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Outline

• Future national accelerator projects:
– What are the computational challenges in high-intensity

ion beam simulation
• How is large-scale (i.e. terascale) computing different from

ordinary computing?
• How is the accelerator community meeting these challenges?
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What are the Computational Challenges in High-Intensity
Ion Beam Simulation?

• Future accelerators : higher intensity, greater complexity,
greater precision, new parameter regimes
– high-intensity linacs & rings, muon-based systems,

beam-beam in hadron colliders
• Modeling on parallel computers essential for design decisions

– evaluate/reduce risk
– reduce cost
– optimize performance

• Example problems:
– high intensity transport + beam cooling in a µ-system
– accurate design/analysis of EM structures for SNS and APT
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Example: Need for Large-Scale Intense Beam Simulations

• Future high-average power-accelerators
will have to operate with ultra-low losses

• Excess losses         radioactivation
• degrade components
• hinder/prevent hands on maintenance
• reduce reliability and availability

Allowed loss is ~ 1-10 particles per billion in certain apps

High-Resolution modeling using 0.1-1 billion
particles is needed to make quantitative
predictions of beam halo

• Major loss mechanism: large amplitude
halo particles striking the beam pipe
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Halo Formation from Mismatched Beam
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Maximum Beam Size for Varying # of Simulation Particles
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Example: Need for Large-Scale Electromagnetic Simulations

DDS for the NLC • Cell Design for NLC
– frequency error of 1 part in 10,000.
– mesh size close to fabrication tolerance (no tuning)

• RF Structure Design for SNS and APT
– High-resolution, 3D modeling required for

accurate field computation
– Needed to compute frequencies, coupling

106 to 109 degrees of freedom

“High-Resolution” design, “System-Scale” analysis
only possible on very large scale computers
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Benefits of Large-Scale Simulation to
Accelerator Science and Technology

• Tool of discovery to explore beams in novel configurations and under
extreme conditions

Large-scale simulation, coupled w/ theory & experiment,
will help advance the frontiers of accelerator technology.
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How is Large-Scale Computing Different from Ordinary Computing?

• Clusters of Symmetric Multiprocessors (SMP’s)
– Deep memory hierarchies

• PC clusters
– Gaining popularity due to falling cost of networking hardware
– Ideal for loosely coupled problems
– Even cost effective for medium-scale tightly coupled problems

Architecture:

Programming:

Complexity & Scale:

• Complex issues associated w/ programming parallel computers,
major differences compared with vector machines

– communication, cache

• Highly three-dimensional
• 100’s of millions of particles and grid points       data handling

SGI Origin 2000 at ACL
IBM SP at NERSC
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Parallel Computing Activity is Increasing in the
Accelerator Community

• Major NERSC allocations for accelerator science by year
– FY99: 180K processor-hours
– FY00: 532K processor-hours

• Large-scale accelerator science efforts at NERSC in FY00:
– “Comp. Acc. Physics Grand Challenge,” Ryne/Ko (LANL/SLAC)
– “Continuing Studies of Plasma Beat Wave Accelerators,” Mori (UCLA)
– “3D and 2D Modeling of Intense Beams for HIF,” Friedman (LBNL)
– “Simulation of Advanced Acceleration Techniques,” Esarey (LBNL)
– “Effects of CSR on Accelerator Performance,” Rui Li (TJNAF)

• Many others
– John Galambos, Jeff Holmes (ORNL), Alfredo Luccio (BNL)
– Andreas Adelmann (PSI)
– ...



2nd ICFA Advanced Accelerator Workshop UCLA, Nov. 9-12 1999     13

Development of large-scale parallel applications
involves the integration of many pieces

Electromagnetics •Parametric Geometry - CAD models to facilitate optimization
•Mesh Generation - impacts matrix conditioning/time-stepping

•Visualization - efficient post-processing of large data sets;
feature extraction and scientific discovery in simulation results

•Performance/Error Analysis - computer science/applied math

Success depends on integrating the combined efforts of a multi-disciplinary team
including  physicists, applied mathematicians, statisticians, computer scientists,
software engineers, geometry builders, visualization experts,...

•Parallel Solvers - scalable algorithms with fast convergence

•Adaptive Refinement - improve accuracy/optimize resources

Beam
Dynamics

•Frameworks - accelerator system geometry, models of beamline elements,...
•Transfer Map Methods -Symplectic maps corresponding to beamline elements
•Particle Managers - to minimize communication in parallel PIC codes

•Domain Decomposition - partitioning tools for load balancingBoth
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Brief Tour of Some Parallel Accelerator Simulations

• Beam Dynamics
– IMPACT: Parallel PIC simulation for SNS
– Ion Tracking: Parallel particle tracking for NLC
– ORBIT: PSR comparison and SNS ring modeling

• Electromagnetics
– Omega3P: NLC cavity design, PEP-II modeling

• Visualization
– Parallel Volume Rendering: IMPACT results
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Large-Scale Beam Dynamics Simulations
using IMPACT

• 100M particle simulations require ~5 hours on 256 processors
• Simulations have been performed with 800M particles

– Approaching real-world number of particles (900M for SNS)

Compare:
• 1M particle, 2D simulation using legacy code on a PC: weekend
• 100M particle, 3D IMPACT simulation on 256 processors : 5 hrs

• Parallel simulation is 100x larger and requires 1/10 the time
• Parallel computing results in a 3 order-of-magnitude increase in

simulation capability
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SNS Linac Configuration
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402.5 MHz

20 MeV
~79 MeV

1000 MeV

2-cavity/segment CCDTL
1 drift tube/cavity

10-cell/segment

CCL1

4βλ @ 402.5 MHz

8-cell/segment

805 MHz

Intersegment spacings

4βλ/2 2βλ/26βλ/2

12 βλ lattice period

~287 MeV



2nd ICFA Advanced Accelerator Workshop UCLA, Nov. 9-12 1999     18

Design Energy  and Accelerating Gradient vs. Distance
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Maximum particle amplitude with varying # of simulation particles,
run on the ACL Nirvana system using 32-1024 processors
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Plots of “Integrated Density” from a 500 million particle
linac simulation

X-PX Plot X-Y Plot
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IMPACT: Integrated Map and Particle
Accelerator Tracking Code

• Use of split-operator method with H = Hexternal +Hspace charge
• Philosophy:

Do not take tiny steps to push ~100 million particles
Do take tiny steps to compute maps, then push w/ maps

• 3D space charge calculation
– FFT-based with open boundary conditions

• Canonical variables (x,px,y,py,t,pt)
• Dynamic load balance
• Choice of particle managers
• Parallel implementation using F90/MPI, POOMA, HPF
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Split-Operator Approach

Split-Operator Methods

H=Hext H=Hsc

M=Mext
M=Msc

H=Hext+Hsc

M(t)= Mext(t/2) Msc(t) Mext(t/2) + O(t3)

How to turn any magnetic optics code into
a tracking code with space charge

Magnetic
Optics

Multi-Particle
Simulation

(arbitrary order possible via Yoshida)
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IMPACT: Success of Dynamic Load Balancing
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Summary of IMPACT Results for SNS Linac

• Largest, most detailed linac simulations ever performed
– Physical model used 400 distinct accelerating structures
– Computational model used 800M particles on a 5123 grid

• 3 order-of-magnitude increase in simulation capability
– Comparison w/ legacy PC code:

• 100x larger simulations performed in 1/10 the time
using 256 processors
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Scaling of Ion Tracking Code on SLAC PC Cluster

3-hour single
processor job
requires 18 min
on 14 processors

10x speedup
with
72% parallel
efficiency
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ORBIT: Parallel Simulation on ORNL Cluster
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ /  Add a  non- a c c e l e r a t i ng  RF Ca vi t y / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
  Re a l  t Fa c t or ;
  I nt e ge r  nRFHa r ms  = 1;
  Re a l Ve c t or  vol t s ( nRFHa r ms ) ,
    ha r mNum( nRFHa r ms ) ,  RFPha s e ( nRFHa r ms ) ;
  ha r mNum( 1)  = 1;  RFPha s e ( 1)  = 0. ;

/ /  ma ke  a  ne w i nt e r pr e t e d r out i ne :
  Voi d PSRVol t s ( )
  {
   t Fa c t or  = t i me / 0. 825;
   i f ( t Fa c t or  > 1. )  t Fa c t or  = 1. ;
   vol t s ( 1)  = 8.  + 9.  * t Fa c t or ;
  }
/ /    c a l l  a  c ompi l e d r out i ne :
  a ddRa mpe dRFCa vi t y( " RF 1" ,  75,  nRFHa r ms ,
      vol t s ,  ha r mNum,  RFPha s e ,  PSRVol t s ) ;

/ /  c ha nge  a  “ c ompi l e d”  va r i a bl e :
     nLongBi ns  = 64;

Portion of an input script
for ORBIT. Note mixing of 

interpreted and compiled code.
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Mesh Generation for Omega3P and Tau3P Simulations

RFQ Cavity for SNSInput Coupler for NLC

Size of meshes limited by workstation memory - Parallel Mesh Generation 

T-Junction
at X-Band

 One octant of 1.5 DDS Cells
(500,000 elements)
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Domain Decomposition
Partitioning to optimize load balance & minimize communication

Omega3P Tau3POctant of 1.5 DDS
cells in 16 domains

Quarter of RF choke
in 4 domains

Omega3P

Section of APT
side-coupled linac
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Example: PEP-II Cavity Simulation

Computational Mesh Wall Loss
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LARGE SCALE VISUALIZATION

High performance computing and visualization are
needed to reduce, render & explore the data,  and
provide guidance & validation in the design process

• Huge data sets
• e.g. 0.1 - 1 billion particles, 5 - 50 GByte/timestep,

TBytes per simulation
• Visualization is needed to:

• provide physical picture of charge distribution
• show time-evolution of the beam in phase space
• explore very low density regions (beam halo)

Why do we need large-scale visualization?
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Volume Rendering of APT Simulation Results

x-px-z space x-y-z space
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• By equally subdividing a volume and assigning each subset to  a pipe we can:
– Support larger data sets -- texture memory scales with each pipe.
– Maintain rendering performance -- fill rate scales with each pipe.
– Disadvantage -- pipeline architecture causes latency to scale with each

pipe.

Early 
work done 
in collaboration 
with SGI.

High Performance Volume Rendering
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Volume Rendering of SNS Simulation Results

x-px-z space x-px-z space

Transparency to see inside volume Opacity to accentuate halo
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Volume Rendering of SNS Simulation Results

x-px-z space.   Alpha & color maps set to show 4 isosurfaces
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What is needed in a Next-Gen Beam Dynamics Code?
• Split-Operator based (high-order optics + self-fields)
• Modern computer science & software engineering concepts & tools
• Run on single- or multi-processor systems
• Choice of field solvers: structured grid, unstructured grid, tree, hybrid
• Image charges
• Canonical variables
• Flexible scaling to make canonical variables dimensionless
• Reference trajectory computed “on the fly” via numerical integration
• Wakes
• Collisions
• Multiple species
• Multiple beams
• Beam loading
•


