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The Graph Laplacian and 
the Dynamics of Complex 
Networks 



Abstract 
•  In  this talk, we explore the structure of networks from a 

spectral graph-theoretic perspective by analyzing  the 
properties of the Laplacian matrix associated with the 
graph induced by a network. We will see how the 
eigenvalues of the graph Laplacian relate to the 
underlying network structure and dynamics and provides 
insight into  a phenomenon frequently observed in real 
world networks -- the emergence of  collective behavior 
from purely local interactions seen in the   coordinated 
motion of animals and phase transitions in biological 
networks, to name a few. 
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G = (V,E) 
V = {1,2,3} 
E = { {1,2}, {2,1},{2,3},{3,2}} 
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Adjacency Matrix 
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
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AD =




0 0 0
1 0 0
0 1 0







Degree matrix 

∆ =




1 0 0
0 2 0
0 0 1
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Graph Laplacian 

Equation

L(G) = ∆(G)− A(G)
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∆ =




1 0 0
0 2 0
0 0 1



 A =




0 1 0
1 0 1
0 1 0





L =




1 −1 0
−1 2 −1
0 −1 1







Graph Laplacian…. 
• Consider the following neighbor-influenced process on a 

network  

Equation

ẋi = C
�

j∈N (i)

(xj − xi )

⇒ ẋ = C (A−∆)x

⇒ ẋ+ C (D− A)x = 0

⇒ ẋ+ CLx = 0
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L =




1 −1 0
−1 2 −1
0 −1 1







Graph Laplacian…. 
• A consensus algorithm on networks: 
 

Equation

ẋi =
�

j∈N (i)

(xj − xi )

⇒ ẋ = C (A−∆)x

⇒ ẋ+ C (D− A)x = 0

⇒ ẋ+ CLx = 0

In compact notation, this becomes: 

Equation

ẋi =
�

j∈N (i)

(xj − xi )

⇒ ẋ = C (A−∆)x

⇒ ẋ+ C (D− A)x = 0

⇒ ẋ+ CLx = 0

ẋ = −L(G )x

What can we say about the convergence of this process? 



Graph Laplacian eigenvalues 

Equation

L(G) = ∆(G)− A(G)
L =




1 −1 0
−1 2 −1
0 −1 1








1 −1 0
−1 2 −1
0 −1 1



 ∗




1
1
1



 = 0

0 is always an eigenvalue of the Laplacian, and the column of 1’s is the 
Associated eigenvector 



The Incidence Matrix 

D =




1 0
−1 −1
0 1



 ;DT =

�
1 −1 0
0 −1 1

�

DDT =




1 0
−1 −1
0 1




�
1 −1 0
0 −1 1

�
=




1 −1 0
−1 2 −1
0 −1 1


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3

Equation

�
D(Go)D(Go)T

�

ij
=

m�

k=1

[D(Go)]ij [D(Go)]kj

If i = j , then the product is just the degree of vi . Else −1 if an
edge exists between vi and vj and 0 otherwise. Thus we get back
the Laplacian.

D =




1 0
−1 −1
0 1
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 ;DT =

�
1 −1 0
0 −1 1

�
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
1 0
−1 −1
0 1


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Laplacian properties 

Equation

L(G) = D(G)D(G)T

⇒ xTL(G)x = xTD(G)D(G)Tx
= (D(G)Tx)T(D(G)Tx)

= ||D(G)Tx||22

Then, the Laplacian is positive semi-definite with at least one zero eigenvalue 
 

Equation

0 = λ1(G ) ≤ λ2(G) ≤ . . . λn(G )



Back to consensus… 

Equation

ẋi =
�

j∈N (i)

(xj − xi )

⇒ ẋ = C (A−∆)x

⇒ ẋ+ C (D− A)x = 0

⇒ ẋ+ CLx = 0

ẋ = −L(G )x

Equation

Λ(G) = Diag([λ1(G), . . . ,λn(G)]T)

x(t) = e−L(G)tx0

e−L(G)t = e(UΛ(G)UT)t

= Ue−Λ(G)UT

= e−λ1tu1u
T
1 + e−λ2tu2u

T
2 . . . e−λntunu

T
n

Equation

Λ(G) = Diag([λ1(G), . . . ,λn(G)]T)

x(t) = e−L(G)tx0

e−L(G)t = e(UΛ(G)UT)t

= Ue−Λ(G)UT

= e−λ1tu1u
T
1 + e−λ2tu2u

T
2 . . . e−λntunu

T
n

When would ¸2 = 0 ? 



¸2  and graph connectedness 

L =





L1 0 . . . 0
0 L2 . . . 0

0 0
. . . 0

0 . . . Lc




(1)





L1 0 . . . 0
0 L2 . . . 0

0 0
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z1
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= 0 (2)
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zc
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1

0
...
0
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+ α2
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0
1
...
0
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
+ . . . αc





0
0
...
1




(3)

Equation





A1 0 . . . 0
0 A2 . . . 0

0 0
. . . 0

0 . . . Ac




(1)

Then the Laplacian, L(G) also takes on the following
block-diagonal structure:





L1 0 . . . 0
0 L2 . . . 0

0 0
. . . 0

0 . . . Lc




(2)

A =  



¸2  and graph connectedness 

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Thus, number of connected components is dimension of null space of L 



Flocking/swarming, coupled oscillators etc 

Image from National Geographic 

ui =
k

n

n�

j=1

sin(θj − θi )

•  For small phase differences, this linearizes to consensus model. 

•  For non-linear systems (coupled oscillators) can use positive-semi-
definite property of Laplacian to construct potential functions. 

 
 

ui =
k

n

n�

j=1

(θj − θi )



Discrete case consensus 

x(k+1) = xk +∆t
�

j∈N(i)

(xj(k)− xi(k))

Does this converge? 



Discrete case consensus 
x(k+1) = xk +∆t

�

j∈N(i)

(xj(k)− xi(k))

= (I −∆tL(G))xk

Let I −∆tL(G))xk = M

⇒ eig(M) = 1−∆tλi (G )

We need

|1−∆tλi (G )| < 1

⇒ 0 < ∆tλmax(G ) < 2

⇒ ∆t <
2

λmax(G )

x(k+1) = xk +∆t
�

j∈N(i)

(xj(k)− xi(k))

= (I −∆tL(G))xk

Let I −∆tL(G))xk = M

⇒ eig(M) = 1−∆tλi (G )

We need

−1 < 1−∆tλi (G ) ≤ 1

⇒ 0 < ∆tλmax(G ) < 2

⇒ 0 ≤ ∆t <
2

λmax(G )



¸2  and graph structure 

¸2 = 5 

¸2 = 0.38 

¸2 is an indication of  graph diameter 
 
 



¸2  and graph resiliency 

λ2(G ) ≤ κ0(G ) ≤ κ1(G ) ≤ dmin(G )

where

� κ0(G ) is the node connectivity

� κ1(G ) is the edge connectivity

� dmin is the minimum degree in G .



Small World Networks   

• Characterized by low diameter 
• High edge resilience 
•  Fast convergence rate 
•  In other words, high ¸2  



Vicsek et al.:  “ A Novel Type of Phase Transition in a System of Self-Driven 
Particles”  Phys. Rev. , Aug 1995 



Phase transition in physical systems 

"… only an extremely unusual crossover could change this 
tendency.  A plausible physical picture.. .. is that there is effective 
(long range)  interaction radius" (Vicsek 1995] 
 
Combinatorial phase transition (emergence of connectedness) 
leads  to a physical phase transition. 


