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Abstract— We simulate and study a distributed algorithm for
the coverage problem in mobile sensor networks, in particular,
one that attempts to solve the blanket coverage problem when
very little information is available regarding terrain topology.
We use virtual forces based on potential fields to achieve
coverage and obstacle avoidance. Additionally, a distributed
dynamic relocation algorithm – triggered by event occurrences
– is also simulated which achieves convergence to a formation
that surrounds the event of interest, in the absence of prior
information regarding formation geometry. The entire scheme
is purely distributed and completely based on the concept of
potential fields [5], [4]. Control laws are formulated based on
potential fields; convergence to equilibrium, graph connectivity
properties and sensitivity to parameters are studied. Discussion
of results and directions for future work are provided at the
end.

I. INTRODUCTION
This paper examines the problem of coverage in sensor

networks via distributed algorithms. In particular, we con-
sider algorithms that attempt to solve the coverage problem
when very little information is available regarding terrain
topology. In such cases, nodes start out from some initial
configuration – possibly close together – and then spread
out or diffuse through the network according to some control
law; the desired outcome is maximal coverage area while
maintaining network connectivity. A well-known technique
in such cases is one that uses a potential-field approach
to sensor node deployment [5]. Here, virtual fields are
constructed such that nodes are repelled by other nodes
and obstacles in close proximity. This forces the nodes
to spread out through the network, and by applying an
additional viscous damping force, convergence to some static
equilibrium configuration is achieved. The algorithm does
not require models of the environment, localization, and
in the basic implementation, even communication between
the nodes. All that is assumed is that nodes are equipped
with sensors that allow measurement of range and bearing
of nearby nodes and obstacles. In addition, coverage is not
explicitly engineered into the control law; rather, coverage is
an emergent property of the network.

II. RELATED WORK

Extensions of this idea are described and explored in [2],
[1], [4], [7]. [4] considers the case when nodes, initially
placed in some random configuration, react to an event –
say an environmental event like a fire – through an attractive

potential, while coverage and equilibrium are achieved
through repulsive and damping forces respectively. Further,
the nodes might also be required to surround a region of
interest, and thus the control laws should be able to achieve
a formation whose geometry is not known before-hand.
In [7]and [1], strategies for node diffusion from regions of
higher density to those of lower density are described, and
simulation results are presented.

Note that the main problem being considered here is
sensor self deployment in a purely distributed fashion with
the aim of maximizing coverage while preserving network
connectivity. Also of importance is the ability of sensor nodes
to dynamically relocate during the occurrence of an event,
and surround the event without having any prior information
regarding formation geometry. In what follows we present
some of the assumptions we make in Section III; the basic
algorithm and control laws are described in Section IV and
simulation results and discussion are presented in Section V.
We conclude with directions for future investigation in Sec-
tion VI.

III. ASSUMPTIONS

In this section we describe the assumptions (some of
which are simplifying for feasibility sake) we make. Our
goal is to achieve a placement of nodes that maximizes
the total detection area without paying attention to holes
in the coverage area. Thus we are dealing with the blanket
coverage issue [3]. Further, we are implementing a purely
distributed algorithm, since we assume that nodes do not
have any information regarding their absolute positions; all
they are capable of determining is their relative range and
bearing, as well as communicating with other nodes within
their communication radius. The communication radius itself
is assumed to be twice the sensing radius. All nodes are
homogenous in this problem, and have the same sensing
and communication radii and other physical constraints. In
the deployment phase we do not address the problem of
maintaining a certain node density. During relocation, in
our simulations, we relocate all nodes to the region of
interest; presumably this is wasteful in real life, but we make
that simplifying assumption here. All nodes are subject to
maximum velocity and acceleration constraints implemented
via clipping. Any event within the sensing range of a node



is assumed to be detected by that node with probability 1.
We also do not consider the (very likely) problem of sensor
nodes being damaged by the events they are monitoring,
other environmental factors or random failure; indeed in our
simulation, the only probabilistic elements are the initial
placement of nodes, obstacles and events.

IV. THE VIRTUAL FORCE ALGORITHM

The basic goal of our algorithms is for the nodes to
initially deploy to a static monitoring configuration, start-
ing from a dense initial formation, such that coverage is
maximized, while preserving network connectivity. Upon
detecting an event, nodes within sensing range are attracted
to the event, while other nodes follow their neighbors; our
goal in this case is to surround the event of interest (we
assume that the sensing nodes can localize the event location
through triangulation or some other approach). To achieve
these goals we use virtual force algorithms based on potential
fields. We briefly describe these algorithms and the basic
equations of motion here. These largely follow the algorithms
described in [5] and [4]. In the basic potential field method,
each node is subject to a force F which is the gradient of
some scalar potential field U . Thus

F = −∇U

Following [4], we divide the potential field into three com-
ponents, resulting in the following three forces: the repulsive
force between nodes Fn, the repulsive force from obstacles
F o and the attractive force from events F e. Thus the total
virtual force Fi from the potential fields acting on node i at
time t is given by

Fi(t) = F e
i (t) + F o

i (t) + F e
i (t)

To ensure that nodes reach a static equilibrium during the
deployment phase, we also add a viscous damping term. The
equation of motion is then given by Newton’s second law:

ẍ = (F− νẋ)/m

where ẍ is the acceleration and m is the mass of each
node. Since each node is subject to a maximum velocity and
acceleration, these are clipped such that ||v|| ≤ vmax, ||v̇|| ≤
v̇max. In the absence of events, F e = 0, and nodes maintain
their equilibrium state.

A. Control Law

In our simulation, we use double integrator dynamics
based on the following equations: The forces on node i
during the deployment phase can be written as

F o
i = −µo

∑
k

1

r2ki

rki
rki

, Fn
i = −µn

∑
j∈N(i)

1

r2ji

rji
rji

(1)

where in the first force term rki denotes the displacement
vector from node i to obstacle k; rji denotes the displacement
vector from node i to neighbor j defined by sensing radius-
During the relocation phase, we have an additional attractive
force F e

i = rj where rj denotes the displacement vector from

i to the event. . Our double integrator control law during node
deployment then becomes[

ẋ
v̇

]
=

[
v

Fn + Fo − νv

]
where Fn can be expressed in compact notation as Fn =
µnI2⊗Lw, where Lw is the weighted Laplacian, the weights
depending inversely on the inter-node distance as given in
(1).

During event relocation, edge tension dynamics as de-
scribed in [6] are implemented to preserve network con-
nectivity during node movement.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we describe the simulation experiments and
results of an implementation of the virtual-force/potential
based coverage as well as the dynamic event-based relocation
algorithms. All simulations were performed in MATLAB.
We simulate networks of up to 50 nodes, covering a region of
approximately 1000 square meters. The following simulation
parameters were varied in our experiments:
• n: Network size (10, 20, 30, 50)
• no: Number of obstacles (5, 10, 15)
• µn: Node-repulsion coefficent (4, 8)
• µo: Obstacle repulsion coefficient (0.01, 0.05, 0.1).
• ν: Viscous damping coefficient (1, 2, 4).
• ∆ : Sensing radius (5m, 10m)

The parameters were chosen based on simple initial exper-
iments to narrow down the parameter space. While there
might have been better parameter choices the simulation
results indicated that these choices were reasonable. The
communication radius Rc is assumed to be 2∆ based on
literature survey. Further, as mentioned in section IV, we
clip the maximum velocity and acceleration to 1m/s and
1.5m/s2 respectively, and each node is assumed to have
unit mass. Due to space constraints we only present a
small subset of the results that are representative of the
general performance of the algorithm. The outcome of a
very basic set up is shown in Figure 1, where the sensor
nodes are deployed in a region free of obstacles, without
event relocation. The only forces in this case are node mutual
repulsion and the viscous damping force. As expected, the
sensors deploy in a radially outward manner and reach their
static deployment configuration fairly quickly. The inter-node
spacing at equilibrium is roughly the value of the sensing
radius.

A. Obstacle Avoidance

A more realistic and interesting case is presented in
Figure 2. In this scenario, 50 sensor nodes are initially
deployed in an environment consisting of 15 obstacles of
various sizes. The nodes initially start out in a densely packed
configuration and rapidly deploy into the neighboring regions
(see animation attached to report). Obstacle avoidance is not
perfect – initially in a densely packed configuration, the com-
bined repulsive forces of neighboring nodes can frequently
end up pushing a node inside the object boundary; this can
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Fig. 1. A basic potential field set up of 20 nodes diffusing in time. Here ∆ = 5, µo = 0.1, µn = 0.8, ν = 1, where µo, µn and ν are the obstacle
repulsion, node repulsion and viscous damping coefficients respectively. ∆ is the sensing radius
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Fig. 2. Sensor deployment with obstacles in a 50-node setup, diffusing in time with ∆ = 5, µo = 0.1, µn = 0.8, ν = 1.

−20 0 20 40 60
−20

0

20

40

60

time=50.000000

Student Version of MATLAB

(a)

−20 0 20 40 60−20

−10

0

10

20

30

40

50

60

time=50.000000

Student Version of MATLAB

(b)

Fig. 3. Coverage area at the end of the deployment phase for two different sensing radii, ∆ = 5 and ∆ = 10. Other parameters are µo = 0.1, µn =
0.8, ν = 1.
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Fig. 4. Change in coverage area in a 50-node setup for different damping coefficients (a), node-repulsion coefficient (b) and obstacle repulsion coefficient
(c)
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Fig. 5. Evolution of second eigenvalue (λ2) of the communication graph Laplacian in a 50-node setup for different damping coefficients (a), node-repulsion
coefficients (b) and obstacle repulsion coefficients (c). In all cases, the minimum λ2 > 0, indicating the graph was connected.

be avoided by tweaking the obstacle repulsion coefficient.
Nevertheless, obstacle avoidance worked fairly well, and the
final deployment configuration in this case is shown in part
(c) of Figure 2. The region covered by the 50 sensors is
shown in Figure 3, one for sensing ∆ = 5m and the other
for ∆ = 10m. The red circles indicate the coverage area
of each sensor. Since node repulsive forces are only active
when nodes are within ∆ of each other, a larger sensing
radius results in a larger dispersal as shown. Acceleration
and velocity clipping prevents nodes from gaining very high
speeds when the internode separation is close to ∆. Note
that the resulting dynamics then will not be described by the
virtual force equation, but we ignore that aspect here (the
authors of [5] and [4] also proceeded in a similar manner).

The coverage area at the equilibrium configuration is also
sensitive to other experimental parameters, particularly the
viscous damping coefficient ν and the node and obstacle
repulsion coefficients, µn and µo respectively. A few of these
results which indicate rate of change in coverage area as well
as the final coverage area with respect to the aforementioned
parameters are shown in Figure 4. For higher ν, one expects
a greater retardation force, resulting in a more tightly packed
configuration, and vice versa for the repulsion coefficients;
this intuition agrees with results shown in Figure 4. Note
that the coverage area is still growing, ever so slightly, at
the end of the simulation time, because of the asymptotic
approach to stabilization. In real life, to conserve sensor-node
energy, the nodes would be engineered to halt once velocity
falls below a certain critical point. Also of interest is that the
discrete time stepping nature of the simulations often result in
oscillatory behavior of the nodes near the equilibrium point.
Again, these can again be solved by introducing velocity
dead-bands.

B. Connectivity

As mentioned before, while solving the blanket coverage
problem, it is also critical that the resulting formation be
a connected network, especially if nodes are to be able to
redeploy to areas that are not directly in their sensing range.
Thus we would also like to study the graph connectivity of
the equilibrium configuration and its sensitivity to various
parameters. These results are shown in Figure 5, where we
plot the second smallest eigenvalue of the Laplacian of the

communication graph (recall that the communication radius
is set to twice the sensing radius) against the force parame-
ters. From spectral graph theory, we know that a zero second
eigenvalue (λ2) indicates a disconnected component [6]; the
results in Figure 5 indicate that the graph always remains
connected, although λ2 dips to values less than 1 in the
equilibrium configuration for some of the experiments. For
a low retarding coefficient (ν) as well as for high repulsive
coefficients (µn, µo) it is conceivable that many nodes will
be pushed to the outer peripheries of the coverage region,
often ending up with only one neighboring node. Recalling
that λ2 bounds the edge-cut set of a graph from below, it is
not surprising that in these cases λ2 < 1.

C. Event-based Relocation

Finally, we present results of the dynamic event-based
redeployment algorithm. A redeployment sequence for two
different scenarios is shown in Figure 6. Nodes remain at
rest in their deployment configuration till an event occurs,
denoted by the red polygon. At this point, nodes within
sensing range (shown as red circles) assume the role of
leaders; nodes outside the sensing range become followers.
The connected nature of the deployment network assures
that all nodes are able to receive information through the
appropriate routing mechanisms (routing was not addressed
in our experiments). In the simulation, the event itself is
modeled as a stubborn node that does not update its position.
This results in a ”goal/leader/follower” interaction dynamics
which is a directed interaction graph, where (in the classic
rendezvous case) all agents converge to the position of the
stubborn node (the event). In our case, the repulsive forces
from the event and other nodes are also present, which
results in the convergence to a formation surrounding the
event of interest, as shown in figure. The actual shape of the
formation is difficult to predict, depending as it does on the
starting configuration and obstacle placement. Nevertheless,
an event-surrounding formation is achieved in most cases.
During the redeployment phase, network connectivity is
maintained through edge tension dynamics. Note that, we
do not consider the case of sensor nodes themselves being
damaged by the event. Such situations can be overcome by
achieving a desired node density in the coverage region so
that the network is still resilient to the failure of a few nodes.
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Fig. 6. Figures illustrating dynamic relocation based on event occurences for two different deployment scenarios (one per row). The first figure is the
starting deployment. When an event (red polygon) occurs, the nodes closest to the event sense it (red circles). These are the leader nodes, and all other
nodes converge to surround the event.

In our experiments, events happening at the periphery of
the coverage region might potentially go un-noticed due to
relatively sparse coverage on the peripheries.

VI. CONCLUSIONS AND FUTURE WORK

Dynamic sensor node redeployment is an active area of
research, and our experiments provide a number of interest-
ing directions for further investigation. One of the interesting
issues that was not considered was the formulation of control
laws for maintaining network connectivity, whereby nodes
are allowed to disconnect from neighbors, provided that the
network as a whole remains connected. [8] proposes such
control laws for maintaining connectivity, where formally,
the set of desired states Xcn corresponding to connected
graphs Cn is such that

XCn
= {x(t) ∈ Rnm | λ2(x(t)) > 0}

If x(0) ∈ XCn
, then the control law assures that x(t) ∈

XCn∀ t ≥ 0. Another major issue that was not considered

here was the energy constraint on sensor nodes. Energy
depleting behavior such as oscillations around equilibrium
could be easily clipped and jostling for position during event
relocation could also be mitigated. Further, not all nodes need
to redeploy during an event; the number of redeploying nodes
could be made sensitive to the intensity of the event, node
energy levels and other such considerations. We intend to
explore some of these issues in future work.
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