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Importance of Particle Accelerators

• Basic Physics
– elementary particles
– nuclear structure

• Biological and Material Sciences
– ribosome complex
– high temperature superconductivity

• Medicine Application
– irradiation therapy

• Solving Problems of National Importance
– nuclear waste transmutation
– accelerator-driven energy production



Accelerators: Expensive and Complex

• Billion dollar-class facilities under consideration:
– Spallation Neutron Source
– Next Linear Collider
– 4th Generation Light Source:
– Muon Accelerator/Neutrino Factory

• Complex Systems:
– highly nonlinear dynamics
– large range of spatial scales: cm - to - nanometers
– multi-particle interactions



Motivation for Grand Challenge in
Computational Accelerator Physics

• Modeling on parallel computers essential for design
decisions
– evaluate/reduce risk
– reduce cost
– optimize performance

• Example problems:
– predicting beam halo for Spallation Neutron Source
– designing large electromagnetic structures for Next

Linear Collider



Halo Formation from Mismatched Beam
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Large Scale Beam Dynamics Simulations are
Needed to Accurately Model Beam Halo

• Future high average power accelerators will have to
operate with very low losses

• Excess losses
• cause radioactivation of accelerator components
• reduce reliability and availability

Allowed loss is ~ 1 - 10 particles out of 1,000,000,000

High-Resolution modeling using 0.1-1 billion particles is
necessary to make quantitative predictions of beam halo

• Major loss mechanism: large amplitude “halo” particles
striking the beam pipe



PC Simulation of CCDTL/CCL Beam Profile
with Machine Imperfections, No Mismatch
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Maximum Particle Amplitude in the SNS
Linac with Varying # of Simulation Particles
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Physical Model and Numerical Method

• Main components of linear accelerator:
– Drift space
– Magnetic quadrupoles for transverse focusing
– RF structures for acceleration and longitudinal focusing

• Charged particles subject to:
– External fields
– Self-fields due to Coulomb interaction

• Evolution of charged particle distribution is
governed by Poisson-Vlasov equations.



The Linear Accelerator at
 Los Alamos Neutron Science Center



A Superconducting RF Cavity Structure



Particle-In-Cell Simulation with
Split-Operator Method

• Particle-in-cell approach:
– Charge deposition on a grid
– Field solution via FFT-based convolution with open boundary

conditions
– Field interpolation from grid to particles

• Split-operator method with H = Hexternal +Hspace charge

• Philosophy:
Do not take tiny steps to push ~100 million particles.
Do take tiny steps to compute maps, then push w/ maps



Split-Operator Approach

Multi-Particle
Simulation

Split-Operator Methods

H=Hext H=Hsc

M=Mext M=Msc

H=Hext+Hsc

Magnetic
Optics

M(t)= Mext(t/2) Msc(t) Mext(t/2)

How to turn any Magnetic Optics code into
a tracking code with space charge
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Explicit Communication

• Particle manager:
–  sends the particles to the neighboring processor

• Field manager:
–  exchanges the information between the boundary grids

and guard grids



Dynamic Load Balance

• Define a 2-D density distribution function
• Assume that it is separable in y and z
• Load balance in the y direction
• Load balance in the z direction



IMPACT: Integrated Map and Particle
Accelerator Tracking Code

Main Features:
•Use of split-operator method
•Fully three-dimensional space charge calculation
•Relativistic effects included
•Dynamic load balance
•Choice of particle managers
•Parallel implementation using F90/MPI, POOMA, HPF



IMPACT Scaling for Different Domain
Decomposition
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IMPACT Scaling with # of Processors
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IMPACT: Success of Dynamic Load Balancing
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SNS Linac Configuration

DTL CCDTL CCL2

402.5 MHz

20 MeV
~79 MeV

1000 MeV

2-cavity/segment CCDTL
1 drift tube/cavity

10-cell/segment

CCL1

4βλ @ 402.5 MHz

8-cell/segment

805 MHz

Intersegment spacings

4βλ/2 2βλ/26βλ/2

12 βλ lattice period

~287 MeV



Field Distribution in One Lattice Period
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Transverse Beam Size as a Function of
Energy Using 100 Million Particle Simulation
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X-Y Plot at 1 GeV
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X-Px Plot at 1 GeV
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X-Phase Plot at 1 GeV
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Phase-Energy Plot at 1 GeV
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LARGE SCALE VISUALIZATION

High performance computing and visualization are
needed to reduce, render & explore the data,  and
provide guidance & validation in the design process

• Huge data sets
• e.g. 0.1 - 1 billion particles, 5 - 50 GByte/timestep,

TBytes per simulation
• Visualization is needed to:

• provide physical picture of charge distribution
• show time-evolution of the beam in phase space
• explore very low density regions (beam halo)

Why do we need large-scale visualization?



Plots of “Integrated Density” from a
500 Million Particle SNS Simulation
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• By equally subdividing a volume and assigning each subset to  a pipe
we can:

– Support larger data sets -- texture memory scales with each pipe.
– Maintain rendering performance -- fill rate scales with each pipe.
– Disadvantage -- pipeline architecture causes latency to scale with each

pipe.

Early 
work done 
in collaboration 
with SGI.

High Performance Volume Rendering



Volume Rendering of APT Simulation Results

x-px-z space x-y-z space



Volume Rendering of SNS Simulation
Results
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Transparency to see inside volume Opacity to accentuate halo



Volume Rendering of SNS Simulation
Results

x-px-z space x-px-z space

Oriented to exhibit x-px space Alpha & color maps set
to show 4 isosurfaces



Summary of IMPACT Capability

• Largest, most detailed linac simulations ever performed
– Physical model used 400 distinct accelerating structures
– Computational model used 800M particles on a

512x512x512 grid
• 3 order-of-magnitude increase in simulation capability

– 100x larger simulations performed in 1/10 the time



Conclusions

• Object-oriented parallel particle-in-cell code:
– improves the model accuracy
– increases numerical resolution
– enables exploration of new physical regions
– drastically reduces computing time

• The code also has better maintainability, reusability
and extensibility.


