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Abstract—We give efficient sequential and distributed approxi-
mation algorithms for strong edge coloring graphs modeling wire-
less networks. Strong edge coloring is equivalent to computing
a conflict-free assignment of channels or frequencies to pairwise
links between transceivers in the network.

I. INTRODUCTION
A wireless radio network consists of a group of transceivers

in space communicating with each other over a shared
medium. Each transceiver has a range (a geographic region)
within which it can communicate with other transceivers.
Communication can take place between a pair of nodes that
are both in range of each other via protocols that send data
packets in one direction and acknowledgements in the other
direction.
Assigning channels or frequencies to the links between

transceivers to avoid primary and secondary interference cor-
responds to the strong edge coloring problem (also called
distance-2 edge coloring) in the graph that models the radio
network [1]–[3]. This undirected graph has one node for
each transceiver; for every pair of transceivers such that each
transceiver is in the range of the other, there is an edge between
the corresponding nodes. In this graph, a valid strong edge
coloring must assign distinct colors, corresponding to distinct
channels, to any pair of edges between which there is a path
of length at most two. Since each color corresponds to a
channel, it is important to produce a strong edge coloring of
the entire graph that uses a minimum number of colors or to
maximize the number of edges colored in a partial coloring,
i.e., a coloring of some subgraph. We consider the following
two related problems.
Problem D2EC(G): Compute a strong edge coloring of a
given graph G = (V,E) with the fewest possible colors.
Equivalently, compute an interference-free channel assignment
with the fewest channels.
Problem D2EC(G,k): Maximize the number of edges colored
in a partial strong edge coloring with at most k colors of a
given graph G = (V,E). Equivalently, compute a channel
assignment with at most k channels that maximizes the pairs
of transceivers that can communicate without interference.
Mahdian [4], [5] and Erickson et al. [6] proved that

D2EC(G) is NP-complete. The hardness of D2EC(G) implies
that problem D2EC(G,k) is also NP-complete. Hence, approx-
imation algorithms are necessary.

The first unified coloring-based framework for resource
allocation problems in channel assignment was described by
Ramanathan [3], but most results [7], [8] consider node-based
conflict models, i.e., vertex coloring problems. Our results
extend those in [9], giving a better analysis, and solving the
more general problem with multiple frequencies. The MAC
layer, which is concerned with avoiding collisions due to signal
interference, especially the 802.11 protocol, has been the
topic of numerous papers, both theoretical [1] and experimen-
tal [10]–[12]. A good collision avoidance protocol in the MAC
layer is necessary for efficient utilization of the bandwidth
of the underlying medium [13]. Finding the exact number of
colors required for a strong edge coloring of particular classes
of graphs has been studied extensively [4], [5], [14]. We are
concerned with efficient and provable algorithms to produce a
strong edge coloring efficiently, even if it uses more than the
optimum number of colors.
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Fig. 1. Primary interference occurs at v because it receives signals from both
u and w on the same channel. Secondary interference occurs at t because it
receives signals from u intended for v on the same channel as from its own
source s.

II. APPROXIMATION ALGORITHMS FOR D2EC(G)
A. For c-inductive graphs
A graph G is c-inductive if either G has at most c vertices

or G has a vertex u of degree at most c such that G − u is
c-inductive. Equivalently, G is c-inductive if its vertices can
be numbered so that at most c neighbors of any vertex v
have higher numbers than v. Every graph G is c-inductive
for some c in the range δ ≤ c ≤ ∆ where δ and ∆ denote
the minimum and maximum vertex degrees of G respectively.
Trees are 1-inductive, outerplanar graphs are 2-inductive [15],
and planar graphs are 5-inductive. By a simple application of
Euler’s formula [16], it can be seen that graphs of bounded
genus are O(1)-inductive.
Greedy algorithm: Compute an inductive ordering of the
vertices of G as follows. For each i = 1, 2, . . ., let vi be a



vertex of degree at most c in G − {v1, v2, . . ., vi−1}. Such
a vertex always exists because G is c-inductive. Consider the
vertices in the reverse order, i.e., vn, vn−1, . . ., v1. At step i,
color all previously uncolored edges incident on vi (in arbitrary
order) greedily: each uncolored edge is assigned the available
color of smallest index.
Theorem 2.1: The greedy algorithm uses at most

(4c− 3)∆ − 2c + 3 colors and runs in O(n∆ log n)
time.

Proof: Suppose the edge (vi, vj) where j < i is being
colored in step i. Recall that at the beginning of the ith stage
only edges incident on vertices numbered greater than i have
been colored. The edges within distance 2 of the edge (vi, vj)
that have already been colored belong to two classes.
Edges incident on a neighbor of vi. The vertex vi has at most c
neighbors among {vi+1, vi+2, . . ., vn}, and all the edges
incident on these neighbors have been colored. This accounts
for at most c∆ edges. In addition, vi has at most ∆ − 1
neighbors other than vj that are numbered smaller than i.
Each of those neighbors has at most c − 1 neighbors among
{vi+1, vi+2, . . ., vn} and these are the only edges already
colored. This accounts for another (∆ − 1)(c − 1) edges at
most. The total number of edges in this class is therefore at
most c∆ + (c− 1)(∆− 1).
Edges incident on a neighbor of vj . The vertex vj has at most c
neighbors among {vj+1, vj+2, . . ., vn} and hence at most
c−1 neighbors among {vi+1, vi+2, . . ., vn}, and all the edges
incident on these neighbors have been colored. This accounts
for at most (c− 1)∆ edges. In addition, vj has at most ∆− 1
neighbors that are numbered smaller than j. Each of those
neighbors has at most c − 1 neighbors among {vi+1, vi+2,
. . ., vn} and these are the only edges already colored. This
accounts for another (∆− 1)(c− 1) edges at most. The total
number of edges in this class is therefore at most (c− 1)∆ +
(c− 1)(∆− 1).
Thus, the total number of edges within distance 2 of the

edge (vi, vj) that have been colored prior to the edge (vi, vj)
itself is at most 4c∆−2c−3∆+2; our algorithm uses at most
one color more. The inductive ordering can be computed in
O(n log n) time along with an ordering of the edges using a
heap. During the coloring, when edge (vi, vj) is being colored,
one has to examine the colors of O(∆) edges, assuming c is
a constant.
Since every planar graph is 5-inductive, the algorithm yields

a 17-approximation for planar graphs.

B. For graphs of bounded treewidth

A tree decomposition [7] of a graph G(V,E) is a pair
({Xi|i ∈ I}, T = (I, F )) with {Xi|i ∈ I} a family of subsets
of V , one for each node of tree T such that (i) ∪iXi = V ,
(ii) ∀(u, v) ∈ E, there exists an i ∈ I such that u, v ∈ Xi,
and (ii) ∀u ∈ V , the set of all Xi containing u form a
connected component in T . The width of such a decomposition
is maxi∈I |Xi| − 1 and the treewidth of a graph G is the
minimum width over all possible tree decompositions of G.

Salavatipour [17] gives a polynomial-time algorithm to
determine for a given s whether there exists a strong edge
coloring with at most s colors of a graph with treewidth k;
the algorithm can be modified to find a coloring with s colors
if it exists. We give a faster, simpler approximation algorithm.
If G is a graph with treewidth W and maximum degree ∆,

then it is easy to see that its line graph L(G) has treewidth
at most W∆. Hence, the treewidth of L(G)2 is at most
(W + 1)∆2. Therefore, if W , ∆ are constants, then L(G)2
also has constant treewidth. A strong edge coloring of G
is equivalent to a proper vertex coloring of L(G)2. Using
results on coloring treewidth bounded graph [18], we have
the following theorem.
Theorem 2.2: There exists a polynomial-time algorithm for

D2EC(G) if G has bounded treewidth and bounded degree.

C. For disk graphs
We are given n transceivers located in the plane. Each

transceiver u has a communication range which is a disk Du.
Two transceivers u and v can communicate if and only if
v ∈ Du and u ∈ Dv . In other words, u and v can communicate
if and only if each can receive signals (data and acknowledg-
ment packets) from the other.
A disk graph G = (V,E) is a directed graph with n

vertices corresponding to the n transceivers and a directed
edge u → v if and only if the disk Du contains v. We
want to color only bidirected edges (since communication
can happen only on those). The other (unidirectional) edges
contribute to the interference: so bidirected edges (u, v) and
(u�, v�) can get the same color provided none of the edges
(u, u�), (u, v�), (v, u�), (v, v�) or their reversals are present.
Let d(u, v) denote the length of the shortest path between

any two nodes u and v of G. For edge e = (u, v), define
r(e) = r(u) + r(v). Let N≥ = {e� ∈ N2(e) : r(e�) ≥ r(e)}.
For node v, let N(v) = {w ∈ V |w ∈ D(v)}. Equivalently
N(v) = {w|d(v, w) ≤ 1}. Let N2(v) = {w|d(v, w) ≤ 2}.
For edge e, let N2(e) = {e�|d(e, e�) ≤ 1} and for E� ⊂ E, let
N2(E�) = ∪e∈E�N2(e). Let OPT denote the number of colors
in an optimum strong edge coloring of G.
Greedy algorithm: First, order the edges in E� as e1, . . . , em,
such that r(e1) ≤ r(e2) ≤ . . . ≤ r(em). Then, color the edges
in E� in the reverse order—for each edge ej , color it with the
smallest numbered unused color.
As a result of packing constraints, for any edge e, the

number of edges in N≥(e) that can be given the same color
in an optimum solution is O(1). We thus have the following
theorem.
Theorem 2.3: The number of colors used by the above

algorithm is O(OPT).
A disk graph is a unit disk graph if each disk has unit

radius. A unit disk graph is undirected since u ∈ Dv if and
only if v ∈ Du. Order the disks in increasing lexicographic
order of their (y, x) coordinates. So, u ≺ v if and only if either
(i) u is below v, or (ii) u and v are on the same horizontal
line, and u is to the left of v. The ordering of disks induces
a corresponding ordering of the edges. For each disk u, the



edges (u, v) incident on u are considered in the same order
as the order of the neighbors of u.
Algorithm UnitDisk: Greedily color every edge (u, v) of G
with v ≺ u taken in order with the color of smallest index not
yet used on any edge within distance 2 of the edge (u, v).
Theorem 2.4: Algorithm UnitDisk uses at most 8OPT + 1

colors where OPT is the number of colors in an optimum
strong edge coloring of G.

Proof: Consider the edge e = (u, v) incident on u
currently being assigned a color by algorithm UnitDisk; we
have v ≺ u. Any edge e� within distance 2 of (u, v) must have
at least one endpoint w in Du ∪Dv and both endpoints must
precede u in the lexicographic ordering. The region Du ∪Dv

can be partitioned into at most 10 sectors of unit diameter
(Figure 2). In fact, if e� = (w, z) has been colored before the
edge e = (u, v) then neither w nor z can belong to the subset
of Du ∪Dv above u. Therefore, neither w nor z can belong
to any one of the 2 sectors of Du \ Dv above the horizontal
line through u. (Since v ≺ u, node v must lie on or below
the horizontal line through u.) For any two nodes a and b in
one of the remaining 8 sectors, it is the case that both b ∈ Da

and a ∈ Db, and so all nodes in any one sector form a clique
in G.

u v

Fig. 2. The union Du ∪ Dv of two disks of unit radius can be partitioned
into 10 subsets of unit diameter

If algorithm UnitDisk chooses color k + 1 for the edge e
it must be the case that k distinct colors already appear on
the edges within distance 2 of e. Since at least k/8 colors are
necessary to colors these edges, the algorithm uses at most
8OPT + 1 colors.

III. DISTRIBUTED ALGORITHMS FOR D2EC(G,k)
We give distributed algorithms in a synchronized radio

broadcast model of computation, running in a logarithmic
number of rounds and producing an O(1)-approximate solu-
tion to the D2EC(G,k) problem for disk graphs. We show
that the distributed algorithm of Balakrishnan et al. [9] runs
in O(ρ log n) rounds. Here, ρ denotes the time it takes to
compute the active degree (defined later) of each node v in a
radio broadcast model. Using this result we devise an O(1)-
approximate solution in O(log n log R) rounds for disk graphs,
where R is the ratio of largest to smallest radii. Using the
above algorithms as subroutines, we design distributed algo-
rithms with O(1) performance for the D2EC(G,k) problem
with additional multiplicative factor of k in the number of
rounds for both unit disk and general disk graphs. The tech-
niques developed in order to obtain the desired bounds exploit

the geometric nature of wireless networks; these techniques
might be of independent interest. The algorithms can be ex-
tended to some of the variants considered by Ramanathan [3].
In this model, transmission by a node is always a broadcast:

all nodes within the transmission range will (simultaneously)
receive the signal. In each round a node can either transmit,
i.e., be active, or keep silent. A node v receives a message
from a node w in a given round if and only if v keeps silent
and w is the only neighbor to transmit. If more than one
neighbor of v transmits in a given round, there is a collision,
and the receiving node v hears only noise. We will assume that
nodes can determine whether there is a collision or not. For a
node v, let deg(v) denote its active degree, i.e., the number of
neighbors of v that are active in the current round. Most of our
algorithms assume synchronous computing: this will require
periodic transmission of synchronization messages. For one of
our algorithms, we will not assume any synchronization.
Each node has a unique ID and is aware of the size of

its neighborhood, but not necessarily the IDs of neighboring
nodes. For general disk graphs, we also need to know the
minimum and maximum broadcast ranges. All our algorithms
are randomized, and the guarantees on the running time, i.e.,
number of rounds, hold with high probability (arbitrarily close
to 1).
We count separately the time that is required to compute the

active degree of each node in the radio broadcast model. We
assume that, at the beginning of each round of our algorithm,
every vertex computes its active degree in a distributed fashion
in ρ rounds.
The edges assigned any one color form a strong matching.

Let D2EMIS(G) denote the problem of finding a strong
matching of maximum cardinality in the unit disk graph G.
We will repeatedly use a distributed algorithm for the D2EMIS
problem as a subroutine for computing a strong edge coloring
of G with k colors. Algorithm D2M-DIST-UNITDISK of
Figure 3 is executed by each node that wants to reserve the
channel; this is the same algorithm as in [9].
Theorem 3.1: Algorithm D2M-DIST-UNITDISK

terminates in expected O(ρ log n) rounds and produces
an O(1)-approximate solution to D2EMIS(G) for unit disk
graph G.
Due to lack of space, we only give proof sketches. For a

node v, deg(v) is the number of neighbors of v that are still
active because their b̂() value is still set to −1. Given a square
region A of size � × �, we will also denote the set of points
in it by A. Let S(A) = {v ∈ A : deg(v) ≤ |A|}. A region
A that satisfies |S(A)| ≥ γ|A| for some constant γ is said
to be good. In a unit disk graph, for any edge e, there can
be at most O(1) edges in N2(e) in any D2-matching [7], [9].
This fact implies that only a constant number of edges can be
chosen in the neighborhood of an edge in any strong matching
as a result of packing constraints. Let D2(v) denote the disk
of radius 2 centered at v.
Lemma 3.2: Let E(v) denote the event that b(v) = 1 and

∀w ∈ D2(v), w �= v, b(w) = 0. Then, Pr[E(v)] ≥ �/(deg(v)+
1), for a constant � > 0.



Proof: Because of the independent trials, Pr[E(v)] =
1

(deg(v)+1)Πw∈D2(v),w �=v(1− 1
deg(w)+1 ). Partition D2(v) into a

constant number of regions R1, . . . , Rs, such that the diameter
of each Ri is at most 1

2 ; this can be done in any arbitrary
manner, as long as s is a constant. Then, for each Ri and
∀w ∈ Ri, deg(w) ≥ |Ri|. Hence,

Pr[E(v)] ≥ 1
deg(v) + 1

s�

i=1

�

w∈Ri

�
1− 1

deg(w) + 1

�

≥ 1
deg(v) + 1

s�

i=1

�

w∈Ri

�
1− 1

|Ri|

�

=
1

deg(v) + 1

s�

i=1

�
1− 1

|Ri|

�|Ri|

≥ 1
deg(v) + 1

(��e)s =
�

(deg(v) + 1)

Lemma 3.3: Let A be a 1 × 1 square region. Consider
some phase i of the algorithm in which points in A are
still participating. Let E(v) denote the event that node v
sets b̂(v) = 1. Let E(A) denote the event ∪v∈AE(v). Then,
Pr[E(A)] ≥ �, where � is a constant if A is good.

Proof: The events E(v), v ∈ A are mutually disjoint,
because b̂(v) = 1 implies all nodes w ∈ D2(v) set b̂(w) = 0
and A ⊂ D2(v). Therefore, Pr[E(A)] ≥

�
v∈A

Pr[E(v)] ≥�
v∈A

�

deg(v)+1 ≥
�

w∈S(A)
�

|A|+1 = �
�|S(A)|
|A|+1 ≥ �. The

second inequality follows from Lemma 3.2, and the last
inequality follows since ��,γ are constants and A is good.
Any good grid cell A in T (0,0)

1 will lose some points with
constant probability. Our algorithm would be making good
progress in each round, if a large fraction of the cells are
good. It need not be true that a constant fractions of the cells
in T (0,0)

1 will be good; but, if we perturb the grid T (0,0)
1

along either axis by 1
2 , and consider all the cells in these grids

together, a constant fraction of these cells will be good.
Lemma 3.4: In any phase i, let S be the set of all grid

cells in T (0,0)
1 , T (0,1/2)

1 , T (1/2,0)
1 and T (1/2,1/2)

1 that contain
at least one point. Then a constant fraction of the cells in S
are good.

Proof: Consider any point v that still does not have
b̂(v) = −1 in the current phase. There is a unique cell
containing this point in any grid T (p,q)

1 ; so there are four cells,
say A1, A2, A3, A4, in S that contain v. D(v) is completely
contained in the union of these four cells, and therefore for
at least one of these cells Ai, it is true that |N(v) ∩ Ai| ≥
deg(v)/4, and so deg(v) ≤ 4|Ai|.
Partition the bounding box of the points into c × c sized

squares (for a constant c) and consider one such square B.
There are a constant number of cells in S that overlap
with B; let S(B) denote the set of such cells. Let V (B)
denote the set of points in B. Now, consider a bipartite graph
H(V (B),S(B), E�): one set of vertices is V (B) and the other
is the set S(B); there is an edge (v,A) between v ∈ V (B) and
A ∈ S(B) if and only if v ∈ A. Clearly, degH(v) = 4 for each

v ∈ V (B). By the argument in the previous paragraph, for
each v there is an A such that (v,A) ∈ E� and deg(v) ≤ 4|A|;
color such an edge (v,A) red. Then, at least a quarter of all
the edges in E� are red. Hence, at least one cell A in S(B)
must have the property that a quarter of the edges incident
on A are colored red; such a cell A satisfies |S(A)| ≥ |A|/4.
Each such constant-sized part B has at least one good cell A.
Since there are only a constant number of cells in S(B), a
constant fraction of the cells in S are good.

Proof: [Theorem 3.1] The size of the D2EMIS found by
algorithm D2M-DIST-UNITDISK is within a constant factor
of the optimal, since only a constant number of edges can
be chosen in the neighborhood of an edge in any strong
matching [9]. For Phase 1, we will show that the expected
number of rounds is O(ρ log n), in contrast with the analysis
in [9]. For Phase 2, we still use the analysis from [9], which
proves O(1) rounds.
Let S be as defined in Lemma 3.4: the union of all the

grid cells in T (p,q)
1 , (p, q) = (0, 0), (0, 1

2 ), ( 1
2 , 0), ( 1

2 , 1
2 ) that

contain at least one point. The Lemma implies that at least
a constant fraction of the (non-empty) cells in S are good;
let α be this constant fraction. By Lemma 3.3, for each good
cell, event E(A), which denotes the event that some point
from A is picked in phase 1, holds with probability at least �.
If event E(A) holds, all the nodes in A will stop participating
in subsequent rounds, and so A will be removed from S.
To compute wake-up probability in each round we require

that each node compute its degree. By assumption this task
takes ρ inner rounds. Let Si denote the subset of cells that
still contain (active) points after step i and let Xi denote the
number of points that become inactive in step i, i.e. their b̂()
value is set to 0 or 1. By the argument in the previous
paragraph, E[Xi] ≥ �α|S|, and Si+1 = Si \ Xi. It follows
that E[|Si+1|] ≤ (1− �α)E[|Si|], and by standard arguments
(for instance, as in [19]), it follows that the expected number
of rounds is O(ρ log n).
For general disk graphs, we again use the algorithm

from [9]. Assume without loss of generality that the minimum
radius is 1 and the maximum radius is R. The algorithm
in [9] partitions the edges into O(log R) subsets Ei = {e :
r(e) ∈ [2i−1, 2i − 1]}, and considers each subset Ei in a
separate round. See Figure 4. Our improved analysis gives us
the following result.
Theorem 3.5: Algorithm D2M-DIST-DISK runs in

O(ρ log n log R) time and gives an O(1)-approximate
solution to D2EMIS(G) for general disk graph G, where ρ
denotes the time to compute the active degree of each node
in the radio broadcast model.

IV. CONCLUSION
We gave efficient sequential and distributed approximation

algorithms for strong edge coloring of graphs modeling wire-
less radio networks. Our algorithms can be used to compute
an interference-free channel assignment for pairwise links in
the network either by a global omniscient entity or by a local
distributed computation at each node.



Phase 1: This phase consists of the following three steps, constituting one round. These steps are repeated until b̂(v) ∈ {0, 1},
for each node v. Only nodes v with b̂(v) = −1 participate in these steps. Initially, each node v has b̂(v) = −1. Every node v
will run the following protocol if none of its neighbors is currently transmitting.
1) Initially ∀v, b(v) = 0. Each node v sets b(v) = 1 with probability 1/(deg(v) + 1) (wake up probability). If b(v) = 1

then v sends an RTS.
2) If any node w hears a collision, it sends a COLLISION signal.
3) If b(v) = 1 and v hears no COLLISION or RTS signal(s) from any other nodes in D(v), it sends an RTS-

SUCCESSFUL signal and sets b̂(v) = 1.
4) If v hears an RTS-SUCCESSFUL signal from some node in D(v), it sets b̂(v) = 0 and retransmits an RTS-

SUCCESSFUL signal.
5) If any node w hears an RTS-SUCCESSFUL signal or a collision due to multiple such signals, it sets b̂(w) = 0.

Phase 2: Let S = {v|b̂(v) = 1}. Note that S forms a distance-2 independent set. In this phase, for each node v ∈ S� ⊆ S,
we choose a node m(v) ∈ D(v) such that (v, m(v)) form a D2-matching.
Node v maintains a variable ĉ(v), initially ∀v, ĉ(v) = −1. For each v ∈ S, the pair v and m(v) work together in the
following steps constituting one round. The steps are repeated until ∀v ∈ S, ĉ(v) ∈ {0, 1}.
1) Node v keeps a random variable c(v), initially c(v) = 0. Each v sets c(v) = 1 with constant probability α. If c(v) = 1,

then v and broadcasts an RTS1 signal.
2) For each v, if node m(v) hears an RTS1 signal it rebroadcasts it and sets c(m(v)) = 1.
3) If node v or m(v) sees a collision, due to multiple transmissions, it sends a COLLISION signal.
4) If c(v) = c(m(v)) = 1 and v and m(v) do not hear COLLISION signal, they both send a RTS1-SUCCESSFUL

signal, and set ĉ(v) = 1.
5) Any node v that hears a RTS1-SUCCESSFUL signal sets ĉ(v) = 0.

Fig. 3. Distributed algorithm D2M-DIST-UNITDISK for D2EMIS(G) for a unit disk graph G

1) If ∀w ∈ N(v), v �∈ N(w) holds for node v, then it does not participate in the following steps.
2) Round i comprises of the following steps. Perform these rounds for each i = 0, . . . , log R + 1.

a) All nodes v with 2i−1 < r(v) ≤ 2i that have w ∈ N(v) with v ∈ N(w), r(w) ≤ 2i participate. Such nodes run
Step 2 of algorithm D2M-DIST-UNITDISK and choose a distance-2 independent set S.

b) For each node v ∈ S, v chooses node m(v) ∈ N(v) such that (i) v ∈ N(m(v)), and (ii) r(v)+ r(m(v)) ≤ 2i+1.
c) The nodes v, m(v), ∀v ∈ S run Step 4 of algorithm D2M-DIST-UNITDISK and choose an set of edges to add to
existing D2EMIS. All nodes within distance 1 of the chosen edges do not participate any further.

Fig. 4. Distributed algorithm D2M-DIST-DISK for D2EMIS(G) for a general disk graph G
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