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ABSTRACT

A scale-aware formulation of the anticipated potential vorticity method (APVM), previously derived for

quasi-uniform unstructured grids, is evaluated on multiresolution grids. Comparison is made to the original,

nonscale-aware formulation of the APVM. Numerical experiments are performed using the shallow-water

standard test case 5. The scale awareness of the new formulation is demonstrated by the following obser-

vations: (i) the range of optimal values for the single parameter of the new formulation is much less sensitive

to grid resolution than that of the original formulation; (ii) within the optimal parameter range, the new

formulation is able to maintain proper dissipation across scales and is thus able to produce better results in

terms of errors in the potential enstrophy spectrum curves; and (iii) the new formulation is robust in that

a single optimal parameter obtained for a specific grid can be safely used on other grids as well.

1. Introduction

In Chen et al. (2011) we developed a scale-aware for-

mulation of the anticipated potential vorticity method

(APVM; Sadourny and Basdevant 1985, also see below).

Numerical experiments were conducted on quasi-uniform

global spherical centroidal Voronoi tessellations (SCVT;

Du et al. 1999, 2003) to demonstrate that the new for-

mulation is able to self-adjust the level of dissipation as the

resolution in the grid changes(i.e., it is scale aware). In this

article, we explore the quality and robustness of the scale-

aware APVM on multiresolution grids. The results in this

article supplement those of Chen et al. (2011).

The APVM is a subgrid eddy closure scheme that is

perfectly energy conserving and, at the same time, ens-

trophy dissipating. In the context of a shallow-water

flow, the APVM modifies the momentum equation to

give
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where u and gh denote the velocity and geopotential

fields, respectively; q [ (k � $ 3 u 1 f )/h is the potential

vorticity; D is a correction to the potential vorticity q;

and k is the unit vector in the vertical direction. The

modified system remains energy conserving, as the term

k 3 u is perpendicular to the horizontal velocity com-

ponent. The term D is chosen so that the modified sys-

tem dissipates the potential enstrophy (i.e., the variance

of the potential vorticity). In its simplest form, we have

D 5 gu � $q. (2)

It was proposed in Sadourny and Basdevant (1985) that

g should be a time-scale-selective parameter and thus

should take the following form:

g 5 sdt, (3)

with dt denoting the time step and s an indepen-

dent parameter. In the scale-aware version of APVM
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developed in Chen et al. (2011), g takes the following

form:

g 5 ake
23/2ju � $qjh‘3. (4)

On the right-hand side of (4), ke denotes the mean of the

kinetic energy, h is the mean of the fluid thickness, ‘ is

the local resolution, and a (the only free parameter) is

independent of the characteristic scale of the flow.

The success in Chen et al. (2011) relies on the crucial

fact that the grid-resolution-dependent factor in (4)

enables the closure to adjust itself to the grid resolution

changes. Specifically, it effects more dissipation as the

grid coarsens, in a nonlinear fashion according to (4).

The purpose of this article is to evaluate whether this

new formulation of the APVM can act appropriately

across different scales present on a multiresolution grid.

The answer to this question cannot a priori be derived

from the results on quasi-uniform grids, because the non-

uniformity in grid resolution present in multiresolution

grids may cause complications such as the deterioration of

accuracy in the solutions and/or the hindering of waves

from one resolution zone to another. Instead, we use

a suite of multiresolution grids and numerically explore

how well the APVM with the new formulation developed

in Chen et al. (2011) acts across the wide range of scales

present in these grids.

2. Numerical results and analysis

As with the evaluation of most closures, the measure

of effectiveness is based on the ability of a low-resolution

simulation with the closure to reproduce certain impor-

tant aspects of a high-resolution, reference simulation. In

the simulations below, we evaluate the closure based in its

ability to reproduce the spectrum of the potential ens-

trophy (PE) obtained in the high-resolution simulation.

Specifically, we define the ‘‘error’’ in an approximate

solution as the mean distance between the PE spectrum

curves, within the inertial range, of the approximate so-

lution and the high-resolution reference solution. Let

P (Pr) denote the spectral density function for the PE of

the approximate (reference) solution. Then the error

between the approximate and the reference solutions is

defined as
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where k denotes the spherical wavenumber, and k0 and k1

are the starting and ending wavenumbers, respectively,

for the subrange. We should remark that our choice of

error metric focuses on the power spectra of the potential

enstrophy of the flow, and it neglects other aspects of the

flow, such as wave phases, computational modes, etc.

However, we believe that this choice of error metric is

most relevant in the regime of turbulent flows.

We conduct numerical experiments with the standard

shallow-water test case 5, which involves an initially

zonal flow impinging on a mountain topography. The

model configurations are identical to those set forth in

Williamson et al. (1992). We only remark that the to-

pography is not a source or sink of potential vorticity,

but instead acts as an inhomogeneity that leads to the

breakdown of the nonlinearly balanced geostrophic zonal

jet. There is no other external forces added, and therefore

this is a slowly decaying turbulent flow. The reference

solution is computed on an SCVT mesh with 655 362

cells (dx ’ 30 km), with the traditional =4 dissipation

of 109 m4 s21. The shallow-water test case 5 evolves into

turbulence in about 20–25 days. A snapshot of the po-

tential vorticity field on day 50 is shown in Fig. 1. The

spectrum of the potential enstrophy of the reference so-

lution on day 150 is plotted in Fig. 2. An inertial range of

width approximately one decade appears between

wavenumbers 20 and 120, and approximately verifies

the 21 power law for potential enstrophy spectra.

Approximate solutions are computed on variable-

resolution grids refined in a region including the moun-

tain topography. Specifically, the grids are refined in the

FIG. 1. The potential vorticity field on day 50, with values in the

range from 23.2 3 1028 m21 s21 to 3.2 3 1028 m21 s21. The lo-

cation of the mountain is indicated by the circle. The axis of the

globe is slightly tilted in order to better display the structure of the

potential vorticity field on the Northern Hemisphere.
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area 308 surrounding the center of the mountain to-

pography, and smoothly coarsen outside this region.

One set of grids has 40 962 cells, with the contrast ratio

between the finest and coarsest grid resolutions ranging

over f1, 2, 4, 8, 16g. Another set of grids has 163 842

cells, with the contrast ratio ranging over f1, 2g. More

details and visual plots of these grids are available in

Ringler et al. (2011). For our purpose, we list the reso-

lutions of the fine and coarse regions of the aforemen-

tioned grids in Table 1. In what follows, these grids will

be referred to as the 40 962-cell X1 grid, etc. We note

that the midlatitude Rossby radius in the simulations is

approximately 2000 km. The coarsest region in these

meshes has a resolution of 592 km. Thus, in all simula-

tions the Rossby radius is resolved. We also note that the

finest region on these meshes has a resolution of 37 km,

which is at the same level as the resolution (30 km) of

the uniform high-resolution grid used for the reference

solution.

The fine-resolution zones on the grids demand small

time steps according to the Courant–Friedrichs–Lewy

(CFL) criteria (Courant et al. 1967). The time step (see

Table 1) used for each of the grid in our simulations is

determined empirically so that stable solutions are

achieved. In Chen et al. (2011), a strict invariance of the

optimal parameter of the new formulation with respect

to the time step size is demonstrated. The explanation is

that the model incorporating the new APVM formula-

tion consists of partial differential equations that are

independent of the time step size and therefore the

solutions of the model are independent of the time step

size as well. This argument applies in the multiresolution

setting as well, and therefore the invariance of the op-

timal parameter of the new formulation with respect to

the time step size is assumed, and will not be explicitly

addressed in this work. We note that, on each grid, the

same time step is used for both the original and new

APVM formulations. Hence, the following compari-

sons between the results of these two formulations are

sensible.

On each of the grids mentioned above, a series of

simulations with the original formulation (3) and the

new formulation (4) of the APVM are conducted. The

parameter s of the original formulation assumes values

starting from zero and increases by 0.002 for each sim-

ulation; the parameter a of the new formulation starts

from zero, and increases by 0.0001 for each simulation.

The increments in the sampling values of the parameters

for both formulations are determined empirically so

FIG. 2. The potential enstrophy spectrum on day 150 for the reference solution.

TABLE 1. Grid information, time steps, and optimal parameters.

Grid Resolutions

Time

step (s)

Optimal parameters

s a

40 962-cell X1 (120, 120) 172.8 0.018 0.0018

40 962-cell X2 (65, 130) 172.8 0.018 0.0018

40 962-cell X4 (48, 190) 172.8 0.024 0.0024

40 962-cell X8 (39, 310) 86.4 0.074 0.0026

40 962-cell X16 (37, 592) 43.2 0.408 0.0033

163 842-cell X1 (60, 60) 172.8 0.004 0.0008

163 842-cell X2 (33, 65) 86.4 0.008 0.0012
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that, with around ;100 simulations, a good sample is

obtained in most cases except for the extreme case of the

original APVM on the 40 962 X16 grid, which requires

300 simulations.

For each simulation, the error in the approximate

solution compared to the high-resolution reference so-

lution is computed using (5). The errors for the original

APVM formulation, on all the aforementioned grids,

are plotted against the original APVM parameter s in

Fig. 3a. The error curve for the 40 962 X16 grid is

truncated on this plot. The high contrast ratio between

the fine and coarse resolutions on this grid demands a

much wider parameter interval in order to reveal the

optimal parameter. The whole error curve on this grid,

obtained on an interval of [0, 0.60], continues to de-

crease beyond s 5 0.20, flattens and reaches its mini-

mum at s 5 0.408, and then rises up again. The errors for

the new APVM formulation, on all the aforementioned

grids, are plotted in Fig. 3b against the new APVM pa-

rameter a. The optimal parameters for the new and

original formulations of the APVM, on each of the grids

used for this study, are listed in Table 1. It is seen that the

optimal parameter for the original formulation ranges

from 0.004 to 0.408, with a factor of 100 change! The

optimal parameter for the new formulation ranges from

0.0008 to 0.0033, with a factor of 4 change. On variable-

resolution grids, it is not possible to correlate the opti-

mal parameter to the grid resolutions because of the

presence of a wide range of grid scales. However, the

fact that the range for the values of the optimal pa-

rameter of the new formulation is much narrower than

that for the original formulation is the first indicator that

the new APVM formulation is able to act appropriately

across scales (i.e., it is scale aware).

The scale-aware property of the new formulation is

also demonstrated by the fact that, on all the grids used

FIG. 3. Performance comparison for the original APVM and the new scale-aware APVM: (a) errors in the potential enstrophy

spectra from simulations with the original APVM on a series of variable-resolution grids; (b) errors in the potential enstrophy spectra

from simulations with the scale-aware APVM on a series of variable-resolution grids; (c) the potential enstrophy spectrum cur-

ves with the original APVM with s 5 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, on the 40 962-cell X16 variable-resolution grid; (d) the potential

enstrophy spectrum curves with the scale-aware APVM with a 5 0.0010, 0.0020, 0.0030, 0.0040, 0.0050, on the 40 962-cell X16

variable-resolution grid.
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for this study, the new formulation produces minima that

are at least as low as those produced by the original for-

mulation. In certain situations (e.g., on the 40 962-cell X8

and the 40 962-cell X16 grids), it actually produces lower

minima, thanks to its ability to act appropriately across

the vast range of scales present on these grids.

The 40 962-cell X16 grid causes a surge in the value of

the optimal parameter for the original formulation

(Table 1). A detailed look at the spectrum curves pro-

duced with various parameter values on the 40 962-cell

grid reveals why this happens, and also demonstrates

more clearly the strength of the scale-aware feature of

the new formulation. In Fig. 3c, we plot the PE spectrum

curves with s 5 0.100, 0.200, 0.300, 0.400, 0.500, and

0.600 for the original formulation of the APVM. At s 5

0.100, which is already larger than the optimal parame-

ter of the original formulation on any other grid, the

spectrum curve stays way above the reference spectrum

curve. Its straying behavior near wavenumber 10 reveals

that the large-scale motions of the flow are corrupted,

apparently due to the lack of dissipation in the coarse

region of the mesh. Larger values are needed for the

parameter s to ensure proper dissipation in the coarse

region. When the parameter has been raised to levels

(s 5 0.400, 0.500, 0.600) for which the spectrum curves

near wavenumber 10 match the reference spectrum curve

reasonably well, the curves at high wavenumbers suffer

from overdissipation in the fine regions. It is clear that

the conflicting needs of dissipation in the coarse and fine

regions on the mesh make it very challenging to bring

the PE spectrum curve of the approximate solution

evenly close to that of the reference solution. In Fig. 3d,

we plot the PE spectrum curves produced with a 5

0.0010, 0.0020, 0.0030, 0.0040, and 0.0050 for the APVM

in the new formulation. Starting from a 5 0.0010, as the

parameter increases, the spectrum curve comes down at

both low (10) and high (100) wavenumbers, demon-

strating that the new formulation maintains control at

both the low and high wavenumbers equally well. It can

be seen that, at a 5 0.0030, the spectrum curve of the

approximate solution is close to the reference spectrum

curve across the inertial range. As Table 1 shows, the

optimal value for a on the 40 962-cell X16 grid is 0.0033.

As the foregoing results and analysis have shown, the

scale-aware APVM formulation is able to act appro-

priately across grid scales, and produces better results

compared to the original formulation, in situations

where a vast range of scales are present. The results have

also shown that the parameter of the new formulation is

not strictly scale invariant, because it varies, albeit with

a relatively small factor of change. Hence, it is crucial to

assess the robustness or the insensitivity of the scale-

aware APVM with respect to the parameter values near

the numerically identified optimal values. To this end,

we pick a 5 0.0020, a representative value in the range

[0.0011, 0.0032] found before for the optimal parameter

of the new formulation, and plot, in Fig. 4, the spectrum

curves produced with this value of the parameter, on all

the grids used for this study. We see that the curves from

the 40 962-cell X1, 40 962-cell X2, 40 962-cell X4,

163 842-cell X1, and 163 842-cell X2 grids match very

well with the reference spectrum curve. The 40 962-cell

X8 and 40 962-cell X16 grids are known to be chal-

lenging for numerical simulations due to the presence

of a vast range of scales. Even so, the spectrum curves

produced with the representative parameter value on

these two grids stay reasonably close to the reference

spectrum curve. To conclude this section, we note that

the chosen optimal parameter a 5 0.0020 here is con-

sistent with the optimal interval found in Chen et al.

(2011) for the new APVM formulation on quasi-uniform

grids.

3. Conclusions

In this work, we numerically evaluate the scale-aware

property of a new formulation of the APVM on multi-

resolution grids. Numerical simulations are conducted

on a sample set of variable-resolution SCVT grids.

Comparison is made between the new formulation and

the original formulation, which has been used in earlier

work. The scale-aware property of the new formulation

is demonstrated by the fact that (i) the range for the

optimal parameter of the new formulation is much

narrower than that for the original formulation; (ii) on

grids that are challenging for numerical simulations due

to the high contrast ratios between fine and coarse res-

olutions, the new APVM formulation produces lower

minima at the identified optimal parameters; and (iii)

the APVM closure with the new formulation is less

sensitive to the parameter near the numerically identi-

fied optimal values.

Our success with the APVM demonstrates that this

closure is a viable option in simulating geophysical flows.

Though admittedly, for more realistic flows, some sim-

plifying assumptions that are valid in the case of shallow-

water flows will have to be carefully reevaluated. Below

we remark on a few key issues that need to be addressed

when generalizing this closure to more realistic flows.

The closure presented in this work includes the as-

sumption of small variations in fluid thickness; namely,

we assume that variations in the fluid thickness h are

small compared to the mean fluid thickness h. For

a broad class of shallow-water systems where this clo-

sure might be utilized, this will, in general, be a valid

assumption. However, as we apply the closure to more
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realistic systems, such as the isopycnal model of the

ocean circulation [see, e.g., Ringler and Gent (2010,

manuscript submitted to Ocean Modell.)], this assump-

tion will have to be revisited.

The scale-aware formulation presented in Chen et al.

(2011) and the current work is derived based on another

crucial assumption, namely the isotropy of the flow.

Even though this assumption is approximately true for

many cases, it is conceivable that, in order to faithfully

represent a realistic geophysical flow, nonisotropic fea-

tures of the flow will need to be taken into account. For

example, the wave–turbulence interactions (see, e.g.,

Pedlosky 1987; Rhines 1975) have profound influence on

the long-term behavior of the global oceanic and at-

mospheric circulations, and should be considered in

designing subgrid closures.

Finally, this scale-aware formulation of APVM is

most appropriate for geophysical flows with a potential

enstrophy inertial range leading into the grid scale. Such

a potential enstrophy inertial range appears to be pres-

ent in mesoscale ocean modeling systems between the

scale of mesoscale eddies (;200 km) and the model grid

scale (;10 km; Fox-Kemper and Menemenlis 2008).

Therefore, the next step will be to implement this clo-

sure within a global ocean modeling system that resolves

mesoscale eddies. In particular, our intention is to use an

ocean model constructed from the Model for Prediction

Across Scales (MPAS) framework (Ringler et al. 2011)

where the use of variable-resolution meshes requires

parameterizations to act appropriately across a wide

range of grid scales.
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