much larger
number of GPUs. Our future work will target improving the
coarse-grained communication structure and increasing the
memory efficiency so that even larger instances can be run
without using external memory.

REFERENCES

[1] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–271,
1959.

[2] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson,
Introduction to Algorithms, 2nd ed. McGraw-Hill Higher
Education, 2001.

[3] M. Newman, Networks: An Introduction. New York, NY,
USA: Oxford University Press, Inc., 2010.

[4] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting
positive and negative links in online social networks,” in
Proceedings of the 19th international conference on World
wide web. ACM, 2010, pp. 641–650.

[5] V. Traag and J. Bruggeman, “Community detection in net-
works with positive and negative links,” Physical Review E,
vol. 80, no. 3, p. 036115, 2009.

[6] K. Inoue, A. Doncescu, and H. Nabeshima, “Hypothesizing
about causal networks with positive and negative effects
by meta-level abduction,” in Inductive Logic Programming.
Springer, 2011, pp. 114–129.

[7] P. Harish and P. Narayanan, “Accelerating large graph al-
gorithms on the GPU using CUDA,” in High performance
computing–HiPC 2007. Springer, 2007, pp. 197–208.

[8] G. J. Katz and J. T. Kider, Jr, “All-pairs shortest-paths for
large graphs on the gpu,” in Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hard-
ware, ser. GH ’08. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2008, pp. 47–55.

[9] A. Buluç, J. R. Gilbert, and C. Budak, “Solving path problems
on the GPU,” Parallel Computing, vol. 36, no. 5, pp. 241–253,
2010.

[10] T. Okuyama, F. Ino, and K. Hagihara, “A task parallel
algorithm for finding all–pairs shortest paths using the GPU,”
International Journal of High Performance Computing and
Networking, vol. 7, no. 2, pp. 87–98, 2012.

[11] K. Matsumoto, N. Nakasato, and S. G. Sedukhin, “Blocked
united algorithm for the all-pairs shortest paths problem
on hybrid CPU-GPU systems,” IEICE TRANSACTIONS on
Information and Systems, vol. 95, no. 12, pp. 2759–2768,
2012.

[12] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-
Escribano, “The all-pair shortest-path problem in shared-
memory heterogeneous systems,” 2013.

[13] U. Meyer and P. Sanders, “Delta-stepping: a parallelizable
shortest path algorithm.” J. Algorithms, vol. 49, no. 1,
pp. 114–152, 2003. [Online]. Available: http://dblp.uni-
trier.de/db/journals/jal/jal49.html#MeyerS03

[14] K. Madduri, D. A. Bader, J. W. Berry, and J. R.
Crobak, “An experimental study of a parallel shortest
path algorithm for solving large-scale graph instances.” in
ALENEX. SIAM, 2007. [Online]. Available: http://dblp.uni-
trier.de/db/conf/alenex/alenex2007.html#MadduriBBC07

[15] G. Karypis and V. Kumar, “Multilevel k-way partitioning
scheme for irregular graphs,” Journal of Parallel and Dis-
tributed computing, vol. 48, no. 1, pp. 96–129, 1998.

[16] G. N. Frederickson, “Fast algorithms for shortest paths in
planar graphs, with applications.” SIAM J. Comput., vol. 16,
no. 6, pp. 1004–1022, 1987.

[17] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-
Lederman, MPI: the complete reference. MIT press, 1995.

[18] V. Volkov, “Better performance at lower occupancy,” in Pro-
ceedings of the GPU Technology Conference, GTC, vol. 10,
2010.

[19] K. Mehlhorn, S. Näher, and C. Uhrig, “Leda: A platform for
combinatorial and geometric computing,” vol. 38, 1999.

[20] G. P. Pezzi, M. C. Cera, E. Mathias, and N. Maillard, “On-
line scheduling of MPI-2 programs with hierarchical work
stealing,” in Computer Architecture and High Performance
Computing, 2007. SBAC-PAD 2007. 19th International Sym-
posium on. IEEE, 2007, pp. 247–254.

[21] B. Dawes, D. Abrahams, and R. Rivera, “Boost C++ li-
braries,” URL http://www. boost. org, vol. 35, p. 36, 2009.

[22] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney,
“Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters,” Internet
Mathematics, vol. 6, no. 1, pp. 29–123, 2009.

VII. ACKNOWLEDGMENTS

The authors acknowledge and appreciate the support pro-
vided for this work by the Los Alamos National Laboratory
Directed Research and Development Program (LDRD). This
work was also partially supported by the region of Brittany,
France.

